Aalborg Universitet

Distance-Aware Join for Indoor Moving Objects

Xie, Xike; Lu, Hua; Pedersen, Torben Bach

Published in:
IEEE Transactions on Knowledge and Data Engineering

DOl (link to publication from Publisher):
10.1109/TKDE.2014.2330834

Creative Commons License
Unspecified

Publication date:
2015

Document Version
Accepted author manuscript, peer reviewed version

Link to publication from Aalborg University

Citation for published version (APA):

Xie, X., Lu, H., & Pedersen, T. B. (2015). Distance-Aware Join for Indoor Moving Objects. IEEE Transactions on

AALBORG
UNIVERSITY

Knowledge and Data Engineering, 27(2), 428-442. https://doi.org/10.1109/TKDE.2014.2330834

General rights

Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners

and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

- Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
- You may not further distribute the material or use it for any profit-making activity or commercial gain

- You may freely distribute the URL identifying the publication in the public portal -

Take down policy

If you believe that this document breaches copyright please contact us at vbn@aub.aau.dk providing details, and we will remove access to

the work immediately and investigate your claim.

Downloaded from vbn.aau.dk on: August 23, 2025

https://doi.org/10.1109/TKDE.2014.2330834
https://vbn.aau.dk/en/publications/801b393a-a75e-4ee3-b7be-8a9278ef72e6
https://doi.org/10.1109/TKDE.2014.2330834

Distance-aware Join For Indoor Moving Objects

Xike Xie, Member, IEEE, Hua Lu, Member, IEEE, and Torben Bach Pedersen, Senior Member, IEEE

Abstract—Indoor spaces accommodate large parts of people’s lives. Relevant techniques are thus needed to efficiently manage
indoor moving objects, whose positions are detected by technologies, such as Assisted GPS, Wi-Fi, RFID, and Bluetooth. Among
such techniques, the distance-aware join processing is of importance in practice for indoor spatial databases. Such join operators
leverage a series of applications, such as object tracking, sensor fusion, and clustering. However, joining over indoor moving objects is
challenging because: (1) indoor spaces are characterized by many special entities and thus render distance calculation very complex;
(2) the limitations of indoor positioning technologies create inherent uncertainties in indoor moving objects data.

In this paper, we study two representative join predicates, semi-range join and semi-neighborhood join. To implement them, we define
and categorize the indoor distances between indoor uncertain objects, and derive different distance bounds that can facilitate the join
processing. We design a composite index scheme that integrates indoor geometries, indoor topologies, as well as indoor uncertain
objects, and thus supports the join processing efficiently. The results of extensive experimental studies demonstrate that our proposals
are efficient and scalable in evaluating distance-aware join over indoor moving objects.

Index Terms—Indoor Space, R-tree, Spatial Join, Moving objects.

1 INTRODUCTION

People spend large part of their lives in indoor spaces
such as office buildings, shopping malls, conference
venues, and transportation facilities, e.g., metro systems
and airports. In such indoor spaces, positioning is be-
coming increasingly available due to different underly-
ing technologies including Assisted GPS (A-GPS), Wi-Fi,
RFID and Bluetooth. Indoor positioning provides local-
ization for people and other moving objects in indoor
spaces, and thus enables a variety of indoor location-
based services (LBSs).

In the emerging indoor applications, distance-aware
joins constitute a series of expressive operators that are
indispensable for indoor spatial data management.

Example 1: Indoor Distance-Based Alert. A kinder-
garten teacher or a retirement home volunteer would
like to be alerted in case that the distance from their
supervised children or elders are beyond a distance
threshold e. In an airport, upon receiving a report of
suspicious criminals or virus carriers, it would be im-
portant to monitor their k£ closest individuals to protect
the public safety. In these cases, we need a spatial join
on relevant moving objects with an appropriate distance
based predicate.

Example 2: Indoor Sensor Fusion. In order to provide
a reliable location estimation in indoor environments,
it is important to combine different and complemen-
tary positioning sources like wearable sources (e.g., A-
GPS and mobile gyroscope) and stationary sources (e.g.,
Wi-Fi hotspots and RFID readers). However, all such

o Xike Xie, Hua Lu, and Torben Bach Pedersen are with the De-
partment of Computer Science, Aalborg University, Denmark E-mail:
{zkzie, luhua, thp}Qcs.aau.dk

positioning technologies contains measurement errors.
It is beneficial to consider join over moving objects
equipped with multiple positioning technologies with
accuracy guarantees and thus to derive their overlapping
regions [15].

Example 3: Indoor Data Analysis. Many algorithms
related to similarity search [28] and data mining [5] [4]
can be constructed on top of a join query. It can either be
a distance similarity join [28] [5] or a k nearest neighbor
based join [4]. Thus, for indoor spatial databases, the join
operator is an important primitive that allows efficient
distance-aware analysis, such as indoor clustering and
classification.

1.1 Problem Definition

Given two indoor objects @ and O, let |Q, O|; denote the
indoor distance from @ to O. We formally define the two
join predicates studied in this paper as follows.

Definition 1: Semi-range Join. Given two sets of in-
door objects Q and O, and a distance threshold e, the
semi-range join of the two sets returns all pairs {(Q,O)}
of objects, such that the distance from @ to O are within
e. Formally:

Q<0 ={(Q,0) € Qx0[|Q,0]; < ¢} ey

Definition 2: Semi-neighborhood Join. Given two set-
s of indoor objects Q and O, and an integer k, the
neighborhood-join returns all object pairs as follows

QD}f@:{(Q,O)EQXWOE/ﬂNN(Q)} @)

Here, kKNN(Q) returns Q’s k nearest neighbors in O in
terms of the indoor distance.

In this paper, we study semi-joins instead of full
joins, e.g., b and . The reason, as to be detailed in

Section 1.2, is that the indoor space is a quasimetric
space where distances are not symmetric. The semi-
join is a reflection of the asymmetric property of indoor
distances. Therefore, swapping the two arguments of the
semi-join will yield different results. Also, full joins can
be easily implemented by semi-joins. For example, the
full range join can be defined as:

Q10 ={(Q,0) €Qx0][Q,0l; <A |Q,0ls <}
We can have Q<x O = Q< O N O>< Q.

For ease of psresentatioen, we use joins to refer to
semi-joins defined above throughout this paper when
the context is clear. We call Q the query objects, and
O the jtarget objects. For both >< and ><, appropriate

handling of distances between indoor ob]ects is of critical
importance, which faces several technical challenges in
indoor spaces.

1.2 Challenges in Indoor Spaces

First of all, indoor spaces are characterized by entities
such as walls, doors, rooms, etc., which render Euclidean
distance and spatial network distance unsuitable [22],
[33]. Such entities imply topological constraints that
enable and/or disable movements. Actually, the indoor
space (I) is a quasimetric space. Specifically, given two
points p, ¢ € I, the distance |p, g|; satisfies:

) |p.qlr > 0 (non-negativity);

) |p,qlr # lq,plr (non-symmetry);

) |p.alr < |p.e|r+ e, q|r (triangle inequality, Lemma 10).

We show a floor plan example in Figure 1. The Eu-
clidean distance between two points p and ¢ does not
make sense because it is blocked by a wall. To reach
p from g, one has to go through doors di3 and ds
sequentially to enter room 12. One can not reach room 12
by di2 because the door is one-directional, as indicated
by the arrow. Note that one-directional doors are often
seen in many scenarios, e.g., security controls in airports.

11 0 33
-""\dll d.:.i(\
Ps { e g do | ds ds
-y
12 di: 10 d, 40 ds 30 ’)32
,*\d. d;
dais 14,1 —
13 dsy 31
~du
bdy 20 g; ~ Door
o5 [d2s i (te 23 El "
:‘ 21 g\:‘f oom
d;| d.:_‘ El Staircase
a Hallway
22 | - Sliding wall

Fig. 1. Floor Plan Example

Second, indoor entities can also be associated with
temporal variations. For example, a room may be only
temporarily available due to its opening hours, or being
blocked in a fire emergency. Also, a large room, e.g., a
conference hall, may be partitioned into several smaller
rooms to accommodate different events. Such reorgani-
zations can render pre-computed indoor distances [22],
[33] volatile. Refer to the example of Figure 1. Room 21
can be a single partition in banquet style if the sliding
wall indicated by the dashed line is dismounted. It can
also be split into two partitions in meeting style if the
sliding wall is mounted. Consequently, point s cannot
reach ¢t through room 21, and the distance between s and
t needs recalculating by involving doors d41 and das.

Third, the accuracy of indoor positioning is limited,
typically varying from a few to about 100 meters [1].
For example, under RFID-based indoor positioning, the
location of an object is reported as a region when it
is in the detection range of an RFID reader. Due to
economic reasons, an indoor space is not fully covered
by such readers. As a result, indoor moving objects do
not get continuous location updates as their outdoor
counterparts do in GPS positioning. Consequently, the
location uncertainties in indoor moving objects data
make it more complex to calculate object-related indoor
distances.

