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1. Introduction  
In the PSO project 345-061, a novel system solution combining natural ventilation with diffuse 
ceiling inlet and thermally activated building systems (TABS) has been proposed for cooling and 
ventilation in Danish office buildings. Due to the application of diffuse ceiling inlet, cold outdoor 
air can be supplied into the room without any risk of draught even in the extreme winter. This 
means that natural ventilation is available even in winter and it is beneficial to reduce the energy 
consumption for buildings with cooling demand in cold seasons. The highly energy-efficient TABS 
can be activated to supplement the extra heating/cooling when the thermal comfort cannot be 
satisfied. In this way, the building systems can operate at a very low energy use all the year round. 
The schematic diagram of this new solution is shown in Figure 1, details of the operation principle 
can be found in Ref. [1].  
 

 
Figure 1 Schematic diagram of the new system solution [1]. 

 
Since the ceiling panel behaves as an insulation layer, this ceiling panel may have an influence on 
the heat transfer between TABS and room space. Moreover, the heat transfer in the plenum is very 
complicated due to the combined effect of ventilation and TABS as well as diffuse ceiling. 
Therefore, to test this combined system and study the issues mentioned above, an experiment set-up 
was built up in Aalborg University.  
 
Initially, the steady-state tests were carried out, in order to study the energy performance of TABS 
with and without the effect of diffuse ceiling. Lower supply water temperatures were used for 
TABS with ceiling panel under both cooling and heating modes, compared with those of cases 
without ceiling panel. Therefore, ceiling panel is beneficial to TABS heating, but decreases TABS 
cooling. Water temperatures used are too low for TABS cooling with diffuse ceiling, below 15 ℃ in 
most cases, which is impractical. Thus, dynamic thermal process may be different, and higher water 
temperature can be used for energy storage before the occupied time. 
 
The previous test on the response time of TABS shows that the response time of TABS used in our 
case is almost 5 hours, which only reaches 63% of the total cooling capacity. It needs more time to 
get the full cooling capacity, so the steady-state condition cannot represent the real thermal 
processes in the practical applications. 
 
Further, the building thermal performance is dynamic depending on the weather conditions and 
occupations. TABS may be activated outside the working time (during the night or other un-
occupied time) for energy storage. Moreover, different control strategies should be used depending 
on the weather conditions and occupations.  
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Therefore, based on the necessities mentioned above, the dynamic measurements are designed. The 
main objectives of the dynamic measurements are to investigate the dynamic behavior of the system 
and to test different selected control strategies. The measurements profiles for outdoor temperature, 
solar radiation and internal heat load are defined for three typical days (winter, spring/autumn and 
summer) in Denmark. The main control parameters will be ventilation rate and water 
temperature/flow rate of TABS. The control strategy should include both passive and active use of 
TABS, and get the utmost utilization of cooling potential from natural ventilation.  
 
In this report, the dynamic measurements are presented, and results of energy performance of the 
system and thermal comfort in the test room under different control strategies are discussed. The 
tested results will give some suggestions related to the control strategies under different conditions, 
which is beneficial to the future applications of this combined system in office buildings.  
 

2. Experimental set-up 
The same experimental set-up in the Hotbox for steady-state tests is used in the dynamic 
measurements, details about the Hotbox can be found in the steady-state experiment report [2]. But 
a new dynamic control system is developed for the flexible parameter control, including the control 
of internal heat sources, solar radiation, ventilation, window opening, TABS, and so on. The 
internal heat sources have an On/Off control using a timer. Solar radiation is simulated by an 
electric carpet, and controlled by a dynamic voltage input. Ventilation rate is controlled by a 
mechanical fan and a frequency transformer, and a voltage output based on the room air set-point is 
sent to the frequency transformer. Window opening has an On/Off control using a timer, so does 
TABS. The updated set-up in the room is shown in Figure 2. 
 

 
Figure 2 Set-up in the room. 

 

3. Designed dynamic experiments 
Based on the Danish Reference Year [3], three typical climatic conditions- winter, transitional 
seasons and summer are considered in the dynamic measurements. Table 1 shows the detailed 
conditions in the typical weather. The cold box can simulate the air temperatures of these typical 
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conditions periodically, and the solar radiation is simulated by an electric carpet located on the floor 
as in the steady-state measurements. Both the cold box air temperature and the solar radiation are 
considered to reach the maximum at 13:00. Surrounding and upper zones have the same constant air 
temperature during all day. The occupied time considered is from 9:00 to 17:00, so the internal heat 
sources with a level of about 30 W/m2 are switched on during this period. 

 
Two occupants are considered in the room, and the minimum ventilation for the requirement of 
indoor air quality is 72 m3/h (36 m3/h per person). This minimum ventilation rate corresponds to an 
air change per hour of about 1.7 h-1 (ACH=1.7). The maximum ventilation rate is flexible in each 
case in order to use the ventilation cooling at the maximum level, but this maximum should not be 
higher than 387.8 m3/h (ACH=9) since there is a limitation of the fan control. The ventilation is 
carried out by the air circulation between the cold and hot chambers with the help of a mechanical 
fan, and the principle can be found in Ref. [2]. 

 
Table 1 Designed conditions for dynamic measurements. 

