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Abstract—This paper presents a comprehensive modeling of a 

three-phase cage induction machine used as a self-excited 
squirrel-cage induction generator (SEIG), and discusses the 
regulation of the voltage and frequency of a self-excited SEIG 
based on the action of the static synchronous Compensator 
(STATCOM).  The STATCOM with the proposed controller 
consists of a three-phase voltage-sourced inverter and a DC 
voltage. The compensator can provide the active and reactive 
powers and regulate AC system bus voltage and the frequency, 
but also may enhance the load stability.  Moreover, a feed 
forward control method for the STATCOM is introduced and 
applied for controlling the SEIG’s terminal voltage using a two-
degree of freedom RST controller. Simulation results for the 
steady-state operating condition and transient operating 
conditions for the system subjected to a wind reference step 
change, and a step load change are presented to demonstrate the 
effectiveness of the proposed controller. 

Keywords— STATCOM, voltage control, frequency control, 
islanded generation, induction generator 

I.  INTRODUCTION 
Due to the rapid depletion of conventional fuels and the 

quick growth of environmental protection concepts, renewable 
energy sources have been extensively developed and studied in 
the whole world. Wind, bio, hydro and solar energy are in the 
forefront with fairly mature technologies adaptable to the field 
[1].  Wind energy is, for many reasons, one of the most 
promising renewable energy sources; it comprises a wind 
turbine, an electric generator, a power electronic converter and 
the corresponding control system [2]. In this sense, self-excited 
induction generators (SEIG) are good candidates for wind 
powered electricity generation especially in remote areas, 
because they do not need an external power supply to produce 
the excitation magnetic field [3]. The performance of voltage 
and frequency in isolated induction generator may vary 
according to the speed of the rotor and the load connected to 
the generator, due to a decrease in the speed of the rotating 
magnetic field [4]. The wind turbine can be designed to operate 
at a constant speed or variable speed. The frequency of the 
isolated induction generator varies with the load demand, and 
therefore its application should be to supply equipment 

insensitive to frequency variations, such as heaters, water 
pumps, lighting, charging battery, etc. But the major 
disadvantage of SEIG, is its poor voltage and frequency 
regulation under source and load perturbations, which may 
limit its use in isolated and scattered generation areas, such as  
wind and micro hydro renewable energy sources [5]. For 
applications that require constant voltage and frequency, the 
stator voltage isolated induction generator should be controlled 
to stay at a given reference value. A SEIG can be controlled by 
varying the rotor resistance of a SEIG sliding ring, but it 
requires more maintenance than a squirrel cage rotor due to 
sliding rings [6]. In a SEIG, a rotor squirrel cage is preferable 
to a wound rotor because the rotor squirrel cage has higher 
thermal-order potential and require less maintenance [7]. In 
addition, SEIGs are more robust and cheaper than other 
electrical machines for the same power rating. They require 
less maintenance once built with a squirrel-cage. However, at 
start-up, the induction generator requires a reasonable amount 
of reactive power which must be fed externally to establish the 
magnetic field necessary to convert the mechanical power from 
its shaft into electrical power [3]. This reactive power can be 
supplied by a bank of capacitors connected across its terminals 
that must remain permanently connected to the stator windings 
responsible for the output voltage control [8]. Fig.1 shows the 
stator side of the generator, a capacitor bank used for the 
excitation, the STATCOM, and the consumer load.  

