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Abstract— In this paper, a control strategy for the parallel 

operation of three-phase inverters forming an online 
uninterruptible power system (UPS) is presented. The UPS system 
consists of a cluster of paralleled inverters with LC filters directly 
connected to an AC critical bus and an AC/DC forming a DC bus. 
The proposed control scheme comprises two layers: (i) a local 
layer that contains a “reactive power-to-phase droop” in order to 
synchronize the phase angle of each inverter and a virtual 
resistance loop that guarantees equal power sharing among 
inverters; and (ii) a central controller that guarantees 
synchronization with an external real/fictitious utility, and critical 
bus voltage amplitude restoration. Improved transient and 
steady-state frequency, active, reactive and harmonic power 
sharing, and global phase-locked loop resynchronization 
capability are achieved. Detailed system topology and control 
architecture are presented in this paper. Further, a mathematical 
model was derived in order to analyze critical parameters effects 
on system stability. The proposed control approach has been 
validated by means of experimental results obtained for several 
case-study scenarios. 
 

Index Terms— UPS system; parallel inverters; voltage 
restoration; droop control; virtual impedance 
 

I. INTRODUCTION 
ITH the active technological development of modern 
communication systems, advanced medical equipment, 

advanced living facilities and emergency systems that requires 
high quality energy are more and more widespread used in 
everyday life, which require more reliable, efficient and 
uninterrupted electricity supply [1]. A large number of such 
kinds of loads bring an imposing challenge to the existing 
electricity supply system. Increasing concerns about the 
reliability and power quality of the utility lead to a growing 
demand for emergency electricity supply system [2]. 
Consequently, uninterruptable power systems (UPS) are 
receiving more and more attention from both engineers and 
researchers. 
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Fig. 1. Proposed Online UPS Structure. 

According to the International Electrotechnical Commission 
Standard IEC62040-3, a UPS system can be divided into three 
categories, namely offline UPS [3], [4], line interactive UPS 
[5]-[8] and online UPS [9], [10] according to the energy flow 
direction under normal utility condition. Due to its outstanding 
capability of suppressing the utility distortion and 
interferences, online UPS systems are rapidly proliferating for 
both high power and voltage application scenarios [11]-[20]. 

Normally, an online UPS system is composed of an AC/DC 
(controlled rectifier), an inverter (DC/AC), a battery pack, a 
static bypass switch and isolating transformers as shown in Fig. 
1. The AC/DC power stage takes the responsibility of 
regulating DC bus and acts as battery-pack charger at the same 
time under normal condition (normal operation). Otherwise, 
the online UPS system switches to backup mode and battery 
pack will regulate DC bus voltage instead of AC/DC (backup 
operation). On the other hand, the static bypass switch connects 
the load to the AC input directly in case of power conditioner 
failure or overload [9] (emergency mode). 

In order to achieve high reliability and flexibility, a cluster of 
parallel DC/AC modules are employed to work together as the 
inverter stage in the online UPS system. As a result, a number 
of control schemes for the parallel operation of inverters are 
proposed in [21]-[35]. Until now, multiple control solutions can 
be found in the literatures, namely centralized control 
[21]-[23], master-slave control [24]-[27], averaged load sharing 
[28]-[31], wired distributed control [32], [33], and circular 
chain control [34], [35]. Nevertheless, by using the 
aforementioned techniques, critical intercommunication 
systems are necessary, thus decreasing the parallel operation 
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reliability and increasing system complexity. Consequently, a 
number of communication-less droop control methods 
[36]-[40] were proposed in order to avoid critical 
intercommunication. Hence, only local information of each 
DC/AC module, namely active and reactive powers, is used to 
regulate DC/AC output voltage amplitude and frequency, 
which contributes to power sharing among modules. However, 
their output voltage becomes load dependent, and as a result, 
secondary controllers are designated to compensate voltage 
deviations and enhance the parallel operation performance [41], 
[42]. Information, such as references and local data of each 
module, can be exchanged through the communications 
network since mature digital signal processer (DSP) 
technologies have contributed to a smaller communication 
delay for instance with the controller area network (CAN) bus 
[43]. 