Case 
number 

Typical days Cold box air 
temperature  (
℃) 

Internal heat load 
during occupied 
hours (9-17) 
(W/m2) 

Solar radiation Surrounding/upper 
zone air T (℃) 

Case 1 Winter  
(average January) 

-1.0 (±2.5) 30 0 (cloudy sky) 22 

Case 2 Transitional 
seasons   
(average May) 

10.9 (±5.75) 30 Changing 
(3432 Wh/m2 
window area/day) 

23 

Case 3 Summer  
(average July) 

20.0 (±6) 30 Maximum (clear 
sky) (4848 Wh/m2 
window area/day) 

24 

 
In order to ensure a good control, the air temperatures in the cold box are designated with a 
sinusoidal pattern descripted by the Equation (1). Figure 3 shows the designed air temperatures in 
the cold box.  
 
T = A + B × Sin( 𝜋𝜋×𝑡𝑡

12×60
− 5×𝜋𝜋

12
)                                                                                                          (1) 

 
Where, A and B are terms for the three typical conditions, t is the time in minute,  
Winter: A=-1, B=2.5 
Transitional seasons: A=10.9, B=7.75 
Summer: A=20, B=6 
 
The solar radiation in Table 1 is the radiation projected to the window, and the calculation of solar 
heat gain into the room is shown below: 
 
For transitional seasons, 
3432 × 1.4 × 2.4 × 0.85 × 0.5 × 0.8

15.84
= 247.52 (Wh/(m2 floor ∙ day)) 

For summer, 
4848 × 1.4 × 2.4 × 0.85 × 0.5 × 0.8

15.84
= 349.64 (Wh/(m2 floor ∙ day)) 

 
Where, the net glass area ratio to window is 0.85, the g-value is 0.5, and shading factor is 0.8. The 
dynamic curves of solar radiation are shown in Figure 4. 
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      Figure 3 Outside air temperature.                     Figure 4 Heat load level in the room. 

 
When TABS are activated in the dynamic measurements, the water flow rate is kept at a constant of 
0.037 kg/s, which corresponds to the recommended water velocity for this system in our case. For 
the heating case, the supply water temperature is kept at 32 ℃, while it is kept at 16 ℃ for the 
cooling condition. Therefore, only the operating time is changed in the measurements. 
 

4. Measurements 
The dynamic measurements are performed under the quasi-steady state. The results can be 
acceptable only when each parameter gets almost the same value at the same time of two days.  
 

4.1 Measured parameters 
The primary measuring parameters include air temperatures, surface temperatures, water flow rate 
and temperatures, ventilation air flow rate, air velocity, and power of heat sources. The detailed 
measuring points can be found in the last steady-state measurements [2]. Everything keeps the same 
as in the last measurements, except the measuring positions are changed, and 6 measuring columns 
are placed at the fixed positions as depicted in Figure 5. 

 
Figure 5 Measuring positions in dynamic measurements. 

 
The anemometers are calibrated before the tests, so they can be used to measure both the air 
temperature and the air velocity at the same position. Each column has 5 anemometers at the height 
of 0.1 m, 0.6 m, 1.1 m, 1.7 m and 2.3 m.  
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4.2 Measurement devices 
Table 2 lists all details of the devices used in the measurements. 
 

Table 2 Details of measurement devices used. 
Devices  Type Measurements Number Remarks 
Data-logger Fluke Helios 

Plus 2287A  
Temperature, Pressure 
drop, humidity 

1 Together with 2 
compensation boxes 

Micro-manometer FCO510  Pressure drop 1 Between locations in 
the plenum and room 

Brunata  Water mass flow rate  1  
Precision Multimeter PREMA 5017 

Precision 
Multimeter 

Voltage/Power of 
carpet 

1 Together with the 
calibrated carpet to 
measure the power 

Danteck Anemometer 
and Datalogger 

DANTECK 
DYNAMICS 

Air velocity and air 
temperature  

2  

Power supply Labor-
netzgerat 
Power supply 
EA-3013S 

Power supply for 
measuring humidity 

1  

Voltage transformer   3  
Precision power meter Fluke 345 PQ 

clamp meter 
Power of internal heat 
sources 

1  

Differential pressure 
transducer 

FCO 44 Pressure difference of 
orifice 

1  

Mechanical fan   1  
Micro-monometer  Ventilation rate 1  
Heat sources 2 manikins, 2 desk lights, 2 computers, 2 monitors 

 

5. Control strategies in different climatic conditions 
As described at the beginning, the main control parameters will be air flow rate and water 
temperature/flow rate of TABS. The control strategy should include both passive and active use of 
TABS, and get the utmost utilization of cooling potential from natural ventilation. Since in different 
seasons the weather conditions are different and influence the cooling effect of ventilation and 
thermal behaviour of TABS. Therefore, the control strategies will change with the weather 
conditions. The basic control will be based on both room air temperature and outside air 
temperature.  
 
When there is a heating need of TABS during the occupied hours, ventilation rate will be kept at the 
minimum, and TABS are activated for heating. When there is a cooling need of TABS during the 
occupied hours, if the outside air temperature is suitable for cooling then the ventilation rate can be 
changed to the maximum, meanwhile, TABS are activated for cooling. However, if the outside air 
temperature is higher than room temperature, then the ventilation rate should be kept at the 
minimum and TABS are used for cooling.  
 
The initial control strategies used in the dynamic measurements are designed in Figures 6-8.  
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Figure 6 Flow chart of control strategy in winter. 

 

 
Figure 7 Flow chart of control strategy in spring/autumn. 
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Figure 8 Flow chart of control strategy in summer. 