 
Fig. 1. Diagram of the islanded microgrid based on SEIG with STATCOM 

This paper introduces a voltage and frequency control of a 
wind-power islanded microgrid by using a STATCOM. A 
mathematical model of the proposed system is developed. The 
STATCOM is controlled by using a feed-forward and two 
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feedback control loops. The RST controller is proposed in 
order to obtain a good performance. Therefore, a control 
scheme is required to regulate the output voltage to meet the 
constant voltage demand. The simulation results using 
MATLAB® environment are carried out and thoroughly 
discussed and included in this paper 

II. MATHEMATICAL MODEL OF A SEIG  
The modeling of the three-phase squirrel cage induction 

generator is performed through the Clarke and Park 
transformations in the synchronously rotating reference frames 
and the relevant volt-ampere equations are written as [9] 
(variable are defined in Appendix):  ሾܸሿ ൌ ሾܴሿሾܫሿ ൅ ሾܮሿ ௗௗ௧ ሾܫሿ ൅ ߱௥ሾܩሿሾܫሿ   (1) 

from which, the current derivative can be expressed as: ௗௗ௧ ሾܫሿ ൌ ሾܮሿିଵሼሾܸሿ െ ሾܴሿሾܫሿ െ ߱௥ሾܩሿሾܫሿሽ   (2) ௗௗ௧ ሾܫሿ ൌ െሾܮሿିଵሼሾܴሿሾܫሿ ൅ ߱௥ሾܩሿሾܫሿ െ ሾܸሿሽ   (3) 

A. Magnetizing inductance  
The SEIG operates in the saturation region and its 

magnetizing characteristics are non-linear in nature. The 
magnetizing current should be calculated at every step of 
integration in terms of the stator and rotor d-q currents as:  ܫ௠ ൌ ටሺܫௗ௦ ൅ ௗ௥ሻଶܫ ൅ ൫ܫ௤௦ ൅ ௤௥൯ଶܫ

    (4) 

 

Fig. 2. Comparative study between linear and saturation state 

Fig. 2 shows the evolution of magnetizing inductance ܮ௠and dynamic inductance L as a function of the magnetizing 
current ܫெ module of SEIG. When the operating point is 
reached, the machine delivers a voltage to the stator, which 
effective value is constant. The simulation of the phenomenon 
of self-excitation of the asynchronous machine with capacitors 
cannot be achieved with this model since it is the saturation 
itself that sets the steady state operating point.  

The magnetizing inductance is calculated from the 
magnetizing characteristics and it is obtained by synchronous 
speed test for the machine. For the test machine rated at 3.5 
kW, it is defined as:  ܮ௠ ൌ ௠ሻܫሺ0.15݊ܽݐ0.63ܽ ⁄௠ܫ   (5) 

B.  Electromagnetic torque  
The developed electromagnetic torque ௘ܶ  of the SEIG is: 

௘ܶ ൌ ሺ3ܲ 4⁄ ሻܮ௠൫ܫ௤௦ܫௗ௥ െ  ௤௥൯   (6)ܫௗ௦ܫ

The Torque balance ௦ܶ௛௔௙௧ equation is: 

௦ܶ௛௔௙௧ ൌ ௘ܶ ൅ ሺ2ܬ ܲ⁄ ሻ ௗௗ௧ ߱௥    (7) 

With ܲ: number of pole pairs; and  ܬ : Inertia of the 
induction machine. 

C. Excitation system model  
Equations (7) and (8) represent the self-excitation capacitor 

currents and voltages in d-q axes representation. ൜ܫௗ௦ ൌ ௖ௗܫ ൅ ௤௦ܫ௟ௗܫ ൌ ௖௤ܫ ൅ ௟௤ܫ     (8) 

ቐ ௗௗ௧ ௟ܸௗ ൌ ଵ஼೐ೣ ௗ௦ܫ െ ଵ஼೐ೣ ௟ௗௗௗ௧ܫ ௟ܸ௤ ൌ ଵ஼೐ೣ ௤௦ܫ െ ଵ஼೐ೣ ௟௤ܫ    (9) 

With ܫ௖ௗ, ௖௤ܫ  representing the capacitor currents, ܫ௟ௗ, ௟௤ܫ  
representing the grid inductor currents, and ܥ௘௫ representing 
the capacitor excitation. 