On the other hand, output filter structure of DC/AC also has 
effects on system stability performance. Usually, LCL filter is 
employed in grid-connected current controlled inverters [44], 
[45]. In this case, since UPS inverters are voltage sources with 
LC filters, an additional L can be used in order to reduce 
circulating current among modules [52]. However, since LCL 
filter is a third-order system, inherent resonance may occur for 
certain control parameters, sampling frequency or other 
undesired disturbances [46]-[48].  Furthermore, adding an 
output inductor increases the weight, cost and volume of the 
UPS systems, and, when supplying nonlinear loads, the voltage 
Total Harmonic Distortion (THD) will increase considerably 
and complex control techniques should be implemented to 
reduce it [53]. Therefore, LC-type filter is preferred due to its 
simplicity and reliability compared to LCL filter. 
In this paper, a parallel control approach for online UPS 
systems is proposed. DC/AC module is directly connected to 
AC critical bus with LC-type filter, as shown in Fig. 1. Here, 
only inductor current and capacitor voltage are measured, thus 
resulting in a cost-effective solution if one current sensor is 
removed. By calculating reactive power, phase angle is 
regulated (here named “reactive power–to–phase droop” or Q–
ϕ droop), which aims at achieving reactive power sharing. 
Consequently, in contrast of using conventional frequency 
droop methods, system frequency can be locked at 50Hz all the 
time for different load conditions, which implies a much 
simpler bypass connection process. At the same time, a virtual 
impedance loop [39] is inserted into the control loop in order to 
achieve active power sharing performance by considering the 
inductor current. Moreover, a central controller is employed in 
order to compensate voltage sags and phase drift due to reactive 
power-to-phase droop or Q–ϕ droop and the virtual impedance 
loop. Through communication network (CAN bus), a central 
controller is used to generate voltage references that needs to be 
broadcasted to each DC/AC module. After acquiring system 
references information, local controller of each module uses 
them to control its own voltage. With central and local control, 
output voltage amplitude and phase are kept in line with the 
utility voltage. 

 

 
Fig. 2. Control diagram for AC/DC. 

This paper is organized as follows. Section II discusses the 
UPS topologies that are being used and presents the proposed 
control structure. In order to analyze system stability, a 
mathematical model is presented and analyzed in Section III. 
Experimental results are presented in Section IV to prove the 
proposed control approach feasibility. Finally, conclusions are 
given in Section V. 

II. PROPOSED CONTROL SCHEME FOR ONLINE UPS SYSTEM 
Compared with offline and line-interactive UPS, online UPS, 

also named inverter preferred UPS or double conversion UPS, 
mainly aims at high power and voltage application due to the 
full controllability of its output voltage and decoupling 
capability of the utility and the load under power outage [9], 
[10]. For those aforementioned reasons, it is becoming the most 
commercialized UPS system in industrial applications. Based 
on typical online UPS system, a cluster of improved online UPS 
systems has been proposed, which are more robust at regulating 
active power to achieve unity power factor [11]-[19]. 
Additional DC/DC converters [11]-[15], high frequency 
galvanic isolation [16]-[19] and modular structure are three 
main issues that are chosen to achieve a cost-effective, 
volume-effective, and more reliable online UPS system [20]. 

The modular online UPS system used in this paper, shown in 
Fig. 1, uses a conventional three-phase controlled AC/DC, and 
the control diagram is shown in Fig. 2 [49]. Furthermore, the 
phase information measured by the AC/DC is also employed as 
the phase reference for the DC/AC modules. 

A. Inner Control Loops for DC/AC Modules 
Voltage and current control loop in stationary-reference 

frame are considered in this paper (see Fig. 3), by using 
proportional resonant (PR) controllers with harmonic 
compensation capability [50], [51] expressed as follows: 

 2 2 2 2
5,7

( )
( )
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k s k sG s k
s s hω ω=

= + +
+ +∑   (1) 

 2 2 2 2
5,7

( )
( )

rc hrc
c pc

ho o

k s k sG s k
s s hω ω=

= + +
+ +∑   (2) 

being kpv the voltage proportional term, krv the fundamental 
frequency voltage resonant term, ωo the fundamental  
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Fig. 3. DC/AC module inner loop control diagram in αβ frame. 

Fig. 4. Simplified parallel DC/ACs system diagram. 

frequency, khrv the hth harmonic voltage compensation term, h 
the harmonic order, kpc the current proportional term, krc the 
fundamental frequency current resonant term, and khrc the hth 
harmonic current compensation term. Hereby, only 5th and 7th 
harmonics have been taken into consideration.  

