
 

  

 

Aalborg Universitet

On the agreement between manual and automated methods for single-trial detection
and estimation of features from event-related potentials

Manresa, José A. Biurrun; Arguissain, Federico; Medina Redondo, David E.; Mørch, Carsten
Dahl; Andersen, Ole Kæseler
Published in:
PLoS ONE

DOI (link to publication from Publisher):
10.1371/journal.pone.0134127

Publication date:
2015

Document Version
Publisher's PDF, also known as Version of record

Link to publication from Aalborg University

Citation for published version (APA):
Manresa, J. A. B., Arguissain, F., Medina Redondo, D. E., Mørch, C. D., & Andersen, O. K. (2015). On the
agreement between manual and automated methods for single-trial detection and estimation of features from
event-related potentials. PLoS ONE, 10(8), Article e0134127. https://doi.org/10.1371/journal.pone.0134127

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

            - Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
            - You may not further distribute the material or use it for any profit-making activity or commercial gain
            - You may freely distribute the URL identifying the publication in the public portal -
Take down policy
If you believe that this document breaches copyright please contact us at vbn@aub.aau.dk providing details, and we will remove access to
the work immediately and investigate your claim.

https://doi.org/10.1371/journal.pone.0134127
https://vbn.aau.dk/en/publications/1daff90c-a3fc-4ec1-bc29-59b964fe02af
https://doi.org/10.1371/journal.pone.0134127


RESEARCH ARTICLE

On the Agreement between Manual and
Automated Methods for Single-Trial
Detection and Estimation of Features from
Event-Related Potentials
José A. Biurrun Manresa1*, Federico G. Arguissain1, David E. Medina Redondo2, Carsten
D. Mørch1, Ole K. Andersen1

1 Center for Sensory-Motor Interaction, Dept. of Health Science and Technology, Aalborg University,
Aalborg, Denmark, 2 Departamento de Informática, Universidad Nacional de Entre Ríos, Oro Verde, Entre
Ríos, Argentina

* jbiurrun@hst.aau.dk

Abstract
The agreement between humans and algorithms on whether an event-related potential

(ERP) is present or not and the level of variation in the estimated values of its relevant fea-

tures are largely unknown. Thus, the aim of this study was to determine the categorical and

quantitative agreement between manual and automated methods for single-trial detection

and estimation of ERP features. To this end, ERPs were elicited in sixteen healthy volun-

teers using electrical stimulation at graded intensities below and above the nociceptive with-

drawal reflex threshold. Presence/absence of an ERP peak (categorical outcome) and its

amplitude and latency (quantitative outcome) in each single-trial were evaluated indepen-

dently by two human observers and two automated algorithms taken from existing literature.

Categorical agreement was assessed using percentage positive and negative agreement

and Cohen’s κ, whereas quantitative agreement was evaluated using Bland-Altman analy-

sis and the coefficient of variation. Typical values for the categorical agreement between

manual and automated methods were derived, as well as reference values for the average

and maximum differences that can be expected if one method is used instead of the others.

Results showed that the human observers presented the highest categorical and quantita-

tive agreement, and there were significantly large differences between detection and esti-

mation of quantitative features among methods. In conclusion, substantial care should be

taken in the selection of the detection/estimation approach, since factors like stimulation

intensity and expected number of trials with/without response can play a significant role in

the outcome of a study.
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Introduction
Event-related potentials (ERPs) are synchronous voltage deflections in the EEG in response to
external stimuli that reflect reception and processing of sensory information [1]. ERPs present
excellent temporal resolution, in the order of milliseconds, providing an accurate estimation of
the timing of processing activity in the brain. For many experimental applications and particu-
larly in clinical settings, ERPs are commonly characterized by their polarity (positive or nega-
tive) and maximum voltage excursion (i.e., the peak amplitude), the time from stimulus onset
to peak deflection (i.e., the peak latency) and the location of voltage changes across the head
(i.e., the scalp distribution). Despite their simplicity, these features reflect surprisingly well the
salient aspects of cerebral processing, and even more complex analyses can also be performed
to gain insight into neurophysiological processes [2].

ERP amplitudes are a fraction of the magnitude of the background EEG, thus requiring fur-
ther signal processing in order to enhance the signal-to-noise ratio. This is often performed by
repeating the event of interest a number of times (from tens to thousands of trials, depending on
the type of stimulus) and averaging the responses over time [3]. However, besides the obvious
disadvantages associated with a large number of event repetitions, across-trial averaging may in
some cases lead to distortion, inaccurate estimation or even loss of information of the ERP fea-
tures [4]. The main reason for this is that not all relevant information is precisely time-locked to
the event, leading to a certain level of variability in amplitudes and latencies, which might actually
reflect fluctuations in signal transduction, expectation, attention or other cognitive processes [5].

In this regard, there is great interest in the development of single-trial methods for auto-
mated detection and estimation of ERP features, using a variety of different signal processing
methods, including (but not limited to) wavelet denoising [6,7], independent component anal-
ysis [8,9], multiple linear regression [10], or combinations of these and other techniques [11].
Regardless of the approach, these methods are, in one way or another, validated against knowl-
edge from human experts [12,13]. From here, an interesting question can be raised: how are
the results and conclusions of a particular study affected if one method for ERP feature detec-
tion or estimation is used instead of another? Although a few attempts to address this issue
have been performed [10,12], two questions remain largely unexplored: the agreement between
humans and algorithms on whether an ERP is present or not after a stimulation (categorical
agreement), and in the trials in which the ERP is indeed present, what is the variation in the
estimated values of the relevant features (quantitative agreement).

The aim of this study was to establish reference values for the categorical and quantitative
agreement between manual and automated methods for detection and estimation of ERP fea-
tures. In particular, the study compares the performance of two experienced human observers
and two existing and readily available algorithms for ERP feature detection. A detailed descrip-
tion of these methodologies will be presented in this paper, followed by a thorough comparison
of their performances on the detection and estimation tasks. Finally, potential sources of dis-
agreement and suggestions for improving the methods will be discussed in an effort to explain
the main findings of the study.

Materials and Methods

Participants
Sixteen healthy male volunteers (23.6 ± 4.6 years) participated in a single experimental session.
Written informed consent was obtained from all subjects, and the Declaration of Helsinki was
respected. The study was approved by the local ethics committee of Region Nordjylland,
approval number VN– 20110027.

Agreement between Methods for Single-Trial ERP Feature Detection
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EEG recording
Continuous EEG data was recorded by a 128-channel system, using a standard EEG cap
(Waveguard cap system, ANT-Software A/S, Enschede, Netherlands) based on the extended
International 10–20 system. The common ground electrode was located along the sagital mid-
line, between the Fz and FCz electrodes. The reference was set as the average of all unipolar
electrodes. EEG data was filtered with a notch filter (50 Hz), sampled at 2048 Hz per channel
and stored for offline analysis using ASA 4.7.3 (ANT-Software A/S, Enschede, Netherlands).