D. R-L load model 
Equations (10) and (11) represent the d-q axes load voltages 

and currents. ቐ ௟ܸௗ ൌ ௟ௗܫܴ ൅ ܮ ௗௗ௧ ௟ௗ௟ܸ௤ܫ ൌ ௟௤ܫܴ ൅ ܮ ௗௗ௧ ௟௤ܫ         (10) 

ቐ ௗௗ௧ ௟ௗܫ ൌ ଵ௅ ௟ܸௗ െ ோ௅ ௟ௗௗௗ௧ܫ ௟௤ܫ ൌ ଵ௅ ௟ܸ௤ െ ோ௅ ௟௤ܫ         (11) 

III. SYSTEM CONFIGURATION AND CONTROL SCHEME 
The STATic COMpensator (STATCOM) is designed to 

regulate the line voltage at the Point of Common Coupling 
(PCC), by injecting or absorbing a certain amount of reactive 
power. It can balance loads or compensate load reactive power 
by producing the desired amplitude and phase of inverter 
output voltage [10]; it may also be used for additional tasks 
such as stabilization of power system. The STATCOM is 
playing increasingly important roles in reactive power 
provision, which is why it receives considerable attention due 
to the urgent requirement for tackling the voltage fluctuation 
problems. The topology of the SEIG - STATCOM presented in 
this paper is depicted in Fig.3. The compensator consists of a 
voltage source converter, a DC voltage, an inductance, ܮ௦௛ 
(representing the leakage inductance of the transformer and 
line) and a resistor, ܴ௦௛ (representing the inverter and 
transformer conduction losses) on the AC side. STATCOM is 
connected in parallel with a fixed capacitor and load. In order 
to obtain a rated voltage at no load, the suitable capacitor bank 
is needed.  Synchronous frame (dq) control is used so that the 
reference currents that control the reactive power and 
consequently the generated voltage become simple, effective 
and easy to tune. Feed forward loops of  ݅݀כݍ݅ ,כ and Vq are 

0 2 4 6
0

0.1

0.2

0.3

0.4

Im  (A)

L 
(H

),
 L

m
 (

H
)

-(c)- Inductance magnetisante L=f(Im)

 

 

L

Lm

The magnetizing inductance 



used to minimize the coupling effect between id and iq. The 
voltage at the DC bus is relatively smooth due to the battery 
[11, 12]. 

A. Voltage and frequency control  
The voltage control is performed according to the following 

steps: 

• The regulation of the load voltage/frequency is 
performed by comparing the actual voltage/frequency 
to a desired reference value. 

• The error between the two voltages goes through a PI 
controller. 

• By the action of the PI controller, the reference 
current ݅ௗכ and ݅௤כ are generated and consequently 
control the active / reactive power. 
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Fig. 3. Control scheme for STATCOM - SEIG system. 

B. Control of the inner loop (current loop) 
The equivalent circuit models of the STATCOM on d-q 

reference frame for both loops of the circuit d-axis and q-axis 
are shown in Fig. 4 (a) and (b) for synthesis of the proper 
parameters for the current regulator, the AC voltage controller 
and the frequency controller. The system is based on the 
equations (12) (13) as follows: ܧௗ ൌ െ߱ܮ௦௛ܫ௤ ൅ ܴ௦௛ܫௗ ൅ ௦௛ܮ ௗூ೏ௗ௧ ൅ ௗܸ  (12) ܧ௤ ൌ ௗܫ௦௛ܮ߱ ൅ ܴ௦௛ܫ௤ ൅ ௦௛ܮ ௗ௜೜ௗ௧ ൅ ௤ܸ   (13) 

  
Fig. 4. Equivalent circuit in dq reference frame of the STATCOM 

However, an efficient and easy control system requires the 
decoupling of the two variables. The current regulator 
generates the desired STATCOM output voltages ܧௗכ  and ܧ௤כ 
based on the error current signals ሺܫௗכ െ כ௤ܫௗሻ and ሺܫ  െ ܫ௤ሻ. The 

real current reference ܫௗכ  and the reactive current reference ܫ௤כ 
come from the AC voltage controller and frequency controller, 
respectively.  