 
The above flow charts show control strategies in different seasons, and the main objective in the 
control strategies is to use natural ventilation and passive TABS to the maximum level. Finally, the 
least energy can be consumed. When TABS are to be used from the morning, it is better to activate 
the system some hours before the occupied hours, since TABS have relatively longer response time.  

 

6. Experimental results 
The data is recorded every second, and the results are analysed every 10 seconds. 

6.1  Case 1 – Typical winter 
Case 1 started from 6/9/2015 to 6/27/2015, using the basic control strategy in Figure 6, but two 
statuses are considered. Firstly, no TABS heating is used even the room temperature is lower than 
20 ℃, the measuring time is from 6/9/2015 to 6/18/2015. Secondly, there is TABS heating between 
6:00 and 8:00 for two hours, and the measuring time is from 6/18/2015 to 6/27/2015. The purpose 
of testing two statuses is to compare the thermal environment and the energy performance under 
these two conditions.  
 
6.1.1 No TABS heating (6/9/2015-6/18/2015) 
The process of getting quasi-steady state in this case is given in Figures 9 and 10, and the results get 
stable after 8 days.  
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Figure 9 Cold box conditions. 

 
The air temperatures of the three inlets have a maximum different of about 0.3 ℃ during the day 
and 0.5 ℃ during the night. Since the air distribution in the cold box is not so even, the inlet air 
temperature is about 0.3 ℃ lower than the cold box air temperature.  
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Figure 10 Room side conditions. 

 

 
Figure 11 Quasi-steady state results of Case 1-no TABS heating. 

 
Figure 11 shows the results of the last day, when the system gets the quasi-steady state. The 
operative temperature measured by the two global sensors is between 18.4-21.4 ℃ during the 
occupied hours, the minimum occurs at 9:00 in the morning. This minimum temperature is out of 
the comfort range in the winter [4]. The room temperature during the un-occupied hours is also 
lower than 20 ℃. Therefore, it is better to activate TABS in the morning to provide the extra 
heating to the room, then the temperatures can be increased.  
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The plenum air is between 14.0-18.5 ℃ during the whole day, and the minimum occurs at 17:00. 
The low air temperature in the plenum makes it very efficient to use TABS heating. According to 
results in the steady-state measurements, this low plenum air temperature is beneficial to TABS 
heating.  
 
Table 3 shows the control strategy used in Case 1 without TABS heating, the ventilation rate is 
always kept at the minimum level with the measured value of 70.9 m3/h.  
 

Table 3 Control strategy used in Case 1 without TABS heating. 
Time Ventilation  TABS heating Internal heat sources Solar radiation 
9:00 On (Min) Off  On  Off  
17:00 Off  Off  Off  Off  

 
Overall, for Case 1 if there is no TABS heating, the temperatures in the lower room have the 
minimum at 9:00. Therefore, it is better to activate TABS for several hours before the occupied 
hours.  
 
6.1.2 With TABS heating (6/18/2015-6/27/2015) 
From the results above, it can be seen that the room temperature is out of the thermal comfort range 
if there is no extra TABS heating in the winter case, and it is the best to activate TABS before the 
occupied hours. Therefore, from the morning of 6/18/2015, TABS are activated for two hours from 
6:00 to 8:00. The measured supply water temperature is 31.6 ℃, and the constant water flow rate is 
0.036 kg/s.  
 
The process of getting quasi-steady state in this case is given in Figures 12 and 13, and the results 
get stable after about 6 days. 
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Figure 12 Cold box conditions. 
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Figure 13 Room side conditions. 

 

 
Figure 14 Quasi-steady state results of Case 1-with TABS heating. 

 
Figure 14 shows the results of last day, when the system gets the quasi-steady state. The operative 
temperature measured by the two global sensors is between 20.0-23.0 ℃ during the occupied hours, 
the minimum occurs at 9:00 in the morning. This minimum temperature is within the comfort range 
in the winter [4]. The room temperature during the un-occupied hours is higher than 20 ℃ . 
Compared with the results in Figure 11, it can be seen that the results are improved when TABS are 
activated from 6:00 to 8:00.  
 
Figure 15 shows the supply and return water temperatures of TABS. The activation of TABS takes 
the system approximate 6 days more to get the quasi-steady state.  

15 
 



 
Figure 15 TABS water temperatures. 

 
Table 4 shows the control strategy used in Case 1 with TABS heating, the only difference compared 
with Table 3 is the activation of TABS from 6:00 to 8:00. 
 

Table 4 Control strategy used in Case 1 with TABS heating. 
Time Ventilation  TABS heating Internal heat sources Solar radiation 
6:00 Off  On Off  Off 
8:00 Off  Off  Off  Off 
9:00 On (Min) Off  On  Off 
17:00 Off  Off  Off  Off 

 

6.2  Case 2 – Typical transitional seasons 
Case 2 started from 6/28/2015 to 7/9/2015, dynamic operation of the system without any 
mechanical cooling under typical spring\autumn conditions is measured. The main idea in Case 2 is 
to use natural ventilation to the maximum, and the basic control strategy in this case is depicted in 
Figure 7.  
 
The process of getting quasi-steady state in this case is given in Figures 16 and 17, and the results 
get stable after about 10 days. 
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Figure 16 Cold box conditions. 

 
In Case 2, the temperatures of the three inlets only have a maximum difference of about 0.2 ℃, so 
the air in the cold box is more evenly distributed.  
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Figure 17 Room side conditions. 

 

 
Figure 18 Quasi-steady state results of Case 2. 

 
Figure 18 shows the results of the last day, after the system gets the quasi-steady state. Table 5 
gives the control strategy used in Case 2. It can be seen in Figure 18 that this control strategy can 
keep the operative temperature within the range of 21.0-24.0 ℃. The ventilation time is from 7:00 
to 19:00, since during this period the solar heat gain increases the room temperature. The climatic 
condition in the transitional seasons is very suitable for natural ventilation, during the occupied 
hours when the room temperature is above 24 ℃, it is very efficient to increase the ventilation rate 
to use the natural cooling. The measured ventilation rates are 145 m3/h and 285.4 m3/h for the low 
and high levels, corresponding to approximate 2 times and 4 times the minimum ventilation rate. In 
order to have a better control, the mechanical fan is controlled using a step setting rather than a 
continuous regulation. This means the ventilation rate changes from 145 m3/h to 285.4 m3/h directly, 
and keeps the constant ventilation rate during the corresponding period. The ventilation rate is 
initially determined by a simple heat balance estimation.  
 

Table 5 Control strategy used in Case 2. 
Time Ventilation  TABS Internal heat sources Solar radiation 
7:00 On (2×Min) Off  Off  On  
9:00 On (2×Min) Off  On  On 
10:15 On (4×Min) Off  On  On 
17:00 On (2×Min) Off  Off  On 
19:00 Off  Off  Off  On 
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Figure 19 Power consumption of the internal heat sources. 

 
Figure 19 shows the power consumption of internal heat sources. Since the voltage in the lab 
slightly varies during the day and night, the power consumption of the equipment changes 
smoothly. As shown in Figure 19, at the early occupied hours the power consumption is relatively 
lower, and it increases with time. The average power consumption of all internal heat sources is 
about 480 W, corresponding to approximate 30.3 W/m2 floor area.  
 
Figure 20 depicts the power consumption of the electric carpet representing the solar radiation. Due 
to the changing voltage in the lab, this power consumption is not stable with smooth changes.  
 

 
Figure 20 Power consumption of electric carpet. 

 

6.3  Case 3 – Typical summer 
Case 3 started from 7/11/2015 to 7/22/2015, the basic control strategy is given in Figure 8. Due to 
the long response time of TABS, it is better to activate TABS cooling before the occupied hours. In 
this case, it is activated from 7:00 in the morning. 
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The process of getting quasi-steady state in this case is given in Figures 21 and 22, and the results 
get stable after about 6 days. Since the ventilation rate is relatively large, the system gets the quasi-
steady state very fast.  
 

 
 

 
Figure 21 Cold box conditions. 
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Figure 22 Room side conditions. 

 

 
Figure 23 Quasi-steady state results of Case 3. 

 
Figure 23 shows the results of the last day, it can be seen that the operative temperature is between 
21.7 and 26.0 ℃ during the occupied hours, with the minimum at 9:00. The operative temperature 
increases very fast from the minimum to 23 ℃, and during most of occupied hours it is within the 
comfort range in summer [4]. The ventilation system is activated during all day, with relative large 
ventilation rate. 
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Table 6 shows the control strategy used in this case. The measured ventilation rates are 216 m3/h 
and 369.7 m3/h for the low and high levels, corresponding to approximate 3 times and 5.1 times the 
minimum ventilation rate. The maximum ventilation rate used in this case is due to the 
consideration of the fan control. TABS are activated from 7:00 to 17:00, so totally 10 hours. The 
measured supply water temperature is 15.7 ℃, and the constant water flow rate is 0.037 kg/s. 
Actually, the high ventilation rate in the plenum accelerates the response of TABS, it can be seen in 
Figure 24 that the return water temperature gets stable only after 3 or 4 days when TABS are 
activated.  
 

Table 6 Control strategy used in Case 3. 
Time Ventilation  TABS cooling Internal heat sources Solar radiation 
7:00 On (3*Min) On  Off  On  
9:00 On (3*Min) On On  On 
10:10 On (5.1*Min) On On  On 
17:00 On (5.1*Min) Off  Off  On 
19:40 On (3*Min) Off  Off  On 

 
Figure 24 TABS water temperature in Case 3. 

 
The measured power consumptions of heat sources are given in Figures 25 and 26, both with small 
changes with time. The average power consumption of all internal heat sources is about 480 W.  
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Figure 25 Power consumption of internal heat sources. 

 

 
Figure 26 Power consumption of electric carpet. 

 

7. Energy balance analysis 
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Figure 27 Thermal processes of the room. 

 
Figure 27 shows the primary thermal processes in the room, including the heat gains from internal 
heat sources and solar radiation, heat loss/gain from TABS and ventilation, and heat transmission 
from the enclosed constructions. The space in the red rectangular area shows the room building 
thermal mass, including the facade, the floor, the interior walls, the diffuse ceiling, the concrete slab, 
the equipment and the air. The capacitance of air is very small, but it is still considered as part of the 
thermal mass in the energy balance analysis.  

 
For the dynamic thermal processes, it is very hard to evaluate the energy stored and released time 
by time. Therefore, a total heat balance during 24 hours is considered for the evaluation of energy 
balance. The energy balance analysis has been carried out for a time step of 10 seconds and the total 
heat balance during 24 hours in a day is expressed by Equations. (2). The heat unbalance rate is 
defined in Equation (3). Assuming that the heat injected to the room is positive, and the heat 
removed from the room is negative.  
 
∆𝑄̇𝑄 = 𝑄̇𝑄ℎ𝑠𝑠 + 𝑄̇𝑄𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 + 𝑄̇𝑄𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣 + 𝑄̇𝑄𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 + 𝑄̇𝑄𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒  (2) 

𝑄̇𝑄� = ∆𝑄̇𝑄
𝑄̇𝑄ℎ𝑠𝑠+𝑄̇𝑄𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐

× 100%  (3) 

𝑄̇𝑄ℎ𝑠𝑠 = 𝑄̇𝑄𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 + 𝑄̇𝑄𝑙𝑙𝑙𝑙𝑙𝑙ℎ𝑡𝑡𝑡𝑡 + 𝑄̇𝑄𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒  (4) 
𝑄̇𝑄𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 = 𝑄̇𝑄𝑢𝑢𝑢𝑢 + 𝑄̇𝑄𝑠𝑠𝑠𝑠 + 𝑄̇𝑄𝑐𝑐𝑐𝑐  (5) 
 
Where, 
 ∆𝑄̇𝑄 is the error of the total heat balance, Wh/day. 
𝑄̇𝑄� is the unbalance rate to the heat sources. 
𝑄̇𝑄ℎ𝑠𝑠  is the energy consumption of internal heat sources (two manikins, two desk lights, two 
computers, and two monitors), Wh/day.  
𝑄̇𝑄𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 is the energy consumption of the electric carpet simulating the solar radiation, Wh/day.  
𝑄̇𝑄𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣 is the ventilation heat transmission, Wh/day.  
𝑄̇𝑄𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 is the energy delivered by TABS water to the system, Wh/day. 
𝑄̇𝑄𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 is the heat exchange between the test room and the upper zone, the surrounding zone 
and the cold box, Wh/day. 
 
Since the tests are carried out under quasi-steady state conditions, for a 24-hours energy balance 
analysis all terms in Equation (1) can be evaluated using the steady-state method as in Ref. [2]. 
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Table 7 gives the results of heat balance analysis for all cases. The heat unbalance rates are within 
10% except Case 2. The error can be attributed to the data logger resolution, the measurements of 
ventilation rate and water flow rate, the thermal properties of the facade with windows, the 
uncertain thermal bridge of the room enclosure, and so on. In Table 7 it also shows that there is 
always heat gain from the upper zone and heat loss to the cold box. Since the surrounding zone has 
a temperature very close to the room temperature, the heat gain from the surrounding zone is 
relatively small. In Case 1, the minimum ventilation brings the heat loss almost the same amount of 
all heat gains. Therefore, extra TABS heating should be supplied to the system, in order to keep the 
room temperature within the acceptable range. In Case 2, the total heat loss from ventilation can 
offset all the heat gains, so the room can get the neutral thermal conditions and no mechanical 
cooling is needed. In Case 3, the natural ventilation cooling potential is very limited even the 
ventilation is activated all day. TABS have to be activated to offset the remained heat gains. 
 

Table 7 Energy balance of the room during 24 hours. 
 𝑄̇𝑄ℎ𝑠𝑠 

(Wh/day) 
𝑄̇𝑄𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 

(Wh/day) 
𝑄̇𝑄𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣 

(Wh/day) 
𝑄̇𝑄𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 

(Wh/day) 
𝑄̇𝑄𝑢𝑢𝑢𝑢 

(Wh/day) 
𝑄̇𝑄𝑠𝑠𝑠𝑠 

(Wh/day) 
𝑄̇𝑄𝑐𝑐𝑐𝑐 

(Wh/day) 
∆𝑄̇𝑄 

(Wh/day) 
𝑄̇𝑄� 

(%) 
Case 1-no 
TABS 

3800 0 -3737.5 0 1300.2 694.7 -2153.8 -96.4 2.5 

Case 1-
with TABS 

3800 0 -3972.3 2335.4 272.4 242.5 -2311.5 366.5 9.6 

Case 2 3800 3773.5 -8701.8 0 1303.0 158.7 -1313.7 986.3 13.0 
Case 3 3800 5447.1 -7297.4 -4133.8 1813.6 261.9 -394.5 503.1 5.4 

 

8. Thermal comfort analysis 
According to ISO 7730:2005 [4], the thermal comfort in the occupied zone involves both whole-
body thermal comfort and local thermal comfort. The indices of PMV and PPD can be used to 
evaluate the thermal comfort of the whole-body, and the operative temperature range is also 
available to evaluate it in the dynamic conditions. The local thermal comfort is assessed by draught 
risk, vertical temperature difference, radiant asymmetry, and so on.  

 

8.1 Operative temperature range 

Considering the dynamic measurements, initially, the thermal comfort analysis is based on the 
operative temperature during the occupied time and is evaluated according to standard EN 15251 
[5]. Category II in EN 15251 is selected as it is in accord with the thermal comfort level (-
0.5<PMV<+0.5) in EN ISO 7730 [4]. A performance index (PI) associated with the category 
represents the percentage of values of operative temperatures during the occupied time that fall 
within the acceptable range of the category [6]. When the PI is at least 90%, the indoor thermal 
environment is supposed to meet a certain category. 
 
In category II in EN 15251, the operative temperature of 20 ℃ - 24 ℃ is the thermal comfort 
condition in winter (Case 1), while the operative temperature of 23 ℃ - 26 ℃ is the thermal 
comfort condition in summer (Case 3). The adaptive thermal comfort according to standard EN 
15251 [5] is used to evaluate the thermal comfort in transitional seasons (Case 2), the calculated 
adaptive comfort temperature range in Category II is from 19.4 ℃ to 25.4 ℃.  
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Figure 28 Thermal comfort of PI for the tests. 

 
Figure 28 shows the results of thermal comfort based on the operative temperature range, the results 
are evaluated every 10 seconds. For the Case 1 without TABS heating, the PI is 85.4% so the 
thermal comfort is not acceptable. When TABS heating is added, the PI reaches 100% so the 
operative temperature is within the comfortable range. Case 2 and Case 3 also have the PI higher 
than 90%, and meet the comfortable range in the standards.  
 

8.2 PMV/PPD 
PMV and PPD are used to evaluate the whole body thermal comfort. The PMV is an index that 
predicts the mean value of the votes of a large group of persons on the 7-point thermal sensation 
scale, based on the heat balance of the human body. PMV is related to the thermal environmental 
variables, such as air temperature, relative humidity, mean radiant temperature and relative air 
velocity. Besides, it is largely dependent on the activity level and insulation of clothing of 
occupants. The PPD is an index that establishes a quantitative prediction of the percentage of 
thermally dissatisfied people who feel too cool or too warm [4], which can be calculated based on 
PMV.  
 
In this study, the mean values of air temperatures and velocity magnitudes at the heights of 0.1 m, 
0.6 m and 1.1 m can represent the thermal state of the whole body, and the PMV and PPD indexes 
are calculated based on these mean values. A metabolic rate of 1.2 and a clothing value of 0.5 are 
assumed in this calculation of PMV. The relative humidity in the room is measured by the two 
sensors at C-3 and C-5 (in Figure 5), at the height of 1.1 m. The mean radiant temperature is 
calculated from the plane radiant temperature according to ISO standard 7726 [7], which is 
determined based on the measured surface temperatures. 
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Figure 29 PMV results of all cases. 

 
Figure 30 PPD results of all cases. 

 
PMV and PPD results of all cases during the occupied hours are depicted in Figures 29 and 30. It 
can be seen that Case 1 with TABS heating has the best PMV and PPD. Since the surrounding 
surface temperature is relatively lower during the morning, the environment is a little cold for the 
other three cases with a PMV lower than -0.5 and PPD higher than 10% in the first hour. The time 
proportion of Case 1 without TABS heating when PMV is lower than -0.5 is about 13.8%, and this 
value for Case 2 and Case 3 is 11.6% and 8.1%, respectively. These results are very close to the 
evaluation in Section 8.1.  
 

8.3 Draught rate (DR) 
Thermal dissatisfaction can also be caused by unwanted cooling or heating of one particular part of 
the body, known as local discomfort [4]. The most common cause of local discomfort is draught, 
which can be expressed as the percentage of people predicted to be bothered by draught and can be 
calculated by Equation (6). 
 
𝐷𝐷𝐷𝐷 = (34 − 𝑡𝑡𝑎𝑎,𝑙𝑙)�𝑣̅𝑣𝑎𝑎,𝑙𝑙 − 0.05�0.62(0.37 ∙ 𝑣̅𝑣𝑎𝑎,𝑙𝑙 ∙ 𝑇𝑇𝑢𝑢 + 3.14)                                                            (6) 
For 𝑣̅𝑣𝑎𝑎,𝑙𝑙<0.05 m/s, use 𝑣̅𝑣𝑎𝑎,𝑙𝑙=0.05 m/s. 
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The draught rate (DR) in this study is calculated at a height of 0.1 m, 1.1 m and 1.7 m at the 
locations of C-1, C-2, C-3, C-4, C-5 and C-6 (in Figure 5), respectively. A constant turbulence 
intensity of 40% is assumed in the DR calculation. 
 

Table 8 Maximum DR during the occupied hours (unit: %).  
 Case 1- no TABS Case 1- with TABS Case 2 Case 3 

 0.1 m 1.1 m 1.7 m 0.1 m 1.1 m 1.7 m 0.1 m 1.1 m 1.7 m 0.1 m 1.1 m 1.7 m 
C-1 0 0 0 0 0 1.2 6.0 8.2 7.7 6.0 3.8 5.7 
C-2 5.2 2.2 0 4.5 3.6 0 6.8 5.3 7.2 7.0 3.3 6.1 
C-3 5.7 2.5 0 4.6 2.2 0 5.7 6.1 8.0 5.3 4.8 3.9 
C-4 2.2 0 0 0 0 0.9 4.8 4.4 6.9 5.1 3.1 4.8 
C-5 0 1.3 12.4 0 0 9.8 9.0 3.6 11.3 7.1 2.4 10.6 
C-6 0 0 0 0 0 0 9.7 0 1.5 7.7 0 0 

 
The DR results in Table 8 show that all positions have very good thermal comfort with almost all 
maximum values of DR below 10%, corresponding to the Category A in EN 7730 [4]. The largest 
DR is found at the height of 1.7 m at C-5, which may result from the heat sources. Actually, the 
internal heat sources are close to this position, so the thermal plume may be very strong at this 
height. Comparing Case 1 and the other two cases, when there is solar radiation the local discomfort 
increases with higher values of DR.  

 

8.4 Vertical air temperature difference between head and ankles 
A high vertical air temperature difference between head and ankles can cause discomfort [4], which 
can be evaluated in Equation (7). 
 

𝑃𝑃𝑃𝑃 = 100
1+𝑒𝑒𝑒𝑒𝑒𝑒 (5.76−0.856∙∆𝑡𝑡𝑎𝑎,𝑣𝑣)

                                                                                                      (7) 

∆𝑡𝑡𝑎𝑎,𝑣𝑣 is vertical air temperature difference between head and feet, °C. 
 

Table 9 Maximum PD of vertical air temperature difference during occupied hours (unit: %). 
 C-1 C-2 C-3 C-4 C-5 C-6 
Case 1- no TABS 0.8 0.8 1.2 1.0 1.1 0.2 
Case 1- with TABS 0.9 0.9 1.1 0.9 1.3 0.2 
Case 2 0.4 0.7 0.8 0.9 1.7 0.3 
Case 3 0.6 1.1 1.2 1.5 2.1 0.3 

 
The maximum PD during occupied hours due to the vertical air temperature difference between the 
height of 0.1 m and 1.7 m is given in Table 9. The PD caused by the vertical air temperature 
difference meets the Category A in EN 7730 [4]. The maximum is found at C-5 in all cases, which 
may result from the heat sources as the reason described in Section 8.3. 
 

8.5 Warm or cold floor 
If the floor is too warm or too cool, the occupants could feel uncomfortable owing to thermal 
sensation of their feet. For people wearing light indoor shoes, it is the temperature of the floor rather 
than the material of the floor covering which is important for comfort [4]. The PD caused by the 
warm or cold floor can be calculated using Equation (8). 
 

𝑃𝑃𝑃𝑃 = 100 − 94 ∙ exp (−1.387 + 0.118 ∙ 𝑡𝑡𝑓𝑓 − 0.0025 ∙ 𝑡𝑡𝑓𝑓2)                                                 (8) 
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Figure 31 PD caused by the warm or cold floor. 

 
Figure 31 depicted the PD caused by the warm or cold floor. Except the Case 1 without TABS, PD 
values of all cases during the occupied hours are within in 10%.  
 

8.6 Radiant asymmetry  
Radiant asymmetry, resulting from the different surrounding surface temperatures, can also cause 
discomfort. People are most sensitive to radiant asymmetry caused by warm ceilings or cool walls 
(windows) [4]. The radiant temperature asymmetry is estimated as the difference between the plane 
radiant temperatures in two opposite directions. As described by Fanger [8], it refers to a small 
plane element 0.6 m above the floor (the height of the center of a seated person) and horizontal to 
characterize radiant asymmetry caused by a warm or cool ceiling. Due to the effect of diffuse 
ceiling, the direct radiant effect of TABS slab surface on the room space is reduced. So the ceiling 
lower surface temperature is close to the other surfaces, and the radiant asymmetry is decreased. As 
stated in ISO 7730, occupants will feel discomfort when the radiant asymmetry is larger than 5 ℃ 
by warm ceiling, and larger than 14 ℃ by cooling ceiling. In our dynamic measurements the 
ventilation first cools the plenum, so the surface temperature of the diffuse ceiling panel is relatively 
lower than that of the lower room surfaces. Thus, the diffuse ceiling can always be considered as a 
cold ceiling. The maximum asymmetry in the dynamic measurements is 1.4 ℃ found in Case 2, 
corresponding to the maximum PD caused by the radiant asymmetry is within in 0.01%. Therefore, 
there is no influence of radiant asymmetry on the local thermal comfort in the dynamic 
measurements.  
 

8.7 Vertical air temperature and air velocity distributions 
Air temperatures and air velocities at six positions are measured with anemometers at the heights of 
0.1 m, 0.6 m, 1.1 m, 1.7 m and 2.3 m, respectively. The average results of six positions at every 
height are presented in Figures 32 and 33.  
 
Figure 32 shows that there is a maximum of 1 K temperature difference from the floor to the ceiling 
in all cases, corresponding to a temperature gradient of less than 0.5 K/m. This indicates a good 
mixing of the room air when using diffuse ceiling ventilation, which shows good agreement with 
the findings by Nielsen et al. [9] and Fan et al. [10]. The temperature at the height of 2.3 m is a little 
lower than that at the height of 1.7 m, which may be the effect of diffuse ceiling. In order to bring 
sufficient cooling, the air in the plenum is always colder than the room air. This cold air will first 
penetrate through the diffuse ceiling panel and then mix with the air at the upper part of the room, 
so the air at the height of 2.3 m is cooled down.  
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Case 1-no TABS                                                Case 1- with TABS 

 
Case 2                                                                    Case 3 

Figure 32 Vertical air temperature distributions. 
 

 
Case 1-no TABS                                                Case 1- with TABS 

30 
 



 
Case 2                                                                    Case 3 

Figure 33 Vertical air velocity distributions. 
 
As shown in Figure 33, the measured velocity magnitudes for all case are lower than 0.15 m/s. The 
difference in air speed from ankle to head level is within 0.05 m/s. In Case 1, the velocity in the 
occupied zone is very stable and very low. While in Case 2 and Case 3, due to the increase of 
ventilation rate, the air velocities in the occupied zone increases. Moreover, the air velocities at the 
height of 0.1 m and 1.7 m are very close. This may be caused by the heat sources, which generates 
the strong thermal plume at the height of 1.7 m. Due to the momentum of the high ventilation rate 
the downward flow drops to the floor later. Thus, the velocity at the height of 0.1 m is relatively 
high and close to the velocity at the height of 1.7 m.  
 