Electrical stimulation
Electrical stimulation was performed through surface electrodes in order to evoke the ERPs
[14]. The cathode (15 × 15 mm, type Neuroline 700, Ambu A/S, Denmark) was placed in the
arch of the left foot, whereas the anode (50 × 90 mm, type Synapse, Ambu A/S, Denmark) was
placed at the dorsum of the foot. Each stimulus consisted of a train of five constant-current
pulses 1 ms pulse width, delivered at 200 Hz by a computer-controlled electrical stimulator
(Noxitest IES 230, Aalborg, Denmark), that were perceived by the subjects as a single pricking
stimulus. The stimulation was repeated with a random inter-stimulus interval ranging from 14
to 16 s. Stimulation intensities were normalized to the nociceptive withdrawal reflex threshold
(RTh), i.e., the minimum current intensity required to elicit a withdrawal reflex from the tibia-
lis anterior muscle, in order to titrate the stimulus intensity to an objective electrophysiological
response. Six stimulation intensities were used: 0.50, 0.75, 1.00, 1.25, 1.50 and 2.00 times the
RTh, to cover the full range of stimulation intensities commonly used in somatosensory assess-
ment through electrical stimulation. This provided a full range of ERP response sizes, including
some cases in which no response was elicited.

Experimental procedure
Volunteers were comfortably placed in supine position with back support inclined 120° relative
to the horizontal level. A pillow was placed under the knee to obtain approximately 30° knee
joint flexion. Once the stimulation and recording electrodes were mounted, volunteers were
thoroughly familiarized with electrical stimulation before any data was recorded. Afterwards,
the RTh was obtained using a staircase procedure [15], and the stimulation intensities were
derived. Five blocks containing 24 stimuli each (6 intensities x 4 repetitions per intensity) were
applied with a 5 min interval between blocks (120 stimuli per subject in total). Each intensity
level was applied 4 times within the same stimulation block (resulting in 20 stimuli per inten-
sity) and all 24 stimuli within a block were presented in random order. Subjects were recur-
rently asked to keep their attention on the stimulus during the stimulation blocks.

Data analysis
EEG signal processing. EEGLAB was used for offline EEG processing [16]. EEG data were

filtered (band-pass 0.5–30 Hz), re-referenced to the linked mastoids M1 and M2, and divided
into epochs of 2000 ms (200 ms pre-stimulus and 1800 ms post- stimulus). The mean ampli-
tude of the pre-stimulus interval was used for baseline correction. Trials containing large arti-
facts were rejected after visual inspection. EEG epochs were further pre-processed using
Independent Component Analysis (ICA) [17]. The resulting independent components (ICs)
were visually inspected and those ICs that showed artifacts related to muscle activity or eye
movements were eliminated [18]. EEG data was reconstructed from the remaining ICs, and
single-trial EEG traces from the vertex (Cz) were subsequently used for automated and manual
feature extraction.

Agreement between Methods for Single-Trial ERP Feature Detection
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Feature extraction. ERPs elicited by stimulation in the lower limb usually display three
characteristic peaks [19,20]: a first negative peak (N1) at approximately 90 ms, followed by sec-
ond negative deflection (N2) around 140 ms and a complex of positive waves, with a peak at
approximately 250 ms (P2). Consequently, six features per trial were extracted from the ERPs,
namely N1, N2 and P2 amplitudes and latencies. In order to extract these features, two differ-
ent strategies were proposed: (1) a manual approach consisting on visual inspection and detec-
tion made by two experienced human observers and (2) an automated approach consisting of
two automated single-trial detection algorithms. The results of the detection and estimation
tasks can be found in S1 File.

In the manual strategy, two experienced blind observers (OBS1 and OBS2) carried out the
manual detection of single-trial peaks. The observers worked at the same research institute and
were trained in a similar way. They performed the manual detection using a custom-made pro-
gram in MATLAB. The program displayed on a computer screen the mean ERP waveform
across all intensities for the individual subject, from which the peak amplitudes and latencies
were estimated manually by the observer based on their polarity and latency, using the built-in
Data Cursor tool that MATLAB provides. Then, each single-trial waveform was visually
inspected and its N1, N2 and P2 peaks were manually detected in the same fashion. The
detected values were automatically stored by the program for further analysis. In order to avoid
bias, the stimulation intensity in each particular trial was unknown to the observers, and man-
ual detection was performed by the observers before any of the automated detection algorithms
were evaluated.

In the automated strategy, two different methods were used for automated peak estimation:
an algorithm based on the derivative of the signal that classifies using fuzzy logic (DRIV)
inspired on previous work on automated detection of features in auditory evoked potentials
[21], and an algorithm based on wavelet filtering and multiple linear regression (WVLT) [11].
The implementation of the DRIV algorithm was carried out in C++ (see description below)
which is freely available at https://sourceforge.net/projects/stfderp, whereas the MATLAB
implementation of the WVLT algorithm is freely available at http://iannettilab.webnode.com.
There are several other examples of detection/estimation methods on the literature, many of
which are more advanced that the two methods presented here [22–24]. However, these two
methods were selected because they are readily available and represent two very different
approaches to detection/estimation: the DRIV algorithm mimics the decision process per-
formed by a human observer during a visual detection task, whereas the WVLT algorithm
relies on a linear model of the filtered signal in order to estimate the amplitudes and latencies
of the peaks at single-trial level.

DRIV algorithm: the first derivative of the signal was calculated using numerical differentia-
tion, in order to detect all local maxima (for P2) and minima (for N1 and N2) in the ERP wave-
form. Maxima and minima were located in the points where the derivative of the signal
changes its sign (from positive to negative or vice versa). All the local maxima/minima found
in each trial were further weighted within three fuzzy zones defined for the N1, N2 and P2
peaks. Each fuzzy zone had a central latency and two boundaries. The fuzzy weights were
defined by two quadratic functions that depended on the corresponding peak latency found in
the average ERP (central latency) and its expected variability (boundaries), as reported in previ-
ous articles [19,25,26]. Consequently, the fuzzy zones had a maximum weight at the central
latency that decreased in a quadratic fashion towards the boundaries, and the weight was set to
zero outside the boundaries. The weighting process was performed by multiplying the ERP
amplitude of the maxima/minima with the weight given by the correspondent fuzzy zone. The
resulting maximal values for each zone were then selected as peaks, under the condition that
their amplitude values were negative (for N1 and N2) or positive (for P2). If the same

Agreement between Methods for Single-Trial ERP Feature Detection

PLOS ONE | DOI:10.1371/journal.pone.0134127 August 10, 2015 4 / 21

https://sourceforge.net/projects/stfderp
http://iannettilab.webnode.com


minimum value was a candidate for N1 and N2 simultaneously, the decision was performed
based on which of the central latencies of the corresponding fuzzy windows was closest to this
value. Once this value was assigned to N1 or N2, the remaining minimum values within the
fuzzy window of the other peak were subsequently analysed in order to find the remaining
peak; if there were no more candidates, the remaining peak was categorized as absent.