The active power ௔ܲ and reactive ܳ power are expressed by ܳ ൌ  ଷଶ ௔ܲ ,  ݀ܫ ݍܧ  ൌ  ଷଶ  (14)    ݍܫ ݍܧ 

IV. DESIGN OF THE RST CURRENT CONTROLLER 
The objective of this section is to obtain the RST current 

controller (ܫௗ  and ܫ௤ሻ. This type of controller is a structure with 
two degrees of freedom as compared to a one degree of 
freedom structure. Its main advantage is that it allows the 
designer to specify performances independently with reference 
trajectory tracking (reference variation) and with regulation. It 
is based on the pole placement theory. The RST controller is 
used with both control loops and it is implemented in 
continuous form. The block diagram of a system with its RST 
controller used in the inner loop is shown in Fig 5. 

 
Fig. 5. RST Structure. 

The proposed system is defined by the transfer-function ܣ/ܤ, i has ௥ܻ௘௙  as a reference and γ as a disturbance. ܴ, ܵ and ܶ are polynomials that constitute the controller. In our case, we 
have [3, 13]: ܣ ൌ ݏ ൅ ܴ௦௛ ⁄௦௛ܮ  and  ܤ ൌ 1 ⁄௦௛ܮ  (15) 

The closed-loop transfer-function of the controlled system is: Y୫ୣୱ ൌ B.TሺA.SାB.Rሻ ௥ܻ௘௙ ൅ B.SሺA.SାB.Rሻ γ  (16) 

By applying the Bezout equation, we have ܦ ൌ ܵܣ ൅ ܴܤ ൌ  (17)    ܨܥ

Where ܥ is the command polynomial and ܨ is the filtering 
polynomial. In order to have good adjustment accuracy, we 
choose a strictly proper regulator. So if ܣ is a polynomial of 
degree n ሺ݀݁݃ሺܣሻ  ൌ  ݊ሻ we must have: degሺܦሻ ൌ 2݊ ൅ 1;    degሺܵሻ ൌ degሺܣሻ ൅ 1; degሺܴሻ ൌ degሺܣሻ    (18) 

To find the coefficients of polynomials ܴ and ܵ, the robust 
pole placement method is adopted with ஼ܶ  as control horizon 
and ௙ܶ as filtering horizon.  

۔ۖەۖ
ܣۓ ൌ ܽଵ ݏ ൅ ܽ଴                              ܤ ൌ ܾ଴                                           ܦ ൌ ݀ଷݏଷ ൅ ݀ଶݏଶ ൅ ݀ଵݏ ൅ ݀଴ܴ ൌ ݏଵݎ ൅ ܵ                                ଴ݎ ൌ ଶݏଶݏ ൅ ݏଵݏ ൅  ଴                   (19)ݏ
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We have ஼ܲ ൌ െ1/ ஼ܶ  pole of polynomial order ܥ, and ௙ܲ ൌ െ 1 ௙ܶ⁄   double pole of the polynomial filter ܨ. The pole ஼ܲ  must improve the speed response of the system and is 
generally chosen 2–5 times greater than the pole of ௔ܲ ൌെ ܴ௦௛ ⁄௦௛ܮ  . ௙ܲ is generally chosen 3–5 times smaller than ஼ܲ . 
According to the robust pole placement strategy, the 
polynomial ܦ can be written as: ܦ ൌ ቀݏ ൅ ଵ்೎ቁ ൬ݏ ൅ ଵ்೑൰ଶ

      (20) 

ቐ ௖ܲ ൌ 5 ௔ܲ ൌ െ5 ோೞ೓௅ೞ೓ ௖ܶ ൌ ଵଷ ௙ܶ                        (21) 

To improve the speed response of the system, we adopt the 
following conditions: ܦ ൌ ሺݏ െ 5 ௔ܲሻሺݏ െ 15 ௔ܲሻଶ     (22) 