To address these challenges, we need to support in-
door distances that take into account topological con-
straints, temporal variations, and location uncertainties.
Recent research [22], [33] only considers part of these
important points. In this paper, we propose a com-
plete set of techniques for efficient distance-aware join
processing on moving objects in realistic and dynamic
indoor spaces.

1.3 Contributions

Overall, our technical contributions in this paper falls
into two important aspects.

First, we define the indoor distance between two
moving objects @) and O, whose locations are obtained
through the aforementioned limited indoor positioning.
We choose the expected distance as it is both interpretative
and semantically comprehensive [9]. By referring to the
indoor topology, we divide O’s imprecise location into
disjoint subregions each falling into one indoor partition
(e.g., a room). Subsequently, we classify the distances
from @ and the subregions based on the topological
properties, and derive various distance bounds that can
remove non-qualifying join pairs without calculating
detailed expected indoor distances.

Second, we design a composite index for indoor spaces
as well as indoor moving objects, as illustrated in Fig-
ure 2. The geometric layer consists of a tree structure that
adapts the R*-tree [3] to index all indoor partitions, as
well as a skeleton tier that maintains a small number of
distances between staircases. In addition, the topological
layer maintains the connectivity information between

indoor partitions, and it is implicitly integrated into
the tree structure through inter-partition links. Last, the
object layer stores all indoor moving objects and is associ-
ated with the tree through partitions at its leaf level. By
integrating the distance bounds at corresponding layers,
the index supports fast distance based pruning in query
evaluation.

Geometric Layer Topological
, Layer
Tree tier Skeleton tier o
4t
f”r —
Object Layer &S AN
Fig. 2. Composite Index for Indoor Space
This paper substantially extends our previous

work [31]. First, we formalize the problem of join
operations over indoor objects (Section 1). Second, we
define the indoor distance between imprecise objects
(Sections 2.2 and 2.3) and extend the upper-/lower
bounds from supporting “point-to-object” distance
to “object-to-object” distance (Section 3). Third, we
propose efficient algorithms for computing the semi-join
operators on the previously proposed indoor index
(Section 5). Fourth, we conduct extensive experiments
to evaluate the new proposals (Section 6).

Remaining sections are organized as follows. Sec-
tion 2.1 studies preliminaries for indoor databases. Sec-
tion 4 designs a composite index for indoor spaces
and moving objects. Section 7 reviews the related work.
Section 8 concludes the paper and discusses future di-
rections.

2 INDOOR DISTANCES FOR UNCERTAIN OB-
JECTS

In this section, we study indoor distances in detail.
Section 2.1 presents preliminaries on indoor space and
indoor distance. Section 2.2 defines the expected indoor
distance for uncertain moving objects. Section 2.3 dis-
cusses categories of indoor distances. Table 1 lists all
notations used throughout this paper.

2.1 Preliminaries on Indoor Space and Indoor Dis-
tance

Given an indoor space, we use partitions to refer to
rooms, staircases, or hallways. They are connected by
doors or staircase entrances. For simplicity, we regard
hallways and staircases as rooms. The two entrances
of a staircase can be represented by doors located on
the staircase’s two ends. Partitions, including their as-
sociated doors, are basic elements in indoor spaces. An
indoor partition’s characteristics lie in two major aspects:
geometry and topology. In terms of geometry, they are

TABLE 1

Notations
Notation [Meaning
I, E Indoor space, Euclidean space
Q0 a set of query objects, a set of target objects
Q,0 a query object, a target object
1Q,0|r Indoor distance between p and ¢
1Q,0|g Euclidean distance between p and ¢
|Q,0|k Skeleton distance between p and ¢
a.l or a.u | lower or upper bound of the value a
TA the link/pointer to the entity A
R, R:r] the range for R on dimension ¢
D(p) doors of partition p
P(d) partitions connected to door d
P(q) the partition containing point ¢
P(O) partitions overlapping with object O
[0] the number of instances belonging to object O
a™b a path from a to b with d as the last door
ab the shortest path from a to b
O(e,r) a circle centered at ¢ with radius r
>< semi-range join
€
l>k< semi-neighborhood join
& Minkovski sum

3D spatial entities in Euclidean space. Meanwhile, they
are aligned to floors inside a building. For topology,
partitions are separated by walls etc., and interconnected
by doors or staircase entrances.

The doors graph [33] has been proposed to represent
the connectivity of indoor partitions as well as door-to-
door distances. Formally, the doors graph is defined as
a weighted graph G4 = (D, E), where:

(1) D is the set of vertices, each corresponding to a door.
(2) E is the set of edges. An edge (d;, d;) exists if these
two doors are associated with the same partition.
(3) Each edge (d;,d;) has a weight that is the distance
from door d; to door d; through their common
partition.!
Specifically, if a door is unidirectional, i.e., allowing one-
way movement only, its graph vertex’s associated edges
acquire directionality accordingly and are in- or out-
edges. If an edge does not involve unidirectional doors,
the edge is bidirectional. More details can be found in
the previous work [33].

Figure 3(a) is the doors graph for the floor plan
in Figure 1. One-way door di2’s adjacent edges, e.g.,
(dis,d12) and (dy2,d;1), are unidirectional in the doors
graph, whereas other edges that do not involve doors
dy2 or di; are bidirectional, as amplified in Figure 3 (b).

In this paper, we do not create a separate doors
graph. Instead, in our composite index for indoor space,
we add extra links to the leaf-level tree nodes if their
corresponding partitions are connected by a door. This
design yields a de facto doors graph that is integrated in
the index. More details are to be presented in Section 4.

Unlike the previous works [22], [33], we do not pre-
compute and store the shortest indoor distances for all
door pairs before query processing. Pre-computing all
such distances is expensive especially when a given

1. The door midpoints are used for calculating door-related dis-
tances.

! e TS d
i o« iy
12¢d 10 \‘ll : Fvy
-
13| d Eadily dy
. dfl'.’..
d:-.
1 v -
i - o
du d:. dx
(a) (b)

Fig. 3. Example of Doors Graph

indoor space has many partitions and doors. On the
other hand, our decision is also justified by the temporal
indoor space variations we consider in this paper. As
explained in Section 1, partitions can be split or merged.
Partitions can also be blocked in emergence or booked
by sudden events, thus some doors are closed and/or
temporary doors are opened accordingly. Such changes
inevitably invalidate the indoor distance computing, and
a considerable part of the shortest indoor distances can
be affected if the temporal change happens on a pivot
door or partition.

Given two indoor positions p and ¢, we use ¢ wép to
denote a path from ¢ to p where ¢ is the sequence of
doors on that path. Referring to Figure 3(b), a path from

d
qgtopisq gy "“p that means one can reach p from ¢

through door d;3 followed by d;5. We call the length of
the shortest path as the indoor distance from ¢ to p, and

. . §
denote it as |g,p|;. Formally, |¢,p|r = mins(|g ~ p |). In
diz,dis . o
the example, ¢ 3 is also the shortest path as it is the

only possible path. We use ¢ - p to denote the shortest
path from ¢ to p.

Indoor distance |g,p|; consists of two parts: door-
door distance and intra-partition object-door distance.
In Figure 3(b), door-door paths (e.g., di3 — di5) are
represented by solid arrows; object-door paths (e.g.,
di5 — p) are represented by dashed arrows. Let D(p) be
the set of doors of p’s partition. In general, the indoor
distance |¢,p|; =

mindqu(q),dpeD(p)(mvdq|E + |dqa dpll + |dpvp|E) 3)

Previous works [22], [33] assume that all possible
|dp, dg|rs are known beforehand. In this paper, we lift
this assumption and investigate how to process queries
without pre-computing |d,, dy|rs. As a remark, strictly
speaking, |¢,dq|r should consider the possible obsta-
cles in ¢’s partition. Our proposals in this paper can
incorporate such obstructed distances [34] at a low level
for indoor partitions. As this is not the focus of this
paper, we omit the details. Reversely, the concept and
the computation of obstructed distances are insufficient
for modeling complex indoor topologies and distances.

2.2 Indoor Moving Objects and Expected Indoor Dis-
tance

Existing proposals [10], [26] model a moving object by
an uncertainty region, where the exact location is consid-
ered as a random variable inside. The possibility of its
appearance can be collected by objects” velocities [33],
parameters of positioning devices [10], or analysis of
historical records and thus represented by a probability
density function (pdf). The pdf can be described by either
a closed form equation [7], [8], or a set of discrete
instances [16], [19]. In this paper, we adopt the instance
representation, as it is general for arbitrary distributions.
Thus, an indoor moving object O is represented by a set
{(0,0.p)}, where o is an instance and o.p is its existen-
tial probability, satisfying > _,o0.p = 1. Based on such
probabilities, we define the expected indoor distance to
measure the distance from one object to the other.
Definition 3: (Expected Indoor Distance for Uncertain
Object) Given two uncertain objects Q and O, the indoor

distance between them is:
> > laoli-gp-op

|Q. 0|1 = Eqeq.oco(lg, o]) =
qeQ 0cO

In an indoor setting, an object O’s uncertainty re-
gion may overlap with multiple partitions. An example
is shown in Figure 5. Object O’s uncertainty region
overlaps with three different rooms. Accordingly, all
the instances in O are divided into subsets. Generally
speaking, we have O = Uj<;<,O}j] (1 < m < |0])
where each O[j] corresponds to a different partition and
contains all those instances in that particular partition.
We also call such an O[j] as O’s uncertainty subregion. We
proceed to study all cases on all possible |Q, O|zs.

2.3 Cases of Indoor Distance |Q, O|;

We consider how many uncertainty subregions, i.e., Q[i]s
or O[jls, objects Q or O have, and how many indoor
paths exist from Q[é] to O[j]. Accordingly, there are three
cases for |Q,O|r.

2.3.1 Single-Partition Single-Path Distance

In this case,)’s uncertainty regions fall into a single
partition, and so does O’s. Let Py be the partition
containing @), and Pp be the one containing O. For an
arbitrary pair (g, 0)qcQ,0co, the shortest path ¢ dexfo o
shares the same door sequence starting with dg and
ending with dop, through which the path reaches o from
q. As a result, we calculate the indoor distance as follows

|Q7O|I =

> (la:dele + |do, dolr +|do,0l) - g.p - 0.p
q€Q 0€0

= lg.dole +|dg,dolr + Y _ |do,olz (4)
qeqQ 0€0

2.3.2 Single-Partition Multi-Path Distance

In this case, @ and O’s uncertainty regions still falls into
one single partition, respectively. However, for different
instances, say o; and o;, shortest paths ¢ 2 0; and
q = o0; do not share the same door sequence. Here, ¢
is an instance of Q). As a result, the indoor distance is
calculated as follows.

Q.01 =Y la,0lr-g.p-op (5)
qeQ 0€0

An example of this case is shown in Figure 4, where
O has two instances o; and o0,. The shortest path from ¢

ds,d d
to them are: ¢ "~~' 01 and ¢ ~3 0,.

R4

o[z]

d
T 13 i

Fig. 4. Single-Partition Fig. 5. Multi-Partition Path
Multiple-Path Distance Distance

2.3.3 Multi-partition Path Distances

In this case, either object @ or O’s uncertainty region
overlaps with more than one partitions, and thus O =
Ui<j<mOlj] 1 < m < |0]). We calculate the indoor

distance as follows
Q.01 =Y "> Q.0 - > ap- > o0p) (6)
(] q€Q(i] 0€0lj]

In the above equation, |Q[i], O[j]|; is calculated accord-
ing to either Equation 4 or 5.

An example of this case is shown in Figure 5,
where object O has three uncertainty subregions O[1],
O[2] and O[3]. Accordingly, we have |Q,0|; =

(Z1<3<3(|q Olslln)-

In summary, to calculate the indoor distance |Q,O|;,
we need to find shortest paths for every instance pair of
Q@ and O. Suppose objects @ and O contain |Q| and |O|
instances, respectively. According to Definition 3, |@Q, O|r
requires O(|Q] - |O|) shortest path calculation. Next, we
derive effective upper and lower bounds to alleviate the
extensive computation.

3 UPPER-/LOWER BOUNDS FOR INDOOR Dis-
TANCES

In this section, we derive the upper and lower bounds
(ULBounds in short) of |Q,O|; for each of the layers
mentioned in Section 1 (see Figure 2 also). Specifically,
they are Euclidean Lower Bounds for the geometric layer,
Topological Layer ULBounds for the topological layer, and
Object Layer ULBounds for the object layer where location
probabilities of uncertain objects are known.

3.1 Geometric Layer Lower Bounds

For two uncertain objects @ and O in an indoor space,
the (virtual) Euclidean distance between them is the low-
er bound of their distance in the indoor space. Therefore,
we have |Q7O|man < |Q7O|min1/ where |Q70|man =
Mingeq,oc0lq, 0| E-

In the Euclidean space, the uncertainty region is a con-
nected region. We bound an indoor object @)’s instances
by a circle ®(cq, rg), centered at the centroid cq, and with
the radius rg which is defined as the maximum distance
between the centroid and samples.

Lemma 1: Given an indoor object), denoted by
®(cg,rq), and another object O, denoted by ®(co, ro),
the geometric lower bound property can be rewritten as:

lcg.cole —rg — 10 < |Q, Olmint @)
Note that it is impossible to derive the indoor upper
bounds by using Euclidean distances only. However,

indoor distances can be upper bounded by a mixture
of Euclidean distances and topological constraints.

3.2 Topological Layer ULBounds
For two uncertain objects @ um,Q[é and O =
U, O[j], suppose that P(Q[i]) is the partition containing
subregion Q[i], and P(Q) are the partitions overlapping
with Q.

Lemma 2: (Topological LBound) Let ¢,,:n(Q[i], Olj])
be:

qlminE + |dq = ds| +
|dsaO[”man (8)

Then, |Q O|I > mzn{tmm(QH O[J])}

Lemma 3: (Topologlcal UBound) Let ¢,,4,(Q[i], Ol7])
be:

Qldl. d

min
dq€D(P(Q[d])),ds € D(P(O[3]))

|Q[i]7dq|mazE' + |dq i> ds| -+
|ds’0[”marE)

Then |Q O|] > mzn{tmax(Q[] O[]])}

Suppose @ and O overlap with m and n partitions,
respectively. Lemmas 2 and 3 involve O(mn) shortest
paths. However, if @ and O’s uncertainty regions both
overlap with one partition, the above two lemmas can
be rewritten as Lemma 4:

Lemma 4: Given an indoor object (), denoted by
®(cg,rg), and another object O, denoted by ®(co.70),
the topological ULBounds can be rewritten as:

min
dq€D(P(Q[4])),ds€D(P(Olj]))

lcg.colr —rqg —ro <1Q,0|; < |cg,colr +rg +ro (10)
Proof:

|Q, Olminr = minveeq(lq,Olr)

> minvgeq(|g, colr — ro) (Lemma 10)

= minvqeq(lq,colr) —ro > |cg,colr —rq —ro (Lemma 11)
= |Q, Olmint > |cq,colr —rq —T0

=1Q,0|r > |cg,colr —rqg —ro

|Q,0|1 <lcq,colr +rqg+ro can be proved likewise. So the
lemma is proved. U

According to Lemmas 2 and 3, it requires shortest path
(e.g., |d, = ds|) computation on the doors graph in order
to derive the ULBounds. To reduce the computation, we
design a looser topological upper bound. It is not as
tight as Topological UBound, but it is more economic to
be derived. Instead of getting the shortest paths, it only
requires some paths that connect objects @ and O. We
call it Topological Looser UBound.

Lemma 5: (Topological Looser UBound, TLU) Let

tmac (Q[2]. O7]) be:
|Q[i]adq|mawE + |dq “f') ds| +
|d570[j“ma:cE (11)

Then, |Q,Or < maz{tma.. (Q[i], O[j])}-

As to be detailed'in Section 5, we use the looser bound-
s to prune doors and partitions in query processing.
Afterwards, the shortest paths are only evaluated on
the remaining doors and partitions for the topological
ULBounds. For the case that both @ and O overlap with
one partition, Lemma 5 can be simplified as:

|Q,0|; < min
dqe€D(P(Q[i])),ds€ D(P(O]4]))

|dg, colE + |do.coleg +rg +ro

min
da€D(P(QI4])),ds € D(P(O[5]))

|dy ~ ds| +
(12)

In contrast to TLU (Lemma 5) and topological UL-
Bounds (Lemmas 2 and 3) which consume O(mn) in
terms of the number of shortest paths, their simplified
versions (i.e.,, Lemma 4 and Equation 12) only take one
shortest path to derive the ULBounds, which is certainly
more efficient. To generalize the single-partition case to
multiple-partition scenarios, we define the star-connected
region.

Definition 4: (star-connected regions) Let O = ®O(c,r)
be an indoor object overlapping with more than one
partition, i.e., O = U}, O[i]. Let the subregion containing
c be the central region C. If all other subregions are
connected to C by doors, we call O’s region a star-
connected region. Formally,

VOIi] # C,3door d, such that d € C and d € O[i].

Notice that a star-connected region is a connected
region in both Euclidean space and indoor space. Then,
we can define O by ®(c,rr), where r; is the maximum
indoor distance from centroid c to all subregions, r; =
maz|c, O[i]|maezr- By defining star-connected regions, we
can benefit from the simplifications in topological UL-
Bounds by substituting r; into Equations 10 or 12. In
summary, a star-connected region is a special case in that
it is a tight (r; < 3r) and connected region in the indoor
space.

3.3 Object Layer ULBounds

Nevertheless, the topological ULBounds can still be very
loose in the following two cases:

o Case 1: If object @ or O’s uncertainty region is
relatively big compared to their indoor distance;

o Case 2: If object Q or O overlaps with multiple
partitions that are not interconnected (i.e., they are
not star-connected regions).

Referring to the example shown in Figure 5, where object
O = U?_,OJi], the distance from ¢ to O[1] is short, while
the distance to O[3] is long. If the gap between topo-
logical upper and lower bounds is large, the expected
distance is only constrained by a loose range and thus
not well approximated. Notice that the gap can be even
bigger, if ¢ is also an uncertain object in Figure 5. To
tackle this problem, we design Object Layer ULBounds by
using location probability information associated with
objects.

For two indoor objects, their expected indoor distance
derives the expectation of the distances between all
pairs of samples. Geometric and topological ULBounds
bound the distance by the minimum/maximum distance
between sample pairs. The object layer ULBounds make
a difference by considering the probability distributions
among sample points. We proceed to define the concept
of B-region.

Definition 5: (8-region [6], [20], [21]) Given an indoor
object O, the -region is a closed region such that the
probability of O being located inside the region is greater
than S.

The B-region can be constructed in different manners:

o For Case 1: Given a predefined f value, the S-region
can be constructed by first sorting an object’s sam-
ples according to their distances from the centroid.
Then, we count and summarize their probabilities
until § is reached. The distance between the last
counted sample point and the centroid is 7%. Thus,
O’s B-region O” is determined by a circle ®(c,77).

o For Case 2: We randomly select a subregion O[¢]
as the S-region. Here, the value of 8 equals to the
summation of probabilities for samples inside O[3,
ie, B =3 cops-p- The shape of the 3-region is a
rectangle, which is the intersection of O’s MBR and
the partition containing O[i].

In both cases, we bound the possible instances of an
object by a region with the probability higher than 3.
In the remainder of this section, we first consider a
simplified case where the distance is between a point
¢ to an object O (Lemma 6). Based on that, we extend
point ¢ to object @ and derive the object layer ULBounds
(Lemma 7).

Lemma 6: Given a point ¢ and an object O, we have:

(1 - ﬁ) : |Q7O|minl + 5 : |Q706|minl S |Q«0|1
S 6 : |Q7 Oﬁ|maz[+ (]- - B) : |Q7O|maz1

Proof: We first prove |q,0|r < B+ |q,0%|mazr + (1 — B) -
|an‘maxl~

Eseoﬁ(|Qa5|I) : P’I'{S € OB} + EseO—OB(‘qv‘g'I) : PT{S €0 - Oﬁ}411

Composite Index Structure
Overview

Byconla:slr) - B+ Eyco-os(la:5lr) - (1 = B)or the floor plan shown in Figure 1, its composite index
<1¢,0°|imasr B+ |, Olimazr - (1 — B)is shown in Figure 6(c). Figure 6(a) is a planar view of
(Vs € 0%, |q, 5|1 < |g,0°|masr)the index and Figure 6(b) is an amplified view of the

Likewise, we can prove (1 —) - |¢, O|mins + B - |q, Oﬁ|mm1 <
|g,O|r. Thus, the lemma is proved. |

Lemma 7: (Object Layer ULBounds) Given two object-
s O; and Oj;, we have:

(1= Bg)BolQ°, Olimint + BaBo|Q°, O |int +

(1= Bo)(1 = B0)|Q, Olmins + Ba(l — Bo)|Q. O limint
<|Q.0l

< BaBolQ°, 08| mazr + (1 = B0)BolQ%, Olmaxs +
Bo(1 = B0)|Q, O%lmaxr + (1 — o) (1 = Bo)|Q. Olmaxt

Proof: Assume g is a point inside Q, we have:

E(Q,0|) =
E(|q,0lrlg € Q%) - Pr{q € Q°}

+E(19,0l1|lg € Q = Q%) - Pr{qg ¢ Q°} (13)
B B
wol={ 30 ac e, (14

Substituting Equations 13 and 14 into Lemma 7, the lemma is
proved. L

3.4 Summary

To summarize, we use geometric and topological UL-
Bounds for the case that an object overlaps with a single
partition; we use probabilistic ULBounds for the case
that an object overlaps with multiple partitions. A sum-
mary is given in Table 2. With the ULBounds as well as

TABLE 2
Indoor Upper / Lower Bounds for Different Cases

[Cases [Bounds

single-partitioned region
star-connected region

Geometric Layer ULBounds (Lemma 8)
Topological Layer ULBounds (Lemma 5)

multi-partitioned region
big uncertainty region

Object Layer ULBounds (Lemma 7)

the approximate indoor distances, we avoid computing
shortest paths for all existential instances of an uncertain
object. However, we still need to find shortest paths for
other objects and instances when using these bounds.
To accelerate such shortest path computing, we design a
composite index scheme to enable search space pruning.

4 COMPOSITE INDEX FOR INDOOR SPACES

Our composite index consists of three layers, namely
Geometric layer, Topological layer, and Object layer. The
geometric layer consists of tree tier and skeleton tier. Sec-
tion 4.1 details the composite index structure. Section 4.2
presents the Geometric Lower Bound property which is
useful in the query phase.

floor plan part covered by tree node R;.

Indoor partitions are indexed by the Tree Tier, called
indR-tree, that adapts an R-tree and treats the floor
plan as an Euclidean space. Large partitions may be
decomposed into small ones, each of which corresponds
to a leaf node entry. Each leaf node, which represents a
(sub)partition, is associated with a bucket of objects in
that partition. The set of all object buckets form the Object
Layer. This way, the object can be easily located to one or
more indoor partitions given its positioning information
(either a location or an uncertainty region) via the tree.
Since the Euclidean distance is a lower bound of the
indoor distance, the hierarchical tree structure supports
indoor distance-aware queries efficiently, by pruning
away non-qualifying candidates at higher levels.

The indoor topology information is covered by the
Topological Layer. To support indoor distance calculation,
especially for the door-to-door distance, we can traverse
the topological layer in the way of traversing a graph. In
addition, the o-table maps an object to the tree leaf nodes
it overlaps with, while the h-table stores the mappings
from a leaf node entry to an indoor partition to which it
belongs.

4.1.2 Tree Tier

Indoor partitions like rooms and hallways are special
spatial entities. They occupy 3D regions, spanning two
horizontal dimensions and one vertical dimension. Con-
sidering a building consisting of many floors, the closest
facility (e.g., a restroom) might be the one upstairs.
Therefore, the distance of the vertical dimension should
be considered.

On the other hand, for the entities on the same floor,
we care more about their planar distances. If a partition
is represented by a 3D Minimum Bounding Rectangle
(MBR in short) in indR-tree, the maximum 3D distance
will surely surpass its planar counterpart. This would
degrade the tree’s pruning performance while handling
queries.

However, if the MBRs are planar rectangles, the split-
ting strategy for R-tree fails as the 3D volume of a tree
node, expected to be minimized in R-tree construction, is
always 0. To this end, when creating the tree we set the
vertical length for one partition to 1 centimeter, which
is very small compared to its horizontal length. Let the
vertical dimension be the third dimension. We set an
MBR R’s vertical range to be [R;,Ri|, where R7 is
larger than R3 by 1 centimeter. In the query phase, while
calculating distances, we consider R’s vertical range to
be [R3,R;], ie. the vertical length is neglected. In
other words, the partition is treated as a 2D rectangle
distributed in the 3D space in the query phase. This
design gives two advantages: 1) it reduces the distance

" Tree & LR [G 1R Topological |
i tier) | 7;:3‘. {dlz,TR1D"}| layer l
R 7 / . ' . D TR T i R, (s 1Ree) | !
| | R1 Rzl R2 I R4| NS N |
i Rip2 . - \ O 1 : ~ - ‘ | {d4, TR10%} ;
R ‘ I - = !
R . - e ~. % | 5 N [2 | U TR} { TR0 ‘ |
e 1 02/_\ ; Ri1| Riz| Riz [Rua |Rio?| Riob|Rig v A2 | QR iRy | :
10! —— :
I i Ry R | ega (o) [T NN A [eRaeraune]
! & T (- S . T b e e e Dy ol
Ri . BT ' A7 Objects layer 1
| | : e @
i [\ | oid {oid, pid}’ pid| halkay
, A s
\II ! o} {01, 1R} Riof -—
”””” NN, 02121 ‘ 1 : ’ ° e
2|
i) 14 | s ©:| {011 1Rk Rt o1~
R4 Ro i3 (| dia N) ! {0121, tR1zh
: \03/ i {0:131, TR0t} Ru? o7
~Ry R1§a¢ k. : O: {03z TR10%}
: 4@—‘ ' o-table h-table
(a) (b) N ()

Fig. 6. An Example of the Composite Indoor Index (without the skeleton tier)

calculation workload; 2) it makes the distance reflected
in the tree more accurate without the disturbance from
the vertical dimension.

Some special partitions, such as a hallway, may be
very imbalanced: long in one dimension but short in
the other in the planar space. It may also be a non-
convex region, e.g., hallway 10 in Figure 6(b). Such
irregularities cause much dead space in a tree node, and
thus degrade the tree’s query performance. To handle
them, we decompose ? an irregular partition into smaller
but regular regions. We call the resulting regions, as well
as undecomposed regular partitions, index units.

For example, in the tree shown in Figure 6(a), the root
node is Ry and the hallway 10 is decomposed into three
index units: R%,, R%, and Rf,. The mapping between
such an index unit and its original indoor partition
is recorded in a hash table h-table when the tree is
constructed. Formally,

h — table : {index unit} — {indoor partition}

In the tree tier, each leaf node represents an index
unit that corresponds to either a regular, undecomposed
partition or a smaller region obtained from decomposing
an irregular partition. In addition to the MBRs, a leaf
node also stores two types of information: 1) a linked
bucket for all objects inside it; 2) links to its connected
partitions. These two kinds of information belong to the
Object layer and Topological layer, respectively. We proceed
to introduce these two layers.

Augmented Tree Tier. The basic idea of performing
a spatial join is to use the property that the MBR of an
index node covers the MBRs of its subtree. We denote
it as the partial order property. However, an object might
only partially overlap with a partition (or a leaf node). So
the MBR of an index node might not cover objects of its
subtree. To maintain the partial order property that eases
join processing, we augment each tree node ¢t with two
attributes, {t.., . ,t.count}. We measure an object’s size
by the length of its MBR’s longest dimension. Further,

2. The detail of decomposition can be found elsewhere [31].

we use t., . to represent the largest object size of t’s
subtree, and t..ount to represent the number of objects
associated with ¢’s subtree. The update of the tree tier can
be handled in an aggregated R-tree manner. Consequent-
ly, the augmented area of t is the Minkovski sum of t¢’s
MBR and its 7,44, denoted by t®t.,, .. The augmented
area of a tree node covers all those of its subtree. We
discuss how to use the property for queries in Section 5.

4.1.3 Object Layer

Due to uncertainty, an object may overlap with multiple
indoor partitions. For example, object Oy overlaps with
three partitions in Figure 6(b), namely 10, 11 and 12.
In each of the three leaf-nodes’ buckets, we store O,.
Meanwhile, we maintain a hash table o-table as follows.

o — table : {O} _y o{index unit}

Note that o-table maps an object to all the index units
it overlaps with, and it is tightly tied up with the tree
tier. When an object update occurs, o-table needs to be
updated accordingly °.

4.1.4 Topological Layer

We maintain the connectivity between partitions in this
layer. Here, to simplify the discussion, we assume each
door always connects two partitions. As introduced in
Section 4.1.1, each leaf node stores a (sub)partition. For
accessibility, we also store the doors belonging to the
partition and the links to accessible partitions through
each door. Referring to the running example shown in
Figure 6(c), for partition R;, we store door dj, together
with its accessible partition’s link 1 RY,,.

4.1.5 Skeleton Tier

In our preliminary experiments we found that the Eu-
clidean lower bound is too loose to be effective for
indoor space queries. Although it applies to road net-
works [27] that are modeled as planar graphs, it falls

3. Detail is available elsewhere [31].

short in indoor spaces that are more complex than planar
graphs. Usually, an indoor floor’s horizontal extent is
much larger than its height. Consider a 20-floor building
where each floor is of size 600 m x 600 m x 4 m
and has four staircases each on one corner. Suppose
a range query is issued for the center of the ground
floor and asks for objects within 300 meters. Over 90%
of the building space is covered if the Euclidean lower
bound is used to constrain the search. As a matter of
fact, only objects on the ground floor qualify since any
path to upper floors is longer than 300 meters due to the
staircase positions.

Staircases can be critical in deciding whether to ex-
pand the search to other floors or not. This motivates us
to design the Skeleton Tier that captures all staircases in
a concise way to help distance-based pruning in query
processing. This tier is a graph. Each staircase entrance
is captured as a graph node, and an edge connects two
nodes if their entrances are on the same floor or their
entrances belong to the same staircase. The weight of an
edge is the indoor distance between the two staircase
entrances. For the staircase plan example in Figure 7(a),
its skeleton tier is shown in Figure 7(b).

Fig. 7. Skeleton Tier Example

Let M be the total number of staircase entrances in a
building, which is much smaller than that of doors in
the building. We compute the indoor distance for each
pair of staircase entrances and store such distances in
an M by M matrix M,g;. Let s; and s; be two staircase
entrance identifiers. Matrix M,y satisfies the following
properties:

(1) M525[5i73i] = 0;

(2) Msas[si, 8] = |si,85]p if s, and s; are on the same
floor;

(3) if s, and s; are of the same staircase, Ma4[s;, s;]
is the shortest distance from s; to s; within that
staircase;

(4) Msos[si, s;] is calculated as the shortest path distance
from s; to s; in the skeleton layer for other cases.

4.2

Within the geometric layer of the composite index, we
can derive tighter indoor distance bounds than the Eu-
clidean distance bounds. Let ¢ be a fixed indoor point,
g.f the floor of ¢, and S(q.f) all the staircases on floor
g.f. We define the skeleton distance from two points ¢
to p as follows.

Indoor Distance Bounds in the Geometric Layer

Definition 6: (Skeleton Distance) Given two points
p and ¢, their skeleton distance |¢,p|lx = |g,p|E
if they are on the same floor; otherwise, |¢,p|lx =

min , 8 + Mgosls,, Sp| + [5p, .
squ(q,f),s,,eS(p.f)(lq' qE s25[8q5 Sp] + |8p, P|E)

If ¢ and p are on different floors, reaching p from ¢
has to go through one staircase entrance on ¢’s floor
and another on p’s floor. Therefore, the skeleton distance
sums up the Euclidean distance and the indoor distance.
Hence, we define the skeleton distance as the alternative
Geometric Distance. Now we design the Geometric Lower
Bound Property based on that.

Lemma 8: (Geometric Lower Bound Property) Given
two points p and ¢, their skeleton distance lower bounds
their indoor distance, i.e., |¢,p|x < |g,pls-

Proof: If ¢ and p are on the same floor, |¢,p|x =
lg,p|e < |g,plr. Otherwise, suppose s; € S(q.f) and
sy € S(p.f) are on the shortest path from ¢ to p, denoted

*s;*s;* . .
by ¢ =" p.Since |¢,p|lkx = quS(q.%lstGS(p.f)(|q’Sq|E +
Mgas(8q: 5p] +18p. PlE) < 14, 85| B+ Mas[sy. syl + |s5, ple =
lg,p|7, the lemma is proved. O

Consider an entity e that is either an object or an indR-
tree node. If e spans multiple floors, we use the interval
[e.lf,e.uf] to represent all those floors. Note those floors
must be consecutive. We define the mininum skeleton
distance |q, €| mink:

|qa e|mz‘nK -

|, €lmine, if ¢.f € [e.lf, euf];
min

min ,Sq|E + Msas|Sq, Se| + |Se, €|lminE),
SQGS(q.f),SGGS(e.lf)(lq q|E 525[q e] | e |man)

men)8 M Sq; S Se, € ; s
SqGS(Q-f)ﬂseES(&uf)Oq al B+ Mias[sq, se] + |se, €lminp) }

otherwise.

(15)
With |g, €lmink *, we can constrain the search via the
indR-tree to a much smaller range compared to if we use
the Euclidean distance bounds. We design an algorithm
called RangeSearch, as shown in Algorithm 4 in the
appendix.The algorithm takes a query point ¢ and a
distance 7 as input, and returns the objects and parti-
tions within the specified range. When r=0, the query
degenerates to a point-location query that returns the
partition containing g.

5 EFFICIENT DISTANCE-AWARE JOIN EVALU-
ATION

We make use of the indoor distances (Section 2 and
3) and the index (Section 4) to efficiently evaluate the
semi-range and semi-neighborhood joins. Our query e-
valuation consists of 4 phases. The first phase, filtering,
retrieves candidate partitions as well as candidate objects
for join pairs. The second phase, subgraph, constructs a
subgraph based on candidate partitions, and uses the
doors of the partition containing query objects as sources

4. Note that if e is a descendant of E (e C E), we have |q, E|pminx <
|q, €| mink, because one has to go through some parts of E to reach e.

to compute the shortest indoor paths that are to be
used in the subsequent two phases. In the third phase,
pruning, upper/lower distance bounds for objects are
calculated to further reduce the number of candidate
join pairs. In the fourth phase, refinement, the indoor
distances for the remaining pairs are computed and the
qualifying results are returned as the query results.

Batch Processing. We can combine the processing
of the filtering and subgraph phases for query objects
belonging to the same partition Q. The intuition is to
treat partition QF as a “big” object, whose augmented
area QF @ QF., .. covers the regions of all the objects
inside. For the filtering phase, if a target object O has
QF ® QF ...,...,Olminx > €, then O can be filtered out.
Because object Q must have a longer distance to O, we
have that |Q. Ol|nink > €, according to the partial order
property. For the subgraph phase, objects have the same
source partition for the shortest path calculation. Also,
their surrounding partitions, whose distance from the
source partition is indicated by a parameter, ¢, should
also be the similar. Thus, their subgraph phases can be
combined. The correctness is guaranteed by Lemma 9.

Lemma 9: Suppose object @ is associated
with partition P%. For another partition P, if
|PQ D PQ-T,,,I,amap|minI > €, then |Q7P|mzn1 > €.

Proof: Since region R = P° @ P€., .. must cover Q,
we have |R, Plmint < |Q, Plmint. Thus, if |R, Plminr > €,
|Q, P|minr is definitely no shorter than e. The lemma is proved.

U
In the subsequent sections, we consider the two sets
of objects, Q and O, organized by a single index. Each
index node is associated with two augmented attributes,
for Q and O, respectively. We use two pointers, QNode
and ONode, to point to the index nodes for each object
set. Then, although tree nodes are indexed by a single
physical structure, they appear as two logical indexes.
For example, we have two logical root nodes, QNode 7o
and ONode 7o, which point to the same physical root
node. We proceed to present the algorithms for semi-
range join in Section 5.1, and semi-neighborhood join in
Section 5.2.

5.1 Semi-range Join

The evaluation of the semi-range join is formalized in
Algorithm 1. In the filtering step, semi-range join first
calls a recursive procedure, Semi-range-filtering,
to quickly qualify or disqualify the joining pairs. The
procedure is run in the geometric layer. In particular,
those tree node pairs with geometric distances within
€ are retrieved and the corresponding object pairs are
qualified as query answers. Undetermined tree node
pairs are kept in the candidate set C. Then, the algorithm
calls RangeSearch (Algorithm 4 in the appendix) to
search target objects for each element in C. Given the
Geometric Lower Bound Property (Lemma 8), R° and R”
are guaranteed to avoid false negatives. Specifically, any
discarded entity e (object or partition) satisfies |Q,e|r >
|Q. e|mink > € for any query object @ in partition QT

10

In the subgraph phase, the Dijkstra Algorithm is called
to calculate single-source shortest paths starting at the
doors of the partition Q5. The subgraph phase for the
objects in Q¥ is conducted in a batch. The correctness
is guaranteed by Lemma 9. The object pairs from QF
and R” contain false positives. So the algorithm contin-
ues to subsequent phases to verify the candidate join
pairs incrementally. Specifically, the algorithms makes
use of the topological and object upper/lower bounds
to approximate indoor distances and compare them to
€ (Lines 9-12). The exact indoor distances are only
computed for those object pairs whose distance bounds
cover € (Lines 13-15).

Algorithm 1 Semi-range Join

1: function SEMI-RANGE-JOIN(indoor index 7Tg, indoor index
To, distance)

2: result set R; candidate partition set C; > Golobal
variables
3: Semi-range-Filtering(7o , To, €); > Phase 1: filtering
4: for each partition Q" € C do
5: Cand <— 0 > Cand is a set for candidate join pairs
6: (R°,R”) + RangeSearch(Q”, ¢ + Q" ;... To);
7: > RO is a set of objects in O; RT is a set of partitions;
8: Dijkstra(R"); > Phase 2: subgraph
9: for each object pair (@, O)gcqor . ocpo do
10: [(Q,0).1,{Q,0).u] —
“Qv O|m’i”17 |Q7 O|mGZI];<Table 2)
11: > Phase 3: pruning
12: if (Q,0).u< e then R=RU(Q,O)
13: else
14: if (Q,0).l < e then Cand = Cand U (Q, O)
15: for each (Q,0) € Cand do > Phase 4:refinement
16: Calculate |Q, O|y;
17: if |Q,0|; < ¢ then R = RU(Q,O);

18: return R.

: procedure SEMI-RANGE-FILTERING(QNode Q, ONode O,
distance €) > QNode is a node of Tp; ONode is a node of
To

—

2: if O.count = 0 or O.count = 0 then
3: return;
4: if |Q,Olmink — Qurmaw — Ormas = € then
5: Add Q to C;
6: else
7: if |Q, Olmask + Qorpaw T Ormas < € then
8: R=RU{(Q,0)|Q € Q,0 € O};
9: else
10: if Q is a leaf node then
11: Add Q to C;
12: else
13: for each child node Q¥ € Q do
14: for each child node OF € O do
15: Semi-range-Filtering(QP ,0F ¢);
5.2 Semi-neighborhood Join

The evaluation of semi-neighborhood join is formal-
ized in Algorithm 2. In the filtering phase, a semi-
neighborhood join first traverses the index to retrieve
the leaf nodes containing one or more query objects,
and stores them in C. Then, for each partition Q% in

5. The weight of an edge is the Euclidean distance of two accessible
doors as aforementioned in Section 2.

set C, the algorithm calls kSeedsSelection (Algorithm 3 in
the appendix) to return an object set R{ and a partition
set RY. Specifically, R} contains the k objects that are
in partition Q¥ or in the closest adjacent partitions,
and RY is the set of all the involved partitions. Then,
the algorithm derives Topological Looser Upper Bounds
for the k objects and chooses the longest one as k-
bound = Se?dwexRoﬂQP , seed;|1. TLU}. Next, a range search

O(QF, kbound) is done on the tree tier (Line 9). The
Geometric Lower Bound Property (Lemma 8) ensures zero
false negatives.

The algorithm continues to apply the Dijkstra Algo-
rithm and derives upper/lower bounds (Lines 10).
The remaining target objects are sorted and O whose
upper bound is the k-th shortest is found. Target objects
with O.u closer than Oy.l are added to Rp as qualified
pair halves for @ (Line 18). Target objects with O.
farther than Oj.u have no chances as there are already
k objects closer. For undetermined objects, their indoor
distances are calculated and the qualifying ones are
picked (Lines 21-22). Then, the objects are sorted and
the k objects with shortest distances are picked to form
join pairs with Q. The above process is repeated for all
partitions in C' before the semi-neighborhood join result
is finalized and returned.

Algorithm 2 Semi-neighborhood join

1: function SEMI-NEIGHBORHOOD-JOIN(indoor index 7o, in-
door index 7o, parameter k)

2 result set R; candidate object set C; 1> Global variables
3 for each of T(’s leaf nodes Q do > Phase 1: filtering
4: if Q.count==0 then

5: Add Q to C;
6
7
8

for each partition Q” in C do
(RS, R?) <+KkSeedsSelection(QF , k);
: kbound «+ max()ER?ﬂQP, O|;. TLU};, > Lemmab5
9: (R3, RY) +RangeSearch(Q” kbound +Q”......,To);

10: Dijkstra(R5); > Phase 2: subgraph
11: for each object Q in partition Q” do

12: Co + 0 > Co is a set for candidate objects in O
13: Ro + 0 > Ro = kNN(Q)

14: for each object O in RS do > Phase 3: pruning

15: [0.1,0.4] < [|Q, Olmini, |Q, Olmazr];> Table2

16: Find object Oy which has the k-th shortest O.u;

17: for each O € RS do

18: if O.u < Op.l then Ro = Ro U {O}

19: else

20: if 0.l < Og.u then Co = Co U{O}

21: for each O € Co do > Phase 4: refinement

22: Calculate |Q, O|r;

23: Sort objects in Co by |Q,O|; in ascending order
and add top k — |Ro| objects to Ro;

24: R+ RU {Q,O}OeRO

25: return R;

6 EXPERIMENTAL STUDIES

We conduct extensive experimental studies to evaluate
our proposals. Section 6.1 describes the experimental set-

11

tings, where default parameters are bolded. Section 6.2
reports the experimental results.

6.1 Experimental Setup

Indoor Space. We use a real floor plan of a shopping
mall®. Each floor takes 600 m x600 m x 4 m, with 100
rooms and 4 staircases. To test scalability, we use the plan
to generate buildings with 10, 20, and 30 floors. All of
them are connected by hallways and staircases. We vary
the number of floors and therefore also the number of
partitions and doors.

Indoor Moving Objects. We generate a series of
datasets, containing 10K, 20K, and 30K objects for O
and 100, 200, 400 objects for Q. By default, they are
randomly distributed in a given building. For other
types of distributions, such as Gaussian and Zipfian, we
use Theodoridis et al’s data generator ’. For Gaussian
distribution, we set the mean as the center of the floor
and the variance as the square of 1/6 of its side length.
We first obtain an object set of a plane, by setting the
domain to 600 x 600 (the size of a floor). Then, we copy
the set to all floors of the building. Objects” uncertainty
regions are represented by circles, with the diameter 10,
30, and 50 meters. The pdf is represented by a set of 100
sampling points, following a Gaussian distribution. The
mean is the circle center and the variance is the square
of 1/6 of its diameter.

Tree Tier. We use a packed R*-tree [24] to index all
indoor partitions. The entire tree is accommodated in the
main memory. We set the tree fanout to be 20, according
to the results reported elsewhere [12].

Query Parameters. For semi-range join, we set the
query range to 50, 100, and 150 meters. For semi-
neighborhood join, we set k£ to 10, 30, and 50. In all
experiments, we issue 10 queries and report the average
response time for each query type.

We implement all programs in C++ and conduct ex-
periments on a PC running MS Windows 7 Enterprise
with Core2 Duo 3.40GHz CPU and 8GB main memory.

6.2 Experimental Results

Sections 6.2.1 and 6.2.2 report the query performances
for semi-range join and semi-neighborhood join, respec-
tively. For both query types, we test their efficiency and
scalability with respect to the number of objects (|O| and
|Q|), the size of uncertainty regions, and the number of
partitions. Section 6.2.3 investigates the effectiveness of
our indoor distance bounds in the filtering and pruning
phases. 8

6.2.1 Performance of Semi-range Join

The results of semi-range join’s execution time are re-
ported in Figure 8. Referring to Figure 8(a), the query

6. http:/ /fc06.deviantart.net/fs28/f/2008 /143 /4/6/Floor_Plan_for
_a_Shopping_Mall _by_mjponso.png

7. http:/ /www.rtreeportal.org/software/SpatialDataGenerator.zip

8. Due to page limits, please refer to our previous work [31] for the
performances of the composite indoor index.

time increases sublinearly with |OQ| and the area of query
ranges. We show the query time break-down for default
settings in Figure 8(b). The filtering and subgraph phases
depend on the topologies, and thus they do not change
as |O| increases. On the other hand, larger |O|s make
the refinement phase handle more objects that pass
the filtering and pruning phases, and thus increase the
query time. As the objects” uncertainty regions become
larger, more objects are involved in the semi-range join
execution, and therefore the query time also increases,
as shown in Figure 8(c). We also fix the number of
objects and vary the number of partitions to see the effect
on query time. The results are shown in Figure 8(d).
Since the average number of objects in one partition
(i.e., object density in each partition) decreases, we see
query time decreases accordingly. In Figure 8(e), we
vary the number of query objects |Q|, the query time
increases sub-linearly. Intuitively, the query time meant
to increase linearly w.r.t. (|Q|). Since the batch processing
reuses the calculation of filtering and subgraph phases,
the performance is further improved. We examine the
performance of semi-range join on different types of dis-
tributions, in Figure 8(f). The query time increases with
|O|. The skewed distribution requires more refinement
efforts thus corresponds to a relatively higher execution
time.

6.2.2 Performance of Semi-neighborhood Join

The results of semi-neighborhood join’s execution time
are reported in Figure 9. Referring to Figure 9(a), the
query time increases stably as the number of objects
and k increase. The query time break-down for default
settings is shown in Figure 9(b). Compared to semi-
range join, semi-neighborhood join needs to retrieve
more indoor partitions to find sufficient candidates in
the filtering phase. Consequently, the subsequent phases
get higher workloads to process. The results on the
effect of object uncertainty region size are shown in
Figure 9(c). Larger uncertainty sizes render more objects
and partitions to be retrieved in the range search step,
and thus increase the query execution time. The query
execution time on the effect of the number of partitions
are shown in Figure 9(d). Again, query time decreases
as the object density in each partition decreases. We
demonstrate the performance w.rt. |Q| in Figure 9(e).
The query time increases sub-linearly, which is as ex-
pected because the query objects belonging to the same
partition are batch processed. We compare the query
performance over different distributions of O@. The U-
niform distribution performs worst. The reason is that
for semi-neighborhood join query results rely on the
distance rankings. If objects are more equally distant
from queries, the ambiguity on rankings is larger and
more refinement effort is required.

6.2.3 Effectiveness of Indoor Distance Bounds

Our indoor distance bounds contribute to the efficiency
of query execution through filtering and pruning phases,
as indicated by the results shown in Figure 10. We

12

define the term pruning ratio as the ratio of join pairs
disqualified over |0 x |Q|.

Referring to Figure 10(a), over 98% join pairs are fil-
tered out by the skeleton distance bound in the filtering
phase of semi-range join in all tested settings. The results
show that the skeleton layer and the skeleton distance
bound are very effective in filtering indoor partitions
and objects at a high level without the search going
down to the object layer. Without the filtering phase,
all indoor partitions would be involved in the shortest
path computation, which would be too expensive for the
query execution. After the pruning phase over 99.9% join
pairs in total are pruned. Specially, when |0Q|=20k, the
pruning ratio is as high as 99.96%. We further study the
effect of the pruning phase by including and excluding it
in semi-range join. The results are shown in Figure 10(b).
Clearly, the topological distance bounds (Table 2) used
in the pruning phase are very effective in speeding up
the query processing.

The counterpart results for semi-neighborhood join are
shown in Figures 10(c) and 10(d). Again, indoor distance
bounds are very effective in discarding unqualified pairs.
Referring to Figure 10(d), the query time would increase
by at least 4 times without the pruning phase.

7 RELATED WORK

Different indoor space models have been proposed. The
3D Geometric Network Model [17] treats the vertical
and horizontal connectivity relationship among 3D s-
patial cells separately. The 3D Indoor Geo-Coding tech-
nique employs the 3D Poincaré Duality [25] to transform
3D spatial cells from primal space to dual space. A
3D metrical-topological model [30] describes both the
shapes and connectivity of spatial cells for navigation
purposes. Another 3D model [2] combines space par-
titions with possible events in a dual space, to enable
navigation in multi-layered buildings. Focusing on topo-
logical relationships, these models do not support indoor
distances and relevant queries.

A lattice-based semantic location model [18] defines
the “length” of an indoor path by the number of doors
on the path rather than the actual indoor distance. As
a result, this model falls short in many practical scenar-
ios [22]. Different ways of transforming a floor plan into
a graph also exist [11], [13], [29], but such proposals lack
support for indoor distances.

Research on indoor moving objects often assumes
symbolic indoor space modeling and indoor position-
ing [13]. R-tree based structures [14] have been used to
index offline trajectories of moving objects in symbolic
indoor spaces. By differentiating object states in terms
of positioning detection, a hash indexing method [32],
[33] has been designed to index the online positions of
indoor moving objects.

Previous works [22], [23], [33] study spatial queries
on online indoor moving objects. This paper differs from
these works in several aspects. First, previous works [22],

13

Filtering I
Subgraph KXJ

Pruning 221
Refinement

10000 20000 30000 10 30 50
of Objects # of Objects Uncertainty Region Size
(@) T, vs. |O| (b) T,’s Breakdown (c) Ty vs. Uncertainty
20, T o p— = T T 18 e— T
= r= niform
18- r;igg’ 12 =100 A 1 Gauss A ™
:jlf =150 - : 10 7150 o L 14 Zipfian —&—

Tq(s)

Ao o
:{W
MR @
\i‘
PA%

121DD 2200 3300 0100 200 300 400 12D000 20000 30000
of Partitions # of Queries Distributions
(d) T, vs. # of Partitions (e) Ty vs. |Q| (f) T, vs. Distributions

Fig. 8. Semi-range Join (T,)

Filtering mmmm
Subgraph ==
Pruning 22
Refinement ===

3100000 20(‘]00 30000 ! 10000 20000 - O'l o 3‘0 50
of Objects # of Objects Uncertainty Region Size
(a) T, vs. |0 (b) T,’s Breakdown (c) T, vs. Uncertainty
1 T 140 T T 80 T

Uniform =3~

[Gauss %A i
L Zipfian <~ 4

210100 22‘00 3300 Q‘OO 2(‘)0 3&0 400 1%000 20(‘)00 30000
of Partitions # of Queries Distributions
(d) T, vs. # of Partitions (e) Ty vs. |Q| (f) T, vs. Distributions

Fig. 9. Semi-neighborhood Join (7,)

100, 500 = . ! 100, - 600 - . !
99.8 T I 4s50F . WithPruning mem 1 . withPruning s
<996] 400 withoutPruning £ 1 =98 1 500 | withoutPruning & 4
S04) 1 _ssof] St 1
£99.21 1 @300t 1 B oa 400 il
© 99F Filtering 51 E,50|] Filtering £+7 &]
o888 Pruning A 20 @0t Rrunin.‘:gJ A '_3500
Eog6l A 2000 1 200 1
Sos.4 /B\E] 150 1S ol
o2} { 100f 1a 100 1
o8] 1 s S g { 88 i
97.8 . ol—= — - 86 L 0
10000 20000 3000 10000 20000 30000 16000 20000 3000¢ 10000 20000 30000
of Obiects # of Obiects # of Obiects # of Obiects
(a) Filtering & Pruning (b) Pruning Effectiveness () Filtering & Pruning (d) Pruning Effectiveness
(Semi-range Join) (Semi-range Join) (Semi-neighborhood Join) (Semi-neighborhood Join)

Fig. 10. Effectiveness of Indoor Distance Bounds

[23], [33] assume that all door-to-door distances are pre- 8 CONCLUSION
computed for query processing, whereas this paper lifts
this assumption and computes indoor distances on the
fly in query processing. Second, the previous work [22]
queries on indoor static objects (points of interest, i.e.,
POIs) while the queries in this paper are on indoor
moving objects. Third, indoor join semantics in [23] are
based on co-location in an indoor unit, whereas this
paper defines distance-aware join semantics.

In this paper, we study efficient evaluation of distance-
aware join operations on indoor moving objects. We
study two representative join operators, semi-range join
and semi-neighborhood join. We investigate the indoor
distance categories regarding object location uncertain-
ties and indoor topologies. To speed up distance based
pruning in query evaluation, we propose effective in-
door distance upper/lower bounds. We also design a
composite index for indoor space as well as objects,
which facilitates efficient indoor distance retrieval as
well as query processing. Extensive experimental results

demonstrate that our proposals are effective, efficient
and scalable in various query settings.

Our work in this paper opens directions for future
work. First, it is of interest to study other query types
using the distance bounds and the composite index pro-
posed in this paper. Second, it is useful to estimate the
selectivity for indoor distance aware queries and make
use of it in further optimizing queries over uncertain ob-
jects. Third, it is beneficial to reuse computational efforts
on indoor distances when multiple, related queries are
issued within a short period of time.

REFERENCES

[1] Accurate indoor positioning and navigation at the threshold.
http:/ /www.loctronix.com/news/insider/il-1-a3-scpdain.html
(accessed July 2012).

[2] T. Becker, C. Nagel, and T. H. Becker. A multilayered space-event
model for navigation in indoor spaces. Proc. 3rd International
Workshop on 3D Geo-Info, 2008.

[3] N. Beckmann, H.-P. Kriegel, R. Schneider, and B. Seeger. The
R*-tree: An efficient and robust access method for points and
rectangles. In SIGMOD, 1990.

[4] C. Bshm and F. Krebs. The k-nearest neighbour join: Turbo
charging the kdd process. Knowl. Inf. Syst., pages 728-749, 2004.

[5] b..C.y...Bohm, Christian and Braunmdtiller, Bernhard and Bre-
unig, Markus and Kriegel, Hans-Peter, title = High performance
clustering based on the similarity join.

[6] J. Chen and R. Cheng. Efficient evaluation of imprecise location-
dependent queries. In ICDE, 2007.

[7] R. Cheng, D. Kalashnikov, and S. Prabhakar. Evaluating proba-
bilistic queries over imprecise data. In SIGMOD, 2003.

[8] R.Cheng, D. V. Kalashnikov, and S. Prabhakar. Querying impre-
cise data in moving object environments. TKDE, 16(9), 2004.

[9] G. Cormode, F. Li, and K. Yi. Semantics of ranking queries for
probabilistic data and expected ranks. In ICDE, pages 305-316,
2009.

[10] D.Pfoser and C. S.Jensen. Capturing the uncertainty of moving-
objects representations. In SSDBM, 1999.

[11] G. Franz, H. Mallot, J. Wiener, and K. Neurowissenschaft. Graph-
based Models of Space in Architecture and Cognitive Science-a
Comparative Analysis. In IIAS InterSymp, pages 30-38, 2005.

[12] S. Hwang, K. Kwon, S. Cha, and B. Lee. Performance evaluation
of main-memory r-tree variants. In SSTD. 2003.

[13] C. S. Jensen, H. Lu, and B. Yang. Graph model based indoor
tracking. In MDM, 2009.

[14] C. S. Jensen, H. Lu, and B. Yang. Indexing the trajectories of
moving objects in symbolic indoor space. In SSTD, pages 208-
227, 2009.

[15] L. Klingbeil, R. Reiner, M. Romanovas, M. Traechtler, and
Y. Manoli. Multi-modal sensor data and information fusion for
localization in indoor environments. In WPNC, pages 187-192,
2010.

[16] H.-P. Kriegel, P. Kunath, and M. Renz. Probabilistic nearest-
neighbor query on uncertain objects. DASFAA, 2007.

[17] J. Lee. A spatial access-oriented implementation of a 3-d gis
topological data model for urban entities. Geolnformatica, 8(3):237—
264, 2004.

[18] D. Li and D. L. Lee. A lattice-based semantic location model for
indoor navigation. In MDM, pages 17-24, 2008.

[19] X. Lian and L. Chen. Monochromatic and bichromatic reverse
skyline search over uncertain databases. In SIGMOD, 2008.

[20] X. Lian and L. Chen. Probabilistic group nearest neighbor queries
in uncertain databases. In TKDE. 2008.

[21] X. Lian and L. Chen. Similarity join processing on uncertain data
streams. In TKDE. 2011.

[22] H. Lu, X. Cao, and C. S. Jensen. A foundation for efficient indoor
distance-aware query processing. In ICDE, 2012.

[23] H. Lu, B. Yang, and C. S. Jensen. Spatio-temporal joins on
symbolic indoor tracking data. In ICDE, 2011.

[24] M.Hadjieleftheriou. Spatial index library version 0.44.2b.

[25] J. Munkres. Elements of algebraic topology. Addison Wesley
Publishing Company, 1993.

14

[26] P. Sistla et al. Querying the uncertain position of moving objects.
In Temporal Databases: Research and Practice. 1998.

[27] D. Papadias,]. Zhang, N. Mamoulis, and Y. Tao. Query processing
in spatial network databases. In VLDB, 2003.

[28] A.R. L.K,S.H., and S. K. Fast similarity search in the presence of
noise, scaling, and translation in time-series databases. In VLDB,
1995.

[29] C. van Treeck and E. Rank. Analysis of building structure and
topology based on graph theory. In ICCCBE, 2004.

[30] E. Whiting, J. Battat, and S. Teller. Topology of urban environ-
ments. In CAAD Futures, pages 115-128, 2007.

[31] X. Xie, H. Lu, and T. B. Pedersen. Efficient distance-aware query
evaluation on indoor moving objects. In ICDE, 2013.

[32] B. Yang, H. Lu, and C. S. Jensen. Scalable continuous range
monitoring of moving objects in symbolic indoor space. In CIKM,
2009.

[33] B. Yang, H. Lu, and C. S. Jensen. Probabilistic threshold k nearest
neighbor queries over moving objects in symbolic indoor space.
In EDBT, 2010.

[34] J. Zhang, D. Papadias, K. Mouratidis, and M. Zhu. Spatial queries
in the presence of obstacles. In EDBT, pages 366-384, 2004.

Xike Xie received the BSc and MSc degrees
from Xi'an Jiaotong University, China, in 2003
and 2006, respectively, and the PhD degree in
computer science from the University of Hong
Kong in 2012. He is currently an assistant pro-
fessor in the Department of Computer Science,
Aalborg University, Denmark. His research in-
terests include data uncertainty, spatiotemporal
databases, and mobile computing. He is a mem-
ber of the IEEE and ACM.

Hua Lu received the BSc and MSc degrees
from Peking University, China, in 1998 and 2001,
respectively, and the PhD degree in computer
science from National University of Singapore,
in 2007. He is an associate professor in the
Department of Computer Science, Aalborg Uni-
versity, Denmark. His research interests include
databases, geographic information systems, as
well as mobile computing. Recently, he has been
working on indoor spatial awareness, complex
queries on spatial data with heterogeneous at-
tributes, and social media data management. He has served on the
program committees for conferences and workshops including ICDE,
SSTD, MDM, PAKDD, APWeb, and MobiDE. He is PC cochair or vice
chair for ISA 2011, MUE 2011 and MDM 2012. He is a member of the
|IEEE.

Torben Bach Pedersen is a full professor of
computer science at Aalborg University (AAU),
Denmark, where he heads the Center for Data-
Intensive Systems. He received his Ph.D. in
computer science from AAU in 2000 and his
M.Sc. in computer science and mathematics
from Aarhus University in 1994. Before joining
AAU in 2000, he worked as a business intel-
ligence specialist in industry for six years. His
research interests span business intelligence
topics such as data warehousing, OLAP, and
data mining, with a focus on non-traditional and complex types of data
such as web-related data, spatial and spatio-temporal data, music data,
energy data, and medical data. He has published more than 110 peer-
reviewed papers on these topics. He has served as PC Chair for DaWaK
2009 and 2010 and DOLAP 2010, General Chair for SSTD 2009, Co-
Chair of EnDM 2012 and Cloud-I 2012, and on numerous program
committees, including VLDB, ICDE, and EDBT. He is a member of the
SSTD Endowment and the DOLAP Steering Committee.