WVLT algorithm: initially, the single-trial ERP signals were represented in the time-fre-
quency domain using the continuous Morlet wavelet transform (CWT, bandwidth parameters
fb = 0.05 and f0 = 6) and squared to obtain the magnitude of their power spectrum. These rep-
resentations were then averaged, resulting in a time-frequency matrix that was further thre-
sholded to obtain a binary mask. This mask was applied to each single-trial time–frequency
representations to filter out wavelet coefficients with low energy. The filtered single-trial ERPs
in the time domain were then reconstructed by using the inverse continuous wavelet transform
(ICWT). The automated detection of N1, N2 and P2 amplitudes and latencies was performed
using a multiple linear regression approach [10]. Two regressors per peak (signals in the time
domain and their first derivative) were obtained for each subject from the filtered average ERP.
In order to obtain the regressors for each peak, the average ERP was separated where the volt-
age signal equalled zero. Since ERPs measured at the vertex usually present an overlap between
N1 and N2 peaks without a zero-crossing point between them, the procedure was performed
twice for each subject, selecting only one negative peak each time (N1 or N2) together with a
single positive peak (P2 both times). The selection was made by determining manually the
latency of the aforementioned peaks in the average ERP. Each single-trial ERP is then fitted
with the set of regressors obtained from the averaged ERP using a least squares approach. The
single-trial amplitudes and latencies of the N1, N2 and P2 peaks were then obtained from the
fitted regressors by measuring the maximum voltage peaks within a time window centred on
the latency of each average ERP peak previously determined.

Agreement. Categorical data (presence/absence of a peak): the categorical agreement for all
possible pairings of manual and automated methods was assessed using overall percent agree-
ment (po), positive and negative percent agreement (ppos and pneg, respectively), chance percent
agreement (pe) and Cohen’s kappa (κ). In relation to these indexes, po represents the sum of all
trials in which the methods agree divided by the total number of trials, whereas ppos is calcu-
lated from the number of positive trials (i.e. a peak is present) in which both methods agree on
divided by all of the positive trials for both methods and pneg is calculated from the number of
negative trials (i.e. a peak is absent) in which both methods agree on divided by all of the nega-
tive trials for both methods. The last two indices provide information about the type of decision
(i.e. presence or absence of a peak) on which the methods disagree more. Finally, pe is calcu-
lated as the sum of the joint positive and negative responses, and represents the level of agree-
ment that would still be present if the methods decided randomly on the presence/absence of a
peak. From that definitions, κ is calculated as the ratio between the overall percent agreement
corrected for chance (po—pe), divided by the maximum possible percent agreement corrected
for chance (100%–pe). Normally, κ ranges from 0 (no agreement beyond chance) to 1 (perfect
agreement), although it is possible to observe negative values of κ (when the agreement
between methods is worse than what would be expected by random decisions). In these cases,
the lower limit of κ was set to zero. Cohen’s κ, together with ppos and pneg were selected as the
primary outcomes for categorical agreement, in line with current recommendations [27]. The
remaining indexes (po and pe) are reported as secondary outcomes to provide reference and
context, in order to better understand how Cohen’s κ is derived and what would happen if only
po was quantified without taking pe into account.

Quantitative data (variation in peak amplitudes/latencies): the absolute variation of peak
features (amplitudes/latencies) between all possible pairings of manual and automated
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methods was assessed using Bland-Altman analysis. This method considers the differences
between features (amplitudes/latencies) estimated by two methods from the same single-trial
ERP recording. The mean difference is called bias (an index of systematic error), and the stan-
dard deviation of these differences provides a reference of the absolute variation between meth-
ods (an index of random error). Approximately 95% of the differences should lie
between ± 1.96 standard deviations, which are regarded as the limits of agreement (LoA) [28].
The LoA provide reference values of the maximum differences that can be expected between
methods when measuring the same quantity. For the sake of clarity, only the absolute values of
the bias and the LoA were reported (the analysis focused on how large the differences between
methods were and not on the specific sign of these differences). Additionally, the intraclass cor-
relation coefficient (ICC) and the coefficient of variation (CV) were calculated. The ICC
reflects the proportion of variance of an estimation due to variability between trials [29]. For
this analysis, a two-way mixed model using absolute agreement was selected, and the ICC of
single measurements was reported. Furthermore, the CV represents the variability within trials
as a percentage of the average estimation [30]. Bland-Altman LoA and CV were selected as the
primary outcomes to assess quantitative agreement, in line with current recommendations
[31]. The remaining index (ICC) is reported as secondary outcome for reference/comparison
purposes, since a large number of studies use it as main variable for decision-making.

Statistics. Hypotheses and data arrangement: the main hypothesis was that there exist dif-
ferences on the categorical and quantitative agreement between different pairings of human
observers and automatic methods for ERP feature detection and estimation. In order to test
this hypothesis, all indexes (po, pe, ppos, pneg, Cohen’s κ, bias and LoA, CV and ICC) were
derived for all possible pairings between manual and automated methods (OBS1-DRIV,
OBS1-WVLT, DRIV-WVLT, OBS2-DRIV, OBS2-WVLT, OBS1-OBS2). Each index was calcu-
lated using all available trials from each subject (approx. 120 trials, without distinction between
stimulation intensities), resulting in samples of sixteen index values (n = 16) for each possible
pairing for each feature (N1, N2 and P2). A secondary hypothesis was that the categorical and
quantitative agreement of different pairings of human observers and automatic methods for
ERP feature detection and estimation are affected by stimulation intensity. In order to test this
hypothesis, two representative indexes for categorical and quantitative agreement (Cohen’s κ
and CV, respectively) were subsequently derived from the best- and worst-performing pairings
between manual and automated methods taking into account the stimulation intensity as a fac-
tor (approx. 20 trials per intensity per subject), resulting in samples of sixteen index values
(n = 16) for each possible stimulation intensity within a specific pairing (best- or worst-per-
forming) for each feature (N1, N2 and P2). Cohen’s κ was selected as the preferred index for
categorical agreement because it is a single summary measure (unlike ppos and pneg that have to
be analyzed together) that takes into account agreement by chance. In time, CV was selected as
the preferred index for quantitative agreement because it is also a single summary measure
(unlike bias and LoA) and it is normalized as a percentage, which is desirable since absolute dif-
ferences are expected to be larger at higher stimulation intensities (since the ERP responses
themselves are also larger).