By identifying equations (14) and (21), we deduce the 
coefficients of the polynomial D, which are linked to the 
coefficients of R and S by the Sylvester matrix . Thus, we can 
determine the parameters of the RST controller as follows: 

ەۖۖ
۔ۖ
ଷ݀ۓۖ ൌ ܽଵݏଶ ՜ ଶݏ ൌ ௗయ௔భ                      ݀ଶ ൌ ܽଵݏଵ ՜ ଵݏ ൌ ௗమ௔భ                       ݀ଵ ൌ ܽ଴ݏଵ ൅ ܾ଴ݎଵ ՜ ଵݎ ൌ ௗభି௔బ௦భ௕బ݀ଵ ൌ ܾ଴ݎ଴ ՜ ଴ݎ ൌ ௗబ௕బ                       ܶ ൌ                                                  ଴ݎ

   (23) 

V. CASE STUDIES  
To examine the effectiveness of the proposed STATCOM 

controller, the system in Fig. 3 was simulated using 
Matlab®/Simpower and the results are presented. The system 
parameters used in the simulation are listed in Table I. The 
residual magnetism in the machine is taken into account in the 
simulation process without which it is not possible for the 
generator to self-excite. Initial voltage in the capacitor is also 
considered. The results obtained for different considerations 
are as follows. 

A. Excitation with and without saturation  

 

 

Fig. 6. Simulation of the SEIG with/without saturation 

If the magnetizing inductance is considered as constant and 
equal to its value in the unsaturated state, the magnetization 
characteristic then has no saturation bend and there is no 
intersection with the external characteristic of the capacitor so 
that the stator variables evolve into the infinite as shown in 
Fig.6.  

To take account of the saturation of the magnetic circuit of 
the machine, the magnetization curve is necessary; it is 
generally obtained by experimentation and approximated by a 
polynomial interpolation. Fig. 7 illustrates the case when the 
system is started from zero speed. The SEIG is excited with 
capacitance value C=270μF and value of rotor speed ݓ௥ ൌ314 ݏ/݀ܽݎ the generated voltage and current attain their steady 
state values of 220 ܸݏݐ݈݋ and 19 ܣ in 0.8 sec, respectively. 

 
Fig. 7. Simulation of the SEIG with  ܥ௘௫ ൌ   with saturation ܨߤ270

B. Variation of load resistance in steps 
In this case, the rotor of the induction machine is driven at 

1500 r/min while ܥ௘௫ ൌ  The load R is applied to .ܨߤ270
evaluate the performance of the proposed control strategy of 
the STATCOM. The load resistance is varied in steps. 

1) Variations of load without loop control   
The load variation range should be small compared with the 

regulated system to avoid the demagnetization of the SEIG. 

 

 
Fig. 8. Effect of load variation on the voltage and frequency 

As shown in Fig. 8 the magnitude of the voltage and 
frequency increases as the load is increased and decreases with 
the load. 

2) Load variation with voltage & frequency control 
To test this case, simulation results are shown in Fig. 9. It 

shows that the STATCOM has very fast dynamic responses. In 
addition, we observe that the variation of STATCOM current is 
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also proportional to load changes. For the powers, we note that 
the variation of ௦ܲ is related to the regulation of the frequency 
and the variation of ܳ௦ is for the voltage regulation. Initially, 
the system voltage is at its nominal value, ௦ܲ and ܳ௦ for (VSI) 
must be zero, as there is no need for regulation. At time t = 2s 
we can see that if the frequency decreases the VSI must 
provide ௦ܲ and if it increases then the VSI must absorb ௦ܲ. 
Similarly, if the voltage amplitude decreases the VSI should 
provide ܳ௦ and vice versa, which keeps the reactive power 
constant. 

 

 

 

 

 
Fig. 9. Performance characteristics of the SEIG-STATCOM with load 
variation. 

C. Voltage control under wind speed variation  
In this case, the rotor of the induction machine is driven by 

speed steps while ܥ௘௫ ൌ  .ܨߤ270

1) Variation of speed without control  
At t = 2 s, the rotor speed rises  from 315rad/s at  to 320 

rad/s and down to 310rad/s at t=5s, while the consumer load 
remains at R = 1KΩ, as shown in Fig. 10. The magnitude of 

the voltage and frequency increases when the speed is 
increased and decreases when the speed is decreased. 

 

 
Fig. 10. Effect of wind speed variation on the voltage and frequency 

2) Variation of speed with voltage and frequency control 
As in the previous case, the voltage and frequency are 

controlled efficiently (Fig. 11). After transient periods, both 
the voltage magnitude and frequency return to their rated 
values as a result of the variation of the reactive power or 
active power dealt by the compensator. The STATCOM 
increases the output currents after the wind speed changes but 
the load voltage and frequency remain constant. 

 

 

 

 
 The STATCOM absorbs the necessary amount of power to 
maintain the voltage constant. As shown in Fig. 11, we 
conclude that results show that the proposed control system is 
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effective for the regulation of the voltage and frequency when 
the wind speed varies. 

 

 
Fig. 11. Performance characteristics of SEIG-STATCOM with wind speed 
variations. 

VI. CONCLUSION 
This paper has presented the control of the induction 

generator using a STATCOM for improving the performance 
without mechanical turbine control. The control scheme of 
STATCOM with independent control of its active and reactive 
powers is proposed. This control can be successfully employed 
for frequency and voltage magnitude regulation under varying 
wind speed and load conditions. The results demonstrate that 
RST controller presents the best performance and the feed 
forward control enhances the transient response and decoupling 
of direct and quadratic currents. This work presents some 
encouraging results that have been determined for the SEIG 
variable load/ wind speed. The proposed scheme has been 
verified by simulations results and shows good performance. 

APPENDIX 

TABLE I.  PARAMETERS OF SEIG  

Symbol PARAMETER Unit ܲ݉  ܸ݊  ܮ  ݂  ܲ  ݉ܮ  ݎ݈ܮ  ݏ݈ܮ  ݎܴ  ݏܴ  ݊ܫ௠  

Rated power of the SEIG 

Rated voltage of  the SEIG 

Rated current of the SEIG 

Stator resistance 

Rotor resistance  

Stator Leakage  inductance  

Rotor Leakage  inductance 

Magnetization inductance 

Pole pair number 
Frequency 

Magnetizing Inductance 

3.5 kW 

220/380 V 

14/8 A 

0.76 Ω 

0.74 Ω 

0.003 H 

0.003 H 

0.074 H 
2 

50 Hz ܮ௠ ൌ 0.63 tanିଵሺ0.15ܫ௠ሻ ⁄௠ܫ  

 

ሾܸሿ,ሾܫሿ,ሾܴሿ,  ሾܮሿand ሾܩሿ  are defined below: 

ܮ ൌ ൦ ௦ܮ 00 ௦ܮ ௠ܮ 00 ௠ܮ௠ܮ 00 ௠ܮ ௥ܮ 00 ௥ܮ
൪; ܩ ൌ ቎ 0     00     0 ݉ܮെ݉ܮ 00    00    0 0 ݎܮെݎܮ  0 0 ቏; 

ሾܴሿ ൌ ൦ܴ௦ 0 0 00 ܴ௦ 0 000 00 ܴ௥ 00 ܴ௥
൪; ሾܸሿ ൌ ൣ ௗܸ௦ ௤ܸ௦ ௗܸ௥ ௤ܸ௥൧்

; 

ሾܫሿ ൌ ௦ܮ  ;௤௥൧்ܫ ௗ௥ܫ ௤௦ܫ ௗ௦ܫൣ ൌ ௟௦ܮ ൅ ; ௠ܮ ௥ܮ  ൌ ௟௥ܮ ൅  ௠ܮ
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