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Abstract

Sparse representation has been applied success-
fully in many image analysis applications, in-
cluding abnormal event detection, in which a
baseline is to learn a dictionary from the training
data and detect anomalies from its sparse codes.
During this procedure, sparse codes which can be
achieved through finding the L0-norm solution of
the problem: min ‖Y −Dα‖22 +‖α‖0, is crucial.
Note that D refers to the dictionary and α refers
to the sparse codes. This L0-norm solution, how-
ever, is known as a NP-hard problem. Despite
of the research achievements in some classifica-
tion fields, such as face and action recognition,
a comparative study of codes in abnormal event
detection is less studied and hence no conclusion
is gained on the effect of codes in detecting ab-
normalities. We constrict our comparison in two
types of the above L0-norm solutions: greedy al-
gorithms and convex L1-norm solutions. Consid-
ering the property of abnormal event detection,
i.e., only normal videos are used as training data
due to practical reasons, effective codes in classi-
fication application may not perform well in ab-
normality detection. Therefore, we compare the
sparse codes and comprehensively evaluate their
performance from various aspects to better un-
derstand their applicability, including computa-
tion time, reconstruction error, sparsity, detection
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accuracy on the UCSD Anomaly Dataset. Exper-
iments show that greedy algorithms, especially
MP and StOMP algorithm could achieve better
abnormality detection with relatively less com-
putations.

1. Introduction
Sparse representation has gained a great deal of attention
since being applied effectively in many image analysis ap-
plications, e.g., image denoising (Donoho & Elad, 2002;
Elad & Aharon, 2006), compression (Zepeda et al., 2011),
face recognition (Wright et al., 2009; Yang et al., 2011),
and action recognition (Qiu et al., 2011; Jiang et al., 2013).
Its success stems from the discovery of underlying proper-
ties from low-level to mid-level human vision: many neu-
rons in the visual pathway are selective for a variety of spe-
cific stimuli, such as color, texture, orientation, scale, and
even view tuned object images (Olshausen & Fieldt, 1997).
Attributing to this finding, many researchers use sparse rep-
resentation, either to construct a sparse dictionary or search
for sparse coefficients given by a predefined dictionary.

When applying sparse representations to abnormal event
detection (Cong et al., 2011; Jiang et al., 2011; Qiu et al.,
2011; Lu et al., 2013), visual features are first extracted ei-
ther on spatial- or temporal- domain, then a dictionary D
is learned based on these visual features, which consists
of basis vectors capturing high-level patterns in the input
features. A sparse representation of a feature is a linear
combination of a few elements or atoms from a dictionary.
Mathematically, it can be expressed as y = Dx, where
y ∈ Rp is a feature of interest, D ∈ Rp×m is a dictio-
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nary and x ∈ Rm is the sparse representation of y in D.
Typically m � p results in an overcomplete or redundant
dictionary. Then, each feature has a reconstruction error
based on the dictionary and its coefficients. As a result,
a testing feature can be determined as normal or anomaly
based on its reconstruction error.

Research on sparse representation in image and video pro-
cessing applications can be generally categorized into dic-
tionary learning (Cong et al., 2011; Jiang et al., 2011;
Qiu et al., 2011; Lu et al., 2013) (Engan et al., 1999)
(Aharon et al., 2006; Michal et al., 2005), and sparse cod-
ing (Donoho et al., 2006a; Donoho & Elad, 2006; Needell
& Vershynin, 2010; B. et al., 2011; Asif & Romberg, 2013).
Dictionary learning aims to obtain atoms (or basis vec-
tors) for a dictionary. Such atoms could be either pre-
defined, e.g., undecimated Wavelets, steerable Wavelets,
Contourlets, Curvelets, and more variants of Wavelets), or
learned from the data itself (Mairal et al., 2008a) (Mairal
et al., 2008b). Sparse coding, on the other hand, attempts
to find sparse codes (or coefficients) by giving a dictionary,
i.e., finding the solution to the underdetermined system of
equations y = Dx either by greedy algorithms or convex
algorithms. Through sparse coding, input features can be
approximately represented as a weighted linear combina-
tion of a small number of (unknown) basis vectors. We only
consider sparse coding in this paper, and put special at-
tention on comparison of greedy algorithms with L1-norm
minimization algorithms.

L1-norm minimization has become a popular tool to solve
sparse coding, which benefits both from efficient algo-
rithms (Beck & Teboulle, 2009) (Yuan et al., 2010) and
a well-developed theory for generalization properties and
variable selection consistency (Zhang, 2009). We list two
common L1 minimization formulation in E.q. 1 and E.q.
2. Since the problem is convex, there are efficient and ac-
curate numerical solvers.

x̂ = argmin
x

1

2
‖Dx− y‖22 + λ‖x‖1 (1)

x̂ = argmin
x
‖x‖1 subject to ‖Dx− y‖2 ≤ ε (2)

Meanwhile, there is also a variety of greedy/iterative meth-
ods for solving such problems. Greedy algorithms rely
on interactive approximation of the feature coefficients and
supports, either by iteratively identifying the support of the
feature until a convergence criterion is met, or alternatively
by obtaining an improved estimate of the sparse signal at
each iteration that attempts to account for the mismatch to
the measured data. Compared to L1-norm minimization
methods, greedy algorithms are much fasters, therefore are
more applicable to very large problems.

To evaluate the performance of these two types of solu-
tions, we in this paper compare the performance of codes
on abnormal event detection, especially from aspects such
as computation complexity, reconstruction error, sparsity
of codes, and their detection performance. The remainder
of this paper is organized as follows. We give a brief review
of greedy algorithms and L1-norm solutions in Sec. 2 and
Sec. 3, then show our comparative results in Sec. 4. Sec. 5
concludes the paper with discussions and future work.

2. Greedy Algorithms
We review two broad categories of greedy methods to re-
construct y, which is called ‘greedy pursuits’ and ‘thresh-
old’ algorithms. Greedy pursuits can be defined as a set of
methods that iteratively build up an estimate x. They con-
tains three basic steps. Firstly, the x is set to a zero vector.
Secondly, these methods estimate a set of non zero compo-
nents of x by iteratively adding new components that are
deemed to be non zeros. Thirdly, the values for all non
zeros components are optimized. In contrast, threshold-
ing algorithms alternate both element selection and element
pruning steps.

There is a large and growing family of greedy pursuit meth-
ods. The general framework in greedy pursuit techniques
is 1) to select an element and 2) to update the coefficients.
In Matching Pursuit (MP) (Mallat & Zhang, 1993). Mal-
lat and Zhang discussed a general method for approximate
decomposition in E.q. 3 that addresses the sparsity issue di-
rectly. The algorithm selects one column from D at a time
and, at each iteration, only the coefficient associated with
the selected column is updated. More concretely, it starts
from an initial approximation x (0) = 0 and residual R(0) =
x, then builds up a sequence of sparse approximations step-
wise. At stage k, it identifies the dictionary atom that best
correlates with the residual and then adds to the current ap-
proximation a scalar multiple of that atom. After m steps,
one has a sparse code in E.q. 3 with residual R = R(m).

y =

m∑
i=1

xridri +R(m) (3)

Orthogonal Matching Pursuit (OMP) (Pati et al., 1993),
updates x in each iteration by projecting y orthogonally
onto the columns of D associated with the current support
atoms. Different from MP, OMP never reselects an atom
and the residual at any iteration is always orthogonal to all
currently selected atoms in the dictionary. Another differ-
ence is that OMP minimizes the coefficients for all selected
atoms at iteration k, while MP only updates the coefficient
of the most recently selected atom. In order to speed up
pursuit algorithms, it is necessary to select multiple atoms
at a time, therefore, the algorithms are proposed to keep
computational costs low enough for applying to large-scale
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problems, such as Stagewise Orthogonal Matching Pursuit
(StOMP) (Donoho et al., 2006b) (Donoho et al., 2012) and
Stagewise Weak Gradient Pursuit (StWGP) (Blumensath &
Davies, 2009). These algorithms choose the element that
meets some threshold criterion at the atom selection step,
and have demonstrated both theoretical and empirical ef-
fectiveness for the large-system.

Greedy algorithms are easy to implement and use and can
be extremely fast. However, they do not have recovery
guarantees, i.e., how well each sample can be reconstructed
by the dictionary and their sparse codes, as strong as meth-
ods based on convex relaxation such as L1-norm approxi-
mation. Recent methods, including Iterative Hard Thresh-
olding (IHT) (Blumensath & Davies, 2008), the Com-
pressive Sampling Matching Pursuit (CoSaMP) (Needell
& Tropp, 2008), Subspace Pursuit (SP), aim to bridge this
gap. They are fairly easy to implement and can be ex-
tremely fast but also show the strong performance guaran-
tees.

3. L1-norm Approximation
L1-norm approximation replaces the L0 constraint by a re-
laxed L1-norm. For example, in the Basis Pursuit method
(BP) (Chen et al., 1998; 2001), an almost everywhere dif-
ferentiable and often convex cost function is applied, in
the Focal Underdetermined System Solver (FOCUSS) al-
gorithm (Murray & Kreutz-Delgado, 2001), a more gen-
eral model is optimzed.

Donoho and etc. (Donoho & Elad, 2002) suggested that
for some measurement matrices D, the generally NP-Hard
problem (L0 norm) should be equivalent to its convex re-
laxation: L1 norm, see E.q. 1 and 2. The convex L1 prob-
lem can be solved using methods of linear programming.
Representative work includes Basis Pursuit (BP). Instead
of seeking sparse representations directly, it seeks repre-
sentations that minimize the L1 norm of the coefficients.
Furthermore, BP can compute sparse solutions in situations
where greedy algorithms fail. The Lasso algorithm (Tib-
shirani, 1996) is quite similar to BP and is in fact know
as Basis Pursuit De-Noising (BPDN) in some areas. The
Lasso rather than trying to minimizing the L1-norm like
BP places a restriction on its value.

The FOCUSS algorithm has two integral parts: a low-
resolution initial estimate of the real signal and the iteration
process that refines the initial estimate to the final localized
energy solution. The iterations are based on weighted norm
minimization of the dependent variable with the weights
being a function of the preceding iterative solutions. The
algorithm is presented as a general estimation tool usable
across different applications. In general, L1-norm methods
offer better performance in many cases, but are also more

demanding with respect to computation.

4. Experimental Results
There are intensive studies on different sparse coding algo-
rithms, see surveys in (Baraniuk, 2007). In this paper we
highlight these aspects in evaluating the sparse codes for
abnormal event detection applications: computation time,
reconstruction error, the ratio of sparsity in codes, and their
performance on abnormal event detection.

4.1. Dataset and Settings

We use a public anomaly dataset: UCSD Ped1 dataset (Ma-
hadevan et al., 2010), which has been popular used in de-
tecting abnormal behaviors. UCSD Ped1 includes clips of
groups of people walking towards and away from the cam-
era with some amount of perspective distortion. There are
34 training videos and 36 testing videos with a resolution of
238× 158. Training videos contain only normal behaviors.
Testing videos are abnormal behaviors where there are ei-
ther non-pedestrian entities in the walkways or anomalous
pedestrian motion patterns.

We use the spatial-temporal cubes, where 3D gradient
features are computed, following the setting in (Kratz &
Nishino, 2009). Each frame is divided into patches with a
size of 23 × 15, consecutive 5 frames are used to form 3D
patches, and gradients features are extracted in each patch.
See details in (Kratz & Nishino, 2009). Through this, we
obtain 500-dimensional visual features and reduce them to
100 dimension by using PCA algorithm.

4.2. Codes Evaluation

We randomly select 1% of the training features (238000
features in total), then use K-SVD algorithm (Michal et al.,
2005) to construct a dictionary consisting of 1000 atoms,
and generate sparse codes by applying various algorithms.
There are many algorithms available, we only select repre-
sentative greedy algorithms (OMP, MP, StOMP) and com-
pare them with representative L1-norm solutions (BP and
Lasso algorithm). The reconstruction error is calculated
by Re = ‖y −Dx‖22. We also calculate the mean ratio of
sparsity in the codes, i.e., the average percentage of non ze-
ros in the dimension of the codes (1000). We report these
results as well as computation time in Tab. 1. Greedy algo-
rithms need far less time to compute, among which OMP
achieves the fast computation, following by StOMP algo-
rithm. OMP is approx. 180 times faster than Lasso algo-
rithm. OMP and StOMP could achieve sparser solutions,
while BP could obtain an extremely dense solution with an
exact recovery.
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Table 1. Comparison of greedy algorithms and L1-norm solutions on sparse code generation.

ALGORITHMS COMPUTATION TIME (S) RECONSTRUCTION ERROR SPARSITY (%)

MP 166.00 0 31.8%
OMP 1.83 0.4236 1.9%
STOMP 15.79 0 10%
BP 114.20 0 100%
LASSO 333.49 0.0005 9.9%

Table 2. Comparative results on UCSD Ped1: frame-level evaluation results (AUC and EER) and pixel-level evaluation results (AUC
and EDR) are reported.

ALGORITHMS AUC (FRAME-LEVEL) EER AUC (PIXEL-LEVEL) EDR COMPUTATION TIME (S)

MP 0.6956 0.3547 0.3898 0.5716 13342
OMP 0.5003 0.5052 0.2849 0.6637 527
STOMP 0.5415 0.465 0.3494 0.6190 4668
BP 0.5454 0.4764 0.3057 0.6479 38949
LASSO 0.5305 0.5173 0.3132 0.6383 56400

4.3. Abnormal Event Detection Evaluation

To measure the abnormality detection accuracy, we cal-
culate the reconstruction error of each feature, and detect
features with large reconstruction errors as anomalies. A
frame with an abnormal feature is considered as a positive
frame. To compare the performance, we adopt two pop-
ular evaluation criterion in abnormality detection: frame-
level evaluation and pixel-level evaluation, which are de-
fined in (Mahadevan et al., 2010). We exactly follow their
setting in our evaluation, that is: on frame-level evalua-
tion, a frame is considered an abnormal frame if it con-
tains at least one anomaly feature; while on pixel-level
evaluation, a frame is marked as a correctly detected ab-
normality if at least 40% of the truly abnormal pixels are
detected. Ground truth on frame-level and pixel-level an-
notation is available, therefore, we calculate true positive
rate and false positive rate to draw ROC curves. The Area
Under the Curve (AUC) is reported. Following (Mahade-
van et al., 2010), we obtain the value when false positive
number equals to the missing value. They are called equal
error rate (EER) and equal detected rate (EDR) on frame
and pixel-level evaluation, respectively. See Tab. 2 for de-
tails. On frame-level evaluation, MP algorithm achieves the
best results with a moderate computation time. Remark-
ablely, StOMP algorithm is relatively fast, and the AUC is
quite satisfactory.

It is notable that pixel-level AUC is lower than frame-level
AUC in general, which is because pixel-level evaluation
is stricter and has taken location into consideration. On
frame-level evaluation, there could be a coincidental de-
tection - a normal feature could be wrongly detected as an

anomaly in an abnormal frame, and this incorrect detection
of feature ends up with a correct detection of that frame.
While in pixel-level evaluation, a frame is marked as a
correctly detected abnormality only if sufficient number of
anomaly features have been found. The StOMP algorithm
can achieve a competitive detection results on pixel-level
evaluation compared with MP algorithm, but it is 3 times
faster than MP algorithm. BP algorithm also performs well
on pixel-level detection, however, its high computation cost
will hamper its application on real detection problems.

In summary, greedy algorithms are fast to compute, how-
ever, their reconstruction errors are relatively larger than
L1-norm solutions. Convex relaxations, such as BP and
Lasso algorithm, have better theoretical guarantees and re-
covery ability, but are more time consuming. When ap-
plied in abnormal event detection, surprisingly, greedy al-
gorithms, especially StOMP algorithm, seem to perform
better on pixel-level detection, which means that they could
localize anomaly feature more accurately.

5. Discussions and Conclusion
In this paper, we compare greedy algorithms with L1-norm
solutions from different aspects: computation cost, recov-
ery ability, sparsity, and their performance on abnormal
event detection. Experimental results show that greedy al-
gorithms can obtain good detection results, with less com-
putations. Remarkably, among the top three best detection
results, two are greedy algorithms. Considering the compu-
tation requirement, which limits some L1-norm algorithms
from being applied in real surveillance applications, greedy
algorithms are really promising. However, there are more
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consideration that need to be addressed in future. How
is the performance of greedy algorithms compared to L1-
norm solutions when the size of the training data is much
larger? How do they perform in other domains when the
amount of the training data is relatively small? In which
case does greedy algorithms suit better than L1-norm so-
lutions? These interesting questions will be considered in
our future work.
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