B. Current-Sharing Loops for DC/AC Modules 
The simplified equivalent circuit of the parallel DC/AC 

modules is presented in Fig. 4. As a result, if the output 
impedance of the inverters is enforced to be resistive (Rvir) the 
active power and reactive power that are injected to the AC 
critical bus can be expressed as follows [38] 

2
_ _

_cos( )nk bus k bus k
nk nk bus k

vir vir

V V V
P

R R
δ δ= − − (3) 

_
_sin( )nk bus k

nk nk bus k
vir

V V
Q

R
δ δ= − − (4) 

being Pnk and Qnk the active and reactive power injected by the 
module n at k-phase, Vnk the voltage amplitude of the module n 
at k-phase, δnk the angle of the module n at k-phase, Vbus_k the 
voltage amplitude, and δbus_k the phase angle of the critical bus 
at k-phase.  

By considering that the well-known small power angle 
(δnk-δbus_k) consideration, the approximations (cos(δnk-δbus_k)=1, 
sin(δnk-δbus_k)= δnk-δbus_k) are often used to decouple 
respectively active and reactive power as follows:  

( )_
_

bus k
nk nk bus k

vir

V
P V V

R
≈ − (5) 

_
_( )nk bus k

nk nk bus k
vir

V V
Q

R
δ δ≈ − − (6) 

Consequently, the active power of each module can be 
regulated by output voltage amplitude, while reactive power 
can be controlled by regulating the phase angle. In this sense, a 
virtual impedance loop is proposed to share the active power  

Fig. 5. Virtual impedance and “reactive power to phase droop” control diagram. 

and a Q–ϕ droop is proposed to share reactive power. These 
loops are embedded into the control scheme to achieve parallel 
operation and power sharing, as shown in Fig. 5:  

( )sinnk nkref g n vir nLabcV V t R iω δ δ= + + − (7) 

n nkref p nh kQkδ δ= + (8) 

where n is the number of DC/AC module (1, 2, 3…N), k is the 
phase order (a, b, c), Vnkref  the nominal voltage reference, Rvir 
the virtual resistor, δg is the utility phase angle, δnkref the 
nominal phase reference, kph the phase regulating coefficients, 
and Qnk the reactive power of each phase of each DC/AC 
module. Note that δnkref is equal to δg in Fig. 2.  

Simulations were carried out by using the power electronics 
simulation software PLECS in order to illustrate the detailed 
process originated by the virtual impedance loop (7) and the Q–
ϕ droop controller (8). Two DC/AC modules are given a phase 
error.  

In order to analyze the active power sharing performance, 
virtual impedance loop is enabled while Q–ϕ droop control is 
disabled, ie kph is 0. At t1 module #2 is ordered to connect with 
module #1. Although virtual impedance (7) is trying to regulate 
the voltage amplitude to the same value, the active power is not 
shared precisely due to the phase difference between two 
modules. Module #1 bears more load power than module #2, 
which means that voltage amplitude of module #2 is higher 
than module #1 based on (7). As a result, the reactive power of 
module #1 keeps being reduced until it reached a random 
steady state as shown in Fig. 6(a). Thus the Q–ϕ droop control 
is enabled and the result is shown in Fig. 6(c). When module #2 
is ordered to connect with module #1 at t3, module #2 phase will 
be advanced while module #1 phase will be delayed based on 
(8), which will indirectly decrease voltage amplitude of module 
#2 and increase the voltage amplitude of module #1. Thus the 
active power of module #1 is reduced further and the active 
power of module #2 is increased further until it reaches the 
same value. At the same time, (8) regulates two modules phase 
angle to the same value. Thus with same phase angle and 
voltage amplitude, the active and reactive power is precisely 
balanced between the two modules as shown in Fig. 6(c). 

As for the reactive power balancing, a similar procedure is 
used, i.e. the virtual impedance is disabled (Rvir = 0) and the 
result is shown in Fig. 6(b). It can be observed that the reactive 
power is not precisely shared with only Q–ϕ droop  
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Fig. 6. Active and reactive power sharing transient process: (a) using only 
virtual impedance (kph=0); (b) using only Q–ϕ droop loops (Rvir=0); (c) using 
both virtual impedance and Q–ϕ droop loops. 

control. Since reactive power of module #2 is higher than 
module #1, which means that the phase angle of module #2 is 
advanced compared with module #1 according to (8), which 
will result in a higher active power and output current of 
module #2. Also, the voltage amplitude of module #2 is also 
higher than module #1 as shown in Fig. 6(b). By applying (7), 
the voltage amplitude of module #2 will be decreased further 
due to its higher output current. Consequently, both its reactive 
and active power is reduced at the same time. Finally,  

 
Fig. 7. Voltage and phase deviations. (a) Voltage deviