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Abstract. In this paper we analyse the problem of probabilistic infer-
ence in CLG networks when evidence comes in streams. In such situa-
tions, fast and scalable algorithms, able to provide accurate responses in
a short time are required. We consider the instantiation of variational
inference and importance sampling, two well known tools for probabilis-
tic inference, to the CLG case. The experimental results over synthetic
networks show how a parallel version importance sampling, and more
precisely evidence weighting, is a promising scheme, as it is accurate and
scales up with respect to available computing resources.

Keywords: Importance sampling, variational message passing, Condi-
tional Linear Gaussian networks, hybrid Bayesian networks

1 Introduction

Today, omnipresent sensors are continuously providing streaming data on the
environments in which they operate. For instance, a typical monitoring and anal-
ysis system may use streaming data generated by sensors to monitor the status
of a particular device and to make predictions about its future behaviour, or
diagnostically infer the most likely system configuration that has produced the
observed data. Sources of streaming data with even a modest updating frequency
can produce extremely large volumes of data, thereby making efficient and accu-
rate data analysis and prediction difficult. One of the main challenges is related
to handling uncertainty in data, where principled methods and algorithms for
dealing with uncertainty in massive data applications are required. Probabilis-
tic graphical models (PGMs) provide a well-founded and principled approach
for performing inference and belief updating in complex domains endowed with
uncertainty.
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In this paper, we are interested in a particular type of PGMs, the so-called
Bayesian networks [13], and more precisely, hybrid Bayesian networks, where dis-
crete and continuous variables coexist. Our goal is to analyse the performance
of probabilistic inference in hybrid Bayesian networks in scenarios where data
come in streams at high speed, and therefore a quick response is required. Be-
cause of that, we will focus our analysis on conditional linear Gaussian (CLG)
models [10, 11], instead of more expressive alternatives such as mixtures of ex-
ponentials [12], mixtures of polynomials [18] and mixtures of truncated basis
functions in general [9], as inference in the latter models is in general more time
consuming [15].

The remainder of the paper is organised as follows. Section 2 establishes the
necessary background and contains the problem formulation. Section 3 describes
the algorithms we consider in this paper. The core of the contributions is in
Section 3.2, where we develop a parallel algorithm based on importance sampling
for CLG networks. Its performance is tested in Section 4 and the paper ends with
the conclusion in Section 5.

2 Preliminaries

Bayesian networks (BNs) [3, 8, 13] are a particular type of PGM that has enjoyed
widespread attention in the last two decades. Attached to each node, there is
a conditional probability distribution given its parents in the network, so that
in general, for a BN with N variables X = {X3,..., Xy}, the joint distribu-
tion factorizes as p(X) = Hiv=1 pi(X;|Pa(X;)), where Pa(X;) denotes the set of
parents of X; in the network. A BN is called hybrid if some of its variables are
discrete while some others are continuous.

We will use lowercase letters to refer to values or configurations of values, so
that « denotes a value of X and boldface x is a configuration of the variables in X.
Given a set of observed variables X C X and a set of variables of interest X; C
X\ Xg, probabilistic inference consists of computing the posterior distribution
p(zi|xg) for each i € I, where X; can be either discrete or continuous. If we
denote by X and Xp the set of continuous and discrete variables not in {X;}U
Xg, and by X¢, and Xp, the set of continuous and discrete variables not in
X, the goal of inference can be formulated as computing

/ p(x;xp)dxc
p(x;, XE xpefx,, X0 €M%
plailxs) = PEXE) D W

p(xE) Z / p(x; XE‘)dXC'i

XDiEQxDi CiEQXCq‘,

where {2x is the set of possible values of a set of variables X and p(x;xg) is the
joint distribution in the BN instantiated according to the observed values xg.

Often, one is not interested in the full posterior distribution of X;, but rather
in the probability of the variable taking values on a given interval (a,b), which
amounts to computing
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/b Z /x p(x;xg)dxc | dz;

XDG-QX CE-QXC
p(a < X; < b‘XE) = ’ (2)
S [ scxedx
xp, €2%x . xciEQxci

if X; is continuous. If it is discrete, instead of the variable taking values on an
interval, we are interested in one of its possible values, i.e.

> / FXG=20) (o xp) dxo

en cEflx
P(Xi = wilxg) = 22— SNC)
Z / p(x;xg)dxc,
xp, €2xp U XCi €%,
where pf(Xi=2) (x; x ;) denotes the restriction of function p(x;xz) to the value

x; of variable X;, if X, is discrete. We call the probabilistic inference tasks
described in Egs. (2) and (3) a query.

2.1 Conditional Linear Gaussian Networks

A Conditional Linear Gaussian Network is a hybrid Bayesian network where
the joint distribution is a conditional linear Gaussian (CLG) [11]. In the CLG
model, the conditional distribution of each discrete variable Xp € X given its
parents is a multinomial, whilst the conditional distribution of each continuous
variable Z € X with discrete parents Xp C X and continuous parents X C X,
is given as a normal density by

p(Z‘XD:XD,XC:Xc):N(Z;OLXD +6IDX07UXD); (4)

for all xp € £2x,, and x¢ € {2x., where o and B are the coefficients of a linear
regression model of Z given its continuous parents; this model can differ for each
configuration of the discrete variables X p. Therefore, the conditional mean of
Z is a linear model on its continuous parents, while its standard deviation, op,
only depends on the discrete ones.

After fixing any configuration of the discrete variables, the joint distribution
of any subset X C X of continuous variables is a multivariate Gaussian whose
parameters can be obtained from the ones in the CLG representation. For a set
of M continuous variables 71, ..., Z;; with a conditionally specified joint density
p(z1,. . 2m) = Hévilp(zk|zk+1, ..., 2m), where the k-th factor, 1 <k < M, is
such that

P(2k|2ks1s .o 20) = N(Zk;; Mzk\szrl,...,szzk) )

it holds that the joint is p(z1, ..., z2ar) = N (21, - .., 203 b, ), where p is the n-
dimensional vector of means and X is the covariance matrix of the multivariate
distribution over random variables Z1,...,Z5; and both p and X are derived
from the parameters in Eq. (4) [17].
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3 Approximate inference in CLG networks

Exact inference in CLG networks is a computationally expensive task that re-
quires the construction of a strong junction tree in order to guarantee that
the continuous variables are marginalised out first [10]. Hence, in scenarios as
stream processing, where quick responses are required, the use of approximate
algorithms becomes necessary. In this section we analyse two approaches to ap-
proximate inference in CLG networks. Both are based on general techniques for
probabilistic inference able to provide quick answers to queries, namely varia-
tional inference [1] and importance sampling [6].

3.1 Variational inference

Variational inference is a deterministic approximate inference technique, where
we seek to iteratively optimise a variational approximation to the posterior dis-
tribution of interest [1]. Let Q be the set of possible approximations; then the
variational approximation to a posterior distribution p(x;|Xg = xg) is defined
as

G (X1) = arg lgéigD(q(XI)HP(XHXE =Xg)),

where D(q||p) is the KL divergence between ¢ and p.

A common approach is to employ a variational mean-field approximation of
the posterior distribution, so that the approximation factorises over the individ-
ual variables involved, i.e.,

Gy (x1) = [ [ oy (0)- (5)
iel

During the optimisation of the variational mean-field one performs a coordi-
nate ascent, where we iteratively update the individual variational distributions
while holding the others fixed [7]. Updating a variational distribution essentially
involves calculating the variational expectation of the logarithm of the origi-
nal conditional distributions of the model. This can be done efficiently and in
closed form when the distributions involved are conjugate-exponential [2]. A gen-
eral architecture for supporting variational message passing (VMP) in graphical
models is presented in [20], highlighting how distributions that are conjugate-
exponential families can be utilised to efficiently represent the messages by the
expected natural statistics. In this paper, we consider the application of VMP
to CLG networks, and therefore the posterior distribution of the variables in
the network will be the factors in Eq. (5), represented as normal densities for

continuous variables and as multinomials for the discrete ones.

3.2 Importance sampling

Importance sampling [6] is a versatile simulation technique that in the case of
inference in BNs amounts to transforming the numerator in Eq. (2) by multi-
plying and dividing by a distribution p* that, unlike p(x,xg), is easy to handle
and, more precisely, from which samples can easily be drawn.
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Let 6 denote the numerator of Eq. (2), i.e. § = f: h(z;)dz; with

h(zi) = Z /x p(x;xp)dxc.

XDEQX CGQXC

Then, we can write 0 as

= / h(as)da; = / h((w’l))p*(xi)dxi = E, [ ;((X)g?)], (6)

where p* is a probability density function on (a,b) called the sampling distribu-

tion, and X} is a random variable with density p*. Let XZ-*(l), cey Xi*(m) be a
sample drawn from p*. Then it is easy to prove that

9—%2"3 X*m) ")

is an unbiased estimator of 6.
As 6 is unbiased, the error of the estimation is determined by its variance,
which is

*(J) *(7)
Var(f,) = Var iZh(Xi = QZV r( (X5 ())>
miap (XY o m (X Y)
* *
%m\/ar < h*(Xl*) > = —Var ( Z(Xi*) ) . (8)
m p*(X7) m p(X7)

The key point in importance sampling is the selection of the sampling distri-
bution since, according to Eq. (8), it determines the accuracy of the estimation.
The rule is that the closer p* is to h, the lower the variance is [4].

A simple procedure for selecting the sampling distribution is the so-called ev-
idence weighting (EW) [5]. In EW, each variable is sampled from a conditional
density given its parents in the network. The sampling order is therefore from
parents to children. The observed variables are not sampled, but instead they are
instantiated to the observed value. A version of this algorithm in which the con-
ditional densities are dynamically updated during the simulation procedure was
introduced in [19]. In this paper we will only use static sampling distributions,
as that is the fastest alternative.

Hence, adopting EW means that h involves the product of all the conditional
distributions in the Bayesian network, while p* involves the same conditional
distributions except those ones corresponding to observed variables.

Note that the denominator in Eq. (2) is just the probability of evidence, which
has to be estimated as well in order to have an answer to a query (recall that 0,
is just an estimator of the numerator). It was shown in [4] that numerator and

denominator can be estimated using the same sample. To achieve this, instead of
taking a sampling distribution defined on (a,b) it must be defined on the entire
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range of X;. In such case, the estimator in Eq. (7) becomes an estimator of the
denominator (probability of evidence) and the same estimator, evaluated only
in the points in the sample that fall inside (a,b), is an estimator of 6.

Function EW(X,P xg,X,a,b,M)
Input: The set of variables in the network, X = {X1,...,Xn} in topological order.
The distributions in the network P = {p1,...,pn}. Evidence Xg = xg. The
target variable X. Sample size M.
Output: An estimation of P(a < X < b|Xg = xg)
begin
Initialization:
s1 40382 0.
for j <+ 1 to M do
Sample generation:
w1 1 ;W2 — 1.
for i < 1 to N do
if X; ¢ Xg then
Simulate a value 17 for X; using p;(z;| Pa(z;)).
Wa — w2 *pi(xgj)\Pa(zi)).

end
else
| Let %9 be the value of X; in Xz.
end
wy 4 w1 *pj(:vgj)|Pa(;z:i)).
end
if w; # 0 then
Let ) be the value of X in the simulated configuration :t(lj), . ,x%).

if 219 € (a,b) then
‘ S1 ¢ S$1 +w1/w2

end

82 ¢ S2 + wl/wg

end

end
return s1/sz .
end

Algorithm 1: The EW algorithm for answering a probabilistic query.

The details of the inference procedure are given in Alg. 1. In the For loop
devoted to sample generation, wy and wsy represent, respectively, the values of h
and p* for the simulated configurations. Each variable is simulated using its con-
ditional distribution. In fact, we can only simulate from marginals rather than
conditional distributions. That’s why EW starts simulating from root nodes,
where marginal distributions are attached to them. Once root nodes are simu-
lated (i.e. we have a value for them), their children are simulated by first in-
stantiating their conditional distributions to the simulated values for the roots,
obtaining, therefore marginal densities. As we are operating with CLG networks,
the marginal distribution for each discrete variable is a multinomial while it is a
normal for each continuous variable. In both cases, simulating values from them
is straightforward [14].
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Some configurations can be useless for the estimation procedure. That is the
case in which w; becomes zero which happens when a simulated configuration
is incompatible with the observations. As an example, consider a BN with two
binary variables X and Y, where P(X = 0) = 0.9, P(Y = 0|X =0) =0
and P(Y = 0|X = 1) = 0.5. It means that, approximately, 90% of the times
the value simulated for X will be 0. Assume that we have observed Y = 0. As
P(Y = 0|X = 0) = 0, 90% of the times the simulated configuration will be
discarded. This problem only arises when simulating discrete variables, as the
normal density for a continuous variable is never equal to 0.

In regards of scalability, it is worth pointing out that the iterations in the For
loop for sample generation can be executed in parallel. This is due to the fact that
the items in the sample are independent of each other. As that loop constitutes
the fundamental workload of the algorithm, the scalability is potentially high,
using, for instance, a multi-threaded implementation. Our proposal for scaling
up the algorithm consists of using parallelisation in the above mentioned For
loop. We have used Java 8 streams in our implementation.

Even though all the discussions above were focused on queries involving a
continuous variable, similar arguments can be developed for discrete queries,
where instead of an interval, we seek the probability of a variable taking on a
fixed value. For the sake of simplicity, we omit here the details for the discrete
case.

4 Experimental evaluation

In order to test the accuracy and scalability of EW with respect to available
computing resources, we conducted an experiment over two randomly generated
CLG networks with 10 and 500 variables respectively, half of them continuous
and the rest binary discrete variables. The aim of this choice is to test the
behaviour of the algorithm when dealing with small as well as with large models.
The number of links was set to double the number of variables. We have not
considered any parallelisation issue for VMP, but we have included it in the
experimental analysis as a bench mark.

‘10 vars. 500 vars.
Run time (seconds)| 0.0739  9.6917
Error 0.4657  2.2759

Table 1. Error and run times for VMP.

For each network, we randomly generated a set of observations for 5% of
the variables. Queries were also selected at random, by choosing a variable and
generating a number « from a standard normal distribution and taking the
interval (a,b) with a = o — 0.5 and b = « + 0.5. Each query was answered
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Fig. 1. Run time as a function of the number of cores for EW over a randomly generated
CLG network with 500 variables (left) and 10 variables (right).
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Fig. 2. Number of queries answered per second as a function of the number of cores for
EW over a randomly generated CLG network with 500 variables (left) and 10 variables
(right).

using VMP and EW, the latter with samples of size 1000, 5000 and 10000. Each
experiment was replicated for an increasing number of cores ranging from 1 to
20. The experiments were run on a dual-processor AMD Opteron 2.8GHz server
with 32 cores and 64GB of RAM, running Linux Ubuntu 14.04.1 LTS.

Each run was repeated 10 times and the run time and error of the estimations
were averaged over the 10 runs. The error of the estimations was computed using
the x? divergence. Let p;, i = 1,...,10 be the exact probability corresponding
to the query in run 4, and let ¢; be the estimated value. The x? divergence is
computed as
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Fig. 3. Error attained by EW as a function of the sample size for a network with 10
variables (left) and with 500 variables (right).

The x? divergence is specially appropriate for measuring errors in probability
estimations, as it is measured taking into account the magnitude of the value to
estimate, and not simply the absolute or square deviation.

The results of the experiments in terms of run time for EW are shown in
Fig. 1. The results for VMP are given in Tab. 1. The plots correspond to a
sample of size 1000 for EW, and show the evolution of the run time as a function
of the number of cores used during the computation. It can be seen how in both
networks EW scales up with respect to the number of cores. we conjecture that
the jump in the curve at 12 cores is probably due to the small magnitude of the
run time (of the order of miliseconds) and hence, any small variation due to any
issue external to the algorithm can cause it, specially taking into account that
the server where the experiments were run was shared with other users.

The ability of the algorithm for processing streams is illustrated in Fig. 2,
where the number of queries answered per second is given as a function of the
number of cores. It can be seen that the algorithm is able to process up to 12
queries in a second for the 500 variable network, and over 200 per second for the
10 variable network, when using 20 cores.

There is a big difference in favour of EW with respect to VMP in what
concerns computing time, according to Tab. 1. For instance, when using 20
cores, EW gives an answer in less than 0.1 seconds, while VMP takes around 9,
in the large network. In the small network, with only 10 variables, the results
are similar, resulting EW as a much faster procedure, reaching response times
for 20 cores below 0.005 seconds. It means that the method is able to answer
around 200 queries in 1 second, which is of special interest when processing
queries coming in streams.

The behaviour of the EW algorithm in terms of error is summarised in the
plots in Fig. 3, where the x? divergence is represented versus the sample size. As
expected, the error goes down as the sample size increases. Even with the lowest
sample size considered (1000), the errors are fairly low for the large and small
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networks. The errors reported by VMP are considerably higher, as reported in
Tab. 1

5 Conclusion

In this paper we have analysed the problem of approximate inference in CLG
networks with special interest in parallelisation issues. We have tested the be-
haviour of two general approaches to probabilistic inference when applied to
CLG networks. Importance sampling, and more precisely EW, has shown to be
preferable to VMP both in terms of speed and accuracy. The quick responses
provided by EW suggest that it is potentially an appropriate inference method
for answering queries when evidence comes in form of a stream.

Though the experimental results are promising, they are still limited. We
intend to study the inference problems in more complex settings, involving net-
works with more variables and more links. Also, the randomly generated net-
works did not include a high concentration of extreme probabilities for the dis-
crete variables, i.e. zeros in the probability tables. In scenarios of extreme proba-
bilities, EW is known to be not so accurate [16], and therefore more sophisticated
methods as the ones proposed in [4] for mixtures of truncated exponentials, are
to be developed.
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