9.  Comparisons with building simulations 
A building simulation model representing the whole hot and cold chambers is built in BSim, which 
is used to compare and validate the experimental results. The built model is shown in Figure 34, 
with the same dimensions of the experimental chamber. The measured air temperatures in the cold 
box, upper zone and surrounding zone are given as the boundaries in the building simulations, and 
the measured power consumption of all heat sources are used in the building simulations as well.  
 
The compared results are depicted in Figures 35-38. ‘M’ means the results measured and ‘S’ 
indicates the results simulated. The results show that the building simulation tool-BSim cannot well 
simulate the building thermal processes in the measurements, with relatively large deviations of the 
temperatures. The deviations may result from two primary reasons. First, BSim cannot simulate the 
ventilation through the diffuse ceiling, which could cool down the diffuse ceiling first. Instead, the 
diffuse ceiling is simulated as an ordinary ceiling panel with the measured thermal properties [2]. 
The ventilation through the ceiling panel is just simulated as the mixing ventilation for the lower 
room space, and the air in the plenum is used as the source of this mixing ventilation. Since this 
thermal process is very important, it influences the energy balance of the plenum and the lower 
room space. On the other hand, the internal heat sources are designed from 9-17, but the solar 
radiation simulated is activated dynamically. BSim is based on the hourly simulation, thus it is hard 
to determine the same amount of solar heat gain at the same time of measurements. Based on the 
above two points, due to the absent modelling of diffuse ceiling ventilation and the hourly 
simulation in BSim, it cannot predict the energy performance of the building with the proposed 
system accurately. Therefore, it is better to investigate an accurate model for the diffuse ventilation 
with a smaller time step in the future building simulations for this kind of buildings. 
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Figure 34 BSim model of the experimental hotbox. 

 

 
Figure 35 Comparison of Case 1 without TABS heating. 

 

 
Figure 36 Comparison of Case 1 with TABS heating. 
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Figure 37 Comparison of Case 2. 

 

 
Figure 38 Comparison of Case 3. 

 

10.  Discussions and Conclusions 
This report presents the dynamic measurements of a novel HVAC system combining natural 
cooling with diffuse ceiling inlet and TABS, which are carried out in the Hotbox in Aalborg 
University. Three typical weather conditions are selected, including typical winter, transitional 
seasons and typical summer. Both outside air temperature and solar radiation in each case are 
considered changing during day and night. The test room is set up to simulate a real office 
environment. Different control strategies are tested, the main purpose is to use the natural 
ventilation cooling to the maximum level. All cases are carried out under the quasi-steady state, and 
it takes several days to get the quasi-steady state. Finally, the energy balance and the thermal 
comfort of all cases are analyzed.  
 
The test results show that the present control strategy used in each case can ensure a good thermal 
environment in the test room. The energy balance indicates that the energy storage of the room 
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thermal mass makes a good use of ventilation cooling. In the winter case, extra TABS heating is 
needed even with the minimum ventilation rate. In the transitional case, natural ventilation is very 
suitable to keep a perfect thermal environment in the room without any mechanical cooling. 
However, in the summer case, the natural cooling capacity is insufficient even the night ventilation 
is used. Therefore, extra TABS cooling is indispensable.  
 
The thermal comfort analysis shows that the entire thermal comfort is quite good with an acceptable 
operative temperature range during the occupied hours. The local thermal comfort is also quite good, 
without any high PD resulting from the influencing factors. Due to the application of diffuse ceiling, 
the vertical temperature gradient is very low. Meanwhile, the low vertical air velocity is also 
beneficial to keep a comfortable environment in the room. 
 
The measured results are compared with the BSim simulations, and the results show some large 
deviations of the temperatures. The primary reasons for these deviations may be the absent 
modeling of diffuse ceiling ventilation and the hourly-based simulation in BSim. Therefore, in 
future it is better to study the modeling of the diffuse ventilation in the building simulation tools, so 
that the building simulation tools can be used to predict the energy performance of this combined 
system accurately. Besides, the optimum control strategy can also be studied through the improved 
modeling of the building simulation tools.  
 
Through testing the control strategies used in different conditions, we know more knowledge about 
the dynamic thermal processes of the room with the proposed systems. Although the thermal 
comfort in different climatic conditions can be ensured when using the proposed control strategies, 
some optimization work still needs to be further studied. Both natural ventilation and TABS can 
supply the cooling, the optimum combination of them can lead to the minimum energy use. In the 
tests, actually two extreme weather conditions are considered, the winter without any solar radiation 
and the summer with a huge amount of solar radiation. A good suggestion is that when using this 
system in winter it is better to use the solar radiation as much as possible, while in the summer it is 
better to limit the solar radiation to the room. When TABS have to be used, it is better to determine 
when and how to activate it, just to find the optimum control strategy with the minimum energy use 
and an acceptable thermal environment.  
 
Since cooling potential of natural ventilation is of great importance in this system, this system is 
highly dependent on the climatic conditions and the room building thermal mass. A good 
suggestion is to use this system in a temperate climatic condition with high natural ventilation 
cooling potential, where the activation of TABS can be reduced. When this system is to be used in a 
building, it is better to perform the energy simulation to investigate the natural cooling potential at 
the design stage.  
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