Tests: statistical analysis was performed using SigmaPlot 11 (Systat Software, Inc., USA). In
general, the distributions of the indexes were not normally distributed, so differences in cate-
gorical and quantitative agreement between pairings and differences in categorical and quanti-
tative agreement due to stimulation intensity within a specific pairing were assessed using
Friedman’s test; when a significant difference was found, post hoc pairwise comparisons were
carried out using Student-Newman-Keuls (SNK) test. P values smaller than 0.05 were regarded
as significant.

Agreement between Methods for Single-Trial ERP Feature Detection
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Results

Descriptive statistics
The average RTh was 8.3 ± 3.8 mA. After pre-processing, a total of 1896 trials were subse-
quently analyzed (24 trials eliminated in total), averaging 118.5 ± 1.6 trials per subject. Table 1
shows the average single-trial peak amplitude and latency values and the number of peaks
detected with each method, whereas Fig 1 presents a comparison of the performance of manual
and automated ERP feature detection/estimation methods for a typical subject.

Categorical agreement
N1 peak. Descriptive statistics for the categorical agreement variables derived from all pos-

sible pairings of detection methods of the N1 peak are presented in Fig 2 (primary outcomes)
and S1 Fig (secondary outcomes). Statistically significant differences in the categorical agree-
ment between pairings were found for po (χ

2(5) = 16.976, p = 0.005), pneg (χ
2(5) = 58.635,

p< 0.001), pe (χ
2(5) = 16.436, p = 0.006) and κ (χ2(5) = 65.100, p< 0.001), whereas no signifi-

cant differences were found for ppos (χ
2(5) = 10.838, p = 0.055). Post hoc analysis revealed that

agreement between the human observers yielded significantly higher po, pneg and κ values com-
pared to any other pairing (all p< 0.05). Additionally, all pairings between both human
observers and the DRIV algorithm yielded significantly higher pneg and κ values compared to
all pairings between both human observers and the WVLT algorithm (all p< 0.05). Even
though the Friedman test found a significant difference between the median pe values between
pairings, no significant differences were found in the post hoc tests (all p> 0.05).

N2 peak. Descriptive statistics for the categorical agreement variables derived from all pos-
sible pairings of detection methods of the N2 peak are presented in Fig 3 (primary outcomes)
and S2 Fig (secondary outcomes). Statistically significant differences in the categorical agree-
ment between pairings were found for po (χ

2(5) = 15.695, p = 0.008), ppos (χ
2(5) = 13.719,

p = 0.017), pneg (χ
2(5) = 24.169, p< 0.001), and κ (χ2(5) = 43.459, p< 0.001), whereas no sig-

nificant differences were found for pe (χ
2(5) = 3.230, p = 0.665). Post hoc analysis revealed that

agreement between the human observers yielded significantly higher pneg values compared to
any other parings (all p< 0.05). Furthermore, all possible pairings between the human

Table 1. Single-trial peak amplitude and latency values and number of peaks detected with eachmethod, averaged across stimulation intensities
and subjects.

OBS 1 OBS 2 DRIV WVLT

N1 peak

Amplitude (μV) -18.5 ± 7.4 -17.9 ± 7.2 -19.3 ± 6.9 -13.8 ± 9.1

Latency (ms) 93.0 ± 20.8 94.0 ± 22.6 101.2 ± 21.2 88.8 ± 20.9

Number of peaks detected 96.4 ± 15.1 97.8 ± 15.9 96.6 ±22.0 93.8 ± 47.4

N2 peak

Amplitude (μV) -19.5 ± 4.6 -18.3 ± 4.1 -18.3 ± 5.2 -14.4 ± 10.3

Latency (ms) 146.0 ± 13.6 143.1 ± 12.4 147.6 ± 12.3 137.2 ± 33.4

Number of peaks detected 64.5 ± 45.6 69.0 ± 44.9 70.9 ± 43.7 48.6 ± 55.6

P2 peak

Amplitude (μV) 24.0 ± 6.4 24.6 ± 7.4 25.5 ± 6.1 20.6 ± 5.7

Latency (ms) 254.0 ± 16.2 255.4 ± 17.5 262.3 ± 11.9 265.2 ± 23.7

Number of peaks detected 109.4 ± 10.0 104.4 ± 13.9 116.2 ± 3.1 118.5 ± 1.6

Values are presented as mean ± SD.

doi:10.1371/journal.pone.0134127.t001
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observers and the DRIV algorithm yielded significantly higher κ values than any pairing
involving the WVLT algorithm (all p< 0.05). Even though the Friedman test found a signifi-
cant difference between the median po and ppos values between pairings, no significant differ-
ences were found in any of the post hoc tests (all p> 0.05).

P2 peak. Descriptive statistics for the categorical agreement variables derived from all pos-
sible pairings of detection methods of the P2 peak are presented in Fig 4 (primary outcomes)

Fig 1. Comparison of manual and automated ERP feature detection/estimationmethods. A) Trial-by-trial image of ERP responses of a single subject
elicited with the highest stimulation intensity (20 trials). B-E) Performance of OBS1, OBS2, DRIV andWVLT methods, respectively, on the detection/
estimation of single-trial ERP features of a single subject elicited with the highest stimulation intensity. Crosses, circles and asterisks represent single-trial
N1, N2 and P2 features, respectively, while the blue trace is the average of 20 trials. Note that WVLT algorithm did not detect the N2 peak in E).

doi:10.1371/journal.pone.0134127.g001
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and S3 Fig (secondary outcomes). Statistically significant differences in the categorical agree-
ment between pairings were found for po (χ

2(5) = 32.985, p< 0.001), ppos (χ
2(5) = 3.340, p<

0.001), pneg (χ
2(5) = 49.444, p< 0.001), pe (χ

2(5) = 58.340, p< 0.001) and κ (χ2(5) = 49.276,
p< 0.001). Post hoc analysis revealed that agreement between the two algorithms yielded sig-
nificantly higher po and ppos values compared to any other parings (all p< 0.05), but also signif-
icantly higher pe values compared to any other parings (all p< 0.05). Additionally, all possible
pairings between a human observer and any of the algorithms yielded significantly higher pe
values than the pairing of both human observers (all p< 0.05). Furthermore, the pairing
between the human observers yielded significantly higher pneg and κ values compared to all
other possible pairings (all p< 0.05), and the pairings between either human observer and the
DRIV algorithm resulted in significantly higher pneg values compared to the pairings between
either human observer and the WVLT algorithm (all p< 0.05).

Fig 2. Categorical agreement in the detection of the N1 peak (primary outcomes). The boundaries of the boxes indicate the 25th and 75th percentiles,
the line within the box marks the median, the whiskers indicate the 10th and 90th percentiles and the circles above and below represent outliers (n = 16 for
each index). Horizontal lines on top of the bars represent statistically significant post hoc differences between pairings (Student-Newman-Keuls, p < 0.05).
ppos: positive percent agreement, pneg: negative percent agreement, κ: Cohen’s kappa.

doi:10.1371/journal.pone.0134127.g002

Fig 3. Categorical agreement in the detection of the N2 peak (primary outcomes). The boundaries of the boxes indicate the 25th and 75th percentiles,
the line within the box marks the median, the whiskers indicate the 10th and 90th percentiles and the circles above and below represent outliers (n = 16 for
each index). Horizontal lines on top of the bars represent statistically significant post hoc differences between pairings (Student-Newman-Keuls, p < 0.05).
ppos: positive percent agreement, pneg: negative percent agreement, κ: Cohen’s kappa.

doi:10.1371/journal.pone.0134127.g003
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Quantitative agreement
N1 peak. Descriptive statistics for the quantitative agreement from all possible pairings of

detection methods of N1 amplitudes and latencies are presented in Fig 5 (primary outcomes)
and S4 Fig (secondary outcome). Statistically significant differences in bias between pairings
were found for N1 amplitudes (χ2(5) = 43.857, p< 0.001), but not for N1 latencies (χ2(5) =
5.000, p = 0.416). Moreover, statistically significant differences in the LoA between pairings
were found for N1 amplitudes (χ2(5) = 41.000, p< 0.001), and for N1 latencies as well (χ2(5) =
25.791, p< 0.001). Post hoc analysis revealed several statistically significant differences in bias
and LoA of N1 amplitude and latency estimations between pairings (see Fig 5 for details), but
the error was consistently smaller for pairings between the human observers and the DRIV
algorithm. Furthermore, statistically significant differences in ICC between pairings were
found for N1 amplitudes (χ2(5) = 42.846, p< 0.001) and N1 latencies (χ2(5) = 26.595,
p< 0.001). Likewise, statistically significant differences in CV between pairings were found for
N1 amplitudes (χ2(5) = 49.967, p< 0.001), and for N1 latencies as well (χ2(5) = 29.308, p<
0.001). Post hoc analysis revealed several statistically significant differences in ICC and CV of
N1 amplitude and latency estimations between pairings (see Fig 5 and S4 Fig for details), but in
general the pairings between the human observers resulted in higher ICC and smaller CV val-
ues compared to the other possible pairings, followed by pairing between a human observer
and the DRIV algorithm. Finally, pairings with the WVLT algorithm usually resulted in in
lower ICC and higher CV values.

N2 peak. Descriptive statistics for the quantitative agreement from all possible pairings of
detection methods of N2 amplitudes and latencies are presented in Fig 6 (primary outcomes)
and S4 Fig (secondary outcome). Statistically significant differences in bias between pairings
were found for N2 amplitudes (χ2(5) = 31.413, p< 0.001), and for N2 latencies (χ2(5) =
23.159, p< 0.001). Furthermore, statistically significant differences in the LoA between pair-
ings were found for N2 amplitudes (χ2(5) = 19.222, p = 0.002), and for N2 latencies as well
(χ2(5) = 14.841, p = 0.011). Post hoc analysis revealed several statistically significant differences
in bias and LoA of N2 amplitude and latency estimations between pairings (see Fig 6 for
details), but the error was generally smaller for pairings between the human observers and the
DRIV algorithm. Furthermore, statistically significant differences in ICC between pairings
were found for N2 amplitudes (χ2(5) = 27.730, p< 0.001) and N2 latencies (χ2(5) = 32.556,

Fig 4. Categorical agreement in the detection of the P2 peak (primary outcomes). The boundaries of the boxes indicate the 25th and 75th percentiles,
the line within the box marks the median, the whiskers indicate the 10th and 90th percentiles and the circles above and below represent outliers (n = 16 for
each index). Horizontal lines on top of the bars represent statistically significant post hoc differences between pairings (Student-Newman-Keuls, p < 0.05).
ppos: positive percent agreement, pneg: negative percent agreement, κ: Cohen’s kappa.

doi:10.1371/journal.pone.0134127.g004
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p< 0.001). Likewise, statistically significant differences in CV between pairings were found for
N2 amplitudes (χ2(5) = 27.921, p< 0.001), and for N2 latencies as well (χ2(5) = 18.079,
p = 0.003). Post hoc analysis revealed several statistically significant differences in ICC and CV
of N2 amplitude and latency estimations between pairings (see Fig 6 and S4 Fig for details).
Interestingly, the pairings between OBS1 and DRIV generally presented higher ICC and
smaller CV values compared to the other possible pairings, including the pairing between the
two human observers. As before, pairings with the WVLT algorithm usually resulted in in
lower ICC and higher CV values.

P2 peak. Descriptive statistics for the quantitative agreement from all possible pairings of
detection methods of P2 amplitudes and latencies are presented in Fig 7 (primary outcomes)
and S4 Fig (secondary outcome). Statistically significant differences in the systematic error
between pairings were found for P2 amplitudes (χ2(5) = 52.393, p< 0.001), and for P2 latencies
(χ2(5) = 15.464, p = 0.009). Furthermore, statistically significant differences in the random
error between pairings were found for N1 amplitudes (χ2(5) = 54.821, p< 0.001), and for N1
latencies as well (χ2(5) = 42.143, p< 0.001). Post hoc analysis revealed several statistically sig-
nificant differences in systematic and random error of P2 amplitude and latency estimations
between pairings (see Fig 7 for details), but the error was generally smaller for pairings between
the human observers and the DRIV algorithm. Overall, it was clear that the pairing between
the human observers yielded overall smaller bias and LoA for the estimation of P2 amplitudes
and latencies. Furthermore, statistically significant differences in ICC between pairings were

Fig 5. Quantitative agreement in the detection of the N1 peak (primary outcomes). The boundaries of the boxes indicate the 25th and 75th percentiles,
the line within the box marks the median, the whiskers indicate the 10th and 90th percentiles and the circles above and below represent outliers (n = 16 for
each index). Horizontal lines on top of the bars represent statistically significant post hoc differences between pairings (Student-Newman-Keuls, p < 0.05).
LoA: limits of agreement, CV: coefficient of variation.

doi:10.1371/journal.pone.0134127.g005
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found for P2 amplitudes (χ2(5) = 52.048, p< 0.001) and P2 latencies (χ2(5) = 48.115,
p< 0.001). Likewise, statistically significant differences in CV between pairings were found for
P2 amplitudes (χ2(5) = 60.429, p< 0.001), and for P2 latencies as well (χ2(5) = 42.143,
p = 0.003). Post hoc analysis revealed several statistically significant differences in ICC and CV
of P2 amplitude and latency estimations between pairings (see Fig 7 and S4 Fig for details). As
for the N1 peak, the pairings between the human observers resulted in higher ICC and smaller
CV values compared to the other possible pairings, followed by pairing between a human
observer and the DRIV algorithm. Finally, pairings with the WVLT algorithm usually resulted
in lower ICC and higher CV values.

Effects of stimulation intensity on agreement
Fig 8 shows the effect of stimulation intensity on the average ERP for each subject. In this
regard, the best- and worst-performing pairings in terms of agreement were further selected to
investigate the effects of stimulation intensity on categorical and quantitative agreement. From
the previous analysis, these two pairing were OBS1-OB2 and DRIV-WVLT, respectively.

Effects of stimulation intensity on categorical agreement. There were no significant dif-
ferences on categorical agreement (quantified as Cohen’s κ) due to stimulation intensity
between OBS1 and OBS2 (N1: χ2(5) = 10.084, p = 0.073; N2: χ2(5) = 3.171, p = 0.674; P2: χ2(5)
= 4.834, p = 0.436). Furthermore, there were also no significant differences on categorical

Fig 6. Quantitative agreement in the detection of the N2 peak (primary outcomes). The boundaries of the boxes indicate the 25th and 75th percentiles,
the line within the box marks the median, the whiskers indicate the 10th and 90th percentiles and the circles above and below represent outliers (n = 16 for
each index). Horizontal lines on top of the bars represent statistically significant post hoc differences between pairings (Student-Newman-Keuls, p < 0.05).
LoA: limits of agreement, CV: coefficient of variation.

doi:10.1371/journal.pone.0134127.g006
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agreement due to stimulation intensity between DRIV and WVLT either (N1, N2, P2: χ2(5) =
0, p = 1).

Effects of stimulation intensity on quantitative agreement. With regards to peak ampli-
tudes, there were no significant differences on quantitative agreement (quantified as CV) due
to stimulation intensity between OBS1 and OBS2 (N1: χ2(5) = 2.071, p = 0.839; N2: χ2(5) =
2.619, p = 0.758; P2: χ2(5) = 4.679, p = 0.456). Furthermore, there were no significant differ-
ences on quantitative agreement due to stimulation intensity between DRIV and WVLT either
for the N2 and P2 peaks (N2: χ2(5) = 3.214, p = 0.667; P2: χ2(5) = 11.286, p = 0.046 but no sig-
nificant post hoc comparisons). However, significant differences on quantitative agreement
due to stimulation intensity between DRIV and WVLT were found for the N1 peak (χ2(5) =
16.736, p = 0.005). Post hoc analysis revealed that the CV was significantly lower (median CV:
14.7%) when the highest stimulation intensity (2.00×RTh) was used, compared to all other
stimulation intensities, with median CVs ranging from 21.7% to 32.5% (p< 0.05).

In relation to peak latencies, there were no significant differences on quantitative agreement
due to stimulation intensity between OBS1 and OBS2 (N1: χ2(5) = 4.000, p = 0.549; N2: χ2(5) =
2.714, p = 0.744; P2: χ2(5) = 7.612, p = 0.179). Furthermore, there were no significant differ-
ences on quantitative agreement due to stimulation intensity between DRIV and WVLT either
for the N1 and N2 peaks (N1: χ2(5) = 7.110, p = 0.213; N2: χ2(5) = 9.357, p = 0.096). However,
significant differences on quantitative agreement due to stimulation intensity between DRIV
andWVLT were found for the P2 peak (χ2(5) = 20.607, p< 0.001). Post hoc analysis revealed

Fig 7. Quantitative agreement in the detection of the P2 peak (primary outcomes). The boundaries of the boxes indicate the 25th and 75th percentiles,
the line within the box marks the median, the whiskers indicate the 10th and 90th percentiles and the circles above and below represent outliers (n = 16 for
each index). Horizontal lines on top of the bars represent statistically significant post hoc differences between pairings (Student-Newman-Keuls, p < 0.05).
LoA: limits of agreement, CV: coefficient of variation.

doi:10.1371/journal.pone.0134127.g007
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that the CV was significantly higher (median CV: 9.1%) when the lowest stimulation intensity
(0.50×RTh) was used, compared to all other stimulation intensities, with median CVs ranging
from 6.6% to 7.4% (p< 0.05).

Discussion
The aim of this study was to determine the categorical and quantitative agreement between
manual and automated methods for single-trial detection and estimation of ERP features. To
that end, sixteen healthy volunteers participated in a single experimental session, in which
ERPs were elicited using electrical stimulation. ERPs were characterized by one or more peaks,
named according to their latency: N1, N2 and P2. The presence/absence of an ERP peak

Fig 8. Effects of stimulation intensity on event-related potential (ERP) recordings. Each panel shows the average ERP of all available trials from each
subject (color-coded) for a single stimulation intensity. The overlapping thick black line represents the grand average of all subjects (n = 16). RTh: nociceptive
withdrawal reflex threshold.

doi:10.1371/journal.pone.0134127.g008
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(categorical outcome) and its amplitude and latency (quantitative outcome) in each single-trial
recording were evaluated independently by two human observers and two automated algo-
rithms. The results of this study demonstrated that the human observers generally presented
the highest categorical and quantitative agreement, and that there were significantly large dif-
ferences between detection and estimation of quantitative features among methods.

Categorical agreement between manual and automated methods
To begin with, it is important to acknowledge that ERP responses are stochastic in nature, so
there is no guarantee that the highest stimulation intensity will always evoke a response, or that
the lowest stimulation intensity will never evoke a response, or that the intermediate stimula-
tion intensity will evoke a response in 50% of the trials. Indeed, sometimes the lowest stimula-
tion intensity will evoke a response and the highest intensity will not, and this will also change
from subject to subject. Thus, the ‘true’ number of peaks in this experimental setting is
unknown. That number could only be known for example in experiments involving simulated
ERPs or in cases when there is a true gold standard to compare against, because in that case it
could be precisely determined how many signals were include with and without true responses
(and further, sensitivity and specificity values could be derived). In this study, four different
assessment methods are presented where each of them reports a different number of peaks
detected per subject, and the only evaluation that can be performed is related to how much
these methods agree. Even if two or more given methods agree to a very high level on the num-
ber of existing peaks, it still cannot be stated with certainty that this number is close to the
‘true’ number of peaks, since these methods could very well be making the same mistakes dur-
ing detection/estimation (i.e. the methods would agree on false positives or false negatives).

As expected, results showed that the median overall percent agreement ranged from very
good to excellent in all cases (the median po is higher than 80% for all possible pairings of
methods), particularly in the case of the P2 peak (where the median po is higher than 90%),
since the binary choice (presence/absence) was easier to make when there was only one peak
involved. When there was only one negative peak, there might have been a disagreement on
whether it was N1 or N2, thus reducing the value of po. In this regard, it has to be noted that
the sample distribution for po presented a large variation from subject to subject, and that in
some cases it could go below 20% for some subjects. Furthermore, there is an inherent problem
with po as an agreement statistic: if the number of trials in which a peak is present is large rela-
tive to the number of trials in which a peak is absent. This situation is actually not uncommon
in ERP studies, particularly those performed using stimulation intensities at or near detection
threshold levels [32–34]. In these situations, the trials with a peak present will dominate the
value of po, giving a false impression of good performance [35]. In the extreme case, in which a
method considers that a peak is present in all trials (as for example WVLT does when assessing
P2), then po will be as high as the percentage of trials with a peak present as assessed by the sec-
ond method, even though the two methods would disagree in all cases in which a peak was
absent. This is clearly reflected in ppos and pneg, which quantify the relative agreement when a
peak is present and absent, respectively. It can readily be seen that whereas po was very similar
to ppos, (i.e., when a peak is present), there were large differences in the assessment of the
absence of a peak, as reflected by the low pneg values (especially in the case of P2, with median
values equal or very close to zero for pairings involving the WVLT algorithm).

Furthermore, neither of these indexes consider the agreement by chance, i.e., the level of
agreement that would be expected if the assessments by the two methods were unrelated. For
example, if two methods were deciding on the presence/absence of a peak at random, the
expected agreement (pe) would still be 50% or even higher, if the methods tended to rate more
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towards either presence or absence of a peak. Indeed, large pe values could be observed for all
peaks and all possible pairings (and as before, particularly in P2). As a result, the κ statistic dis-
played values that are very low and even close to zero, particularly in the cases involvingWVLT
in the pairing, signaling that most of the agreement in those cases was just due to chance. More-
over, the median level of agreement for the pairings involving the two human observers was sig-
nificantly higher than the level of almost all other possible pairings, with a median κ ranging
from 0.4 to 0.7, indicating moderate to substantial agreement [35]. Additionally, the median κ
between the DRIV algorithm and the human observers could be categorized as slight to fair,
whereas all pairings involving the WVLT algorithm presented poor agreement [35].

Quantitative agreement between manual and automated methods
In general, results showed that quantitative agreement (reflected as smaller values of bias and
LoA) was also highest for pairings between the human observers, followed by pairings between
the human observers and algorithms, and the lowest values for pairings between the two algo-
rithms. In some cases, however, the agreement between the two human observers was not sig-
nificantly higher than the agreement between one human observer and the DRIV algorithm. In
absolute terms, the amplitude bias found in pairings between the human observers and the
DRIV algorithm is practically negligible, with a median value below 1 μV in all cases. Pairings
including the WVLT algorithm showed slightly larger amplitude bias with a median value
around 5 μV, but with bias peaks about twice that number. In time, the median latency bias
was usually lower than 10 ms, although the maximum values reached up to 60 ms in some
cases (when there was at least one of the algorithms in the pairing), which likely indicates that
the two methods in the pairing did not agree on whether the detected wave was N1 or N2. This
also happened in the quantification of P2, probably because there were two maxima in the
selected interval. Interestingly, this mismatch did not occur in the pairing between the two
human observers, whose largest latency bias was less than 20 ms (significantly smaller than all
other methods) but a final average latency difference close to zero (i.e. unbiased).

With regards to the LoA, the median and maximum values for amplitude were in most
cases below 5 and 10 μV, respectively, for parings between the human observers and the DRIV
algorithm, whereas for pairing involving the WVLT algorithm, the median and maximum LoA
rose to 10 and 40 μV, respectively. In relation to latency, the median LoA were around 20 to 40
ms for N1 and N2 peaks (with maximum values around 60 to 80 ms) and 40 to 60 ms for the
P2 peak (with maximum values around 80 to 120 ms). The other outcomes (ICC and CV) also
displayed the same trend described before. In the majority of cases, median CV and ICC values
for peak amplitudes and latencies were also highest for pairings between the human observers,
although in some cases the difference was not significant when compared to a pairing between
a human observer and the DRIV algorithm. In relation to the absolute differences, there are no
reference limits or scales to define whether the absolute agreement is poor, fair, good or excel-
lent (as Cohen’s κ has, for example); instead, it is usually left to the researcher’s own criteria to
determine whether differences from a particular size are acceptable or not.

Nevertheless, a few studies have actually attempted to compare manual and automated
assessment of single-trial ERP measurements before. Mayhew et al. compared the estimation of
N2 and P2 peak amplitudes and latencies elicited by painful laser stimulation, performed by an
automated algorithm based on multiple linear regression and a human observer, and reported
very good to excellent correlation between the two approaches (R2 ranging from 0.56 to 0.81)
[10]. However, correlation as such is a measure of association, not agreement [28,36]. In time,
Hatem et al. performed a similar analysis, but the evaluation was carried out using ICC [12].
They reported ICC values between 0.99 and 1 for two human observers, whereas the ICC
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values between manual and automated algorithm show a large disparity, covering the whole
range of variation for ICC (0 to 1), although amplitudes in general displayed larger ICC values
than latencies (as also noted in this study). Again, it has also been noted before that ICC is not
a proper method for evaluating agreement [37], and that the evaluation of the performance of
a method based on a comparison of the resulting ICC values with fixed, predefined thresholds
may lead to inconsistent or erroneous results [27,38].

Effects of stimulation intensity on agreement
The relationship between stimulation intensity and ERP features has been thoroughly explored
in the past [39–42]. In general, ERP amplitude and latency correlate well with stimulation inten-
sity, particularly at noxious levels [19,20]. However, the effects of stimulation intensity on agree-
ment have not been explored before. The results from this study showed that the differences in
agreement were in most cases not related to stimulation intensity. For categorical agreement in
particular, this means that the number of peaks rated as present (or absent) at each stimulation
intensity did not differ significantly between the human observers or between the algorithms. In
the case of quantitative agreement, no significant differences due to stimulation intensity were
found between the human observers for any of the peaks. However, some differences in quanti-
tative agreement due to stimulation intensity were found between the two algorithms: N1 peak
amplitudes presented less variation at the highest stimulation intensity, whereas P2 peak laten-
cies showed more variation at the lowest stimulation intensity. While this behavior is consistent
with earlier findings about the stability of the N1 and P2 peaks at those stimulation intensities, it
also has to be noted that the absolute differences found are quantitatively small (7–18% in the
case of N1 peak amplitudes and 2–3% for P2 peak latencies).

Implications, advantages and limitation of the assessment
methodologies
It is relevant to acknowledge that the fact that two particular methods have better agreement
than any other two methods does not necessarily mean that the former perform a given task bet-
ter than the latter. Indeed, other parameters, particularly validity and reliability, should also be
taken into account in order to make such statement. The importance of agreement studies
resides in the reference values they provide in relation to the maximum differences that can be
expected if one method is applied instead of the other, which are not particularly obvious from
the estimates usually reported in ERP studies (such as those presented in Table 1). This is espe-
cially relevant when there is a ‘gold standard’methodology for assessment already established in
the field. In particular, the opinion of an expert human observer can be considered as a first
‘gold standard’ [13,43]. In this regard, the categorical agreement for peak detection between two
human observers (assessed with Cohen’s κ) ranges frommoderate to substantial [35], and the
present results are in line with the level of agreement between human observers found in similar
studies from other areas [44]. It has to be noted, however, that the two human observers in this
study work at the same research laboratory and were trained in a similar way, which is probably
the most common situation when assessing agreement. In this regard, it can be hypothesized
that experience plays an important role in agreement between human observers, and more expe-
rience would result in higher levels of agreement. Future studies could then try to determine if
the level of agreement changes when observers with different experience level or trained in dif-
ferent laboratories are involved. Lastly, whereas the manual approach displays better agreement
in the cases in which some of the trials do not present ERP responses, the obvious set-back com-
pared to automated methods is that they are much more time- and resource-consuming, and it
probably cannot be used when the number of trials is relatively large.
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The level of agreement between the human observers was significantly higher than the one
found between pairing involving automated algorithms, even in the case in which the algo-
rithm (DRIV) purposely imitates the human decision-making process [21]. Naturally, not all
algorithms follow this premise; in particular, the WVLT algorithm performs a pre-processing
of the single-trial signal using wavelet filtering to reduce background noise and instead of
directly measuring peak amplitudes and latencies from the resulting signal, the features are
estimated using a multiple linear regression approach [11]. As mentioned before, this study did
not attempt to establish which method is better, but how large can the difference between esti-
mations be if a researcher chooses to use one algorithm instead of another, whichever these
two algorithms might be. This is not at all an unlikely scenario, given the fact that many algo-
rithms with this purpose are readily available online or can be requested from different labora-
tories, and many other are continuously being developed. So the question is how different the
results would be for a particular study if one specific algorithm (or in more general terms, one
specific method) for feature detection or estimation is used instead of another.

In this study, results showed that the differences in the estimated values were considerably
large between all methods. These differences might be partially attributed to the complexity of
the estimation task that for example can be seen when the levels of noise are so high that the
random fluctuations in the signal are interpreted as peaks. However, they could also be
explained by the intrinsic differences of each approach, e.g., the WVLT algorithm is not suited
to detect cases in which one or several peaks are not present, and the EEG electrode configura-
tion used in this study might not be optimal for the detection of overlapping peaks. In particu-
lar, the N2 peak elicited by electrical stimulation in the lower limb has been shown to be
comprised by 2 subcomponents over temporal and fronto-central scalp areas [25], which
might differentiate better from N1 if measured more contra-laterally. In this regard, the agree-
ment between the humans observers and the WVLT algorithm (and any other algorithm in
general) could readily be improved by including a set of rules to acknowledge the possibility of
a peak being absent from a trial.

Conclusion
In this study, typical values for the categorical agreement between manual and automated
methods for detection/estimation of ERP features were presented, as well as reference values
for the average and maximum differences that can be expected if one method is used instead of
the others. The analysis of these values indicated that substantial care should be taken in the
selection of the approach, since this choice may lead to considerably different results, and fac-
tors like stimulation intensity and particularly the expected number of trials with/without
response can play a significant role in the size of these differences.

Supporting Information
S1 Fig. Categorical agreement in the detection of the N1 peak (secondary outcomes). The
boundaries of the boxes indicate the 25th and 75th percentiles, the line within the box marks the
median, the whiskers indicate the 10th and 90th percentiles and the circles above and below rep-
resent outliers (n = 16 for each index). Horizontal lines on top of the bars represent statistically
significant post hoc differences between pairings (Student-Newman-Keuls, p< 0.05). po: over-
all percent agreement, pe: chance percent agreement.
(TIF)

S2 Fig. Categorical agreement in the detection of the N2 peak (secondary outcomes). The
boundaries of the boxes indicate the 25th and 75th percentiles, the line within the box marks the
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median, the whiskers indicate the 10th and 90th percentiles and the circles above and below rep-
resent outliers (n = 16 for each index). Horizontal lines on top of the bars represent statistically
significant post hoc differences between pairings (Student-Newman-Keuls, p< 0.05). po: over-
all percent agreement, pe: chance percent agreement.
(TIF)

S3 Fig. Categorical agreement in the detection of the P2 peak (secondary outcomes). The
boundaries of the boxes indicate the 25th and 75th percentiles, the line within the box marks the
median, the whiskers indicate the 10th and 90th percentiles and the circles above and below rep-
resent outliers (n = 16 for each index). Horizontal lines on top of the bars represent statistically
significant post hoc differences between pairings (Student-Newman-Keuls, p< 0.05). po: over-
all percent agreement, pe: chance percent agreement.
(TIF)

S4 Fig. Quantitative agreement in the detection of the N1, N2 and P2 peaks. The boundaries
of the boxes indicate the 25th and 75th percentiles, the line within the box marks the median,
the whiskers indicate the 10th and 90th percentiles and the circles above and below represent
outliers (n = 16 for each index). Horizontal lines on top of the bars represent statistically signif-
icant post hoc differences between pairings (Student-Newman-Keuls, p< 0.05). ICC: intraclass
correlation coefficient.
(TIF)

S1 File. Data derived from detection and estimation tasks. The compressed archive contains
4 different files in MATLAB �.mat format, named after each detection and estimation method.
Within each file there are 16 structure arrays, each corresponding to a different subject. Each
structure arrays has j rows and 10 columns, where j is the number of remaining trials after pre-
processing. The columns represent respectively N1, N2 and P2 latency (in ms), N1, N2 and P2
amplitude (in μV), N1, N2 and P2 presence (where ‘1’means a peak was detected and ‘0’
means a peak was not detected), and stimulation intensity (where ‘1’ to ‘6’ correspond to
0.50×RTh to 2.00×RTh in that order).
(ZIP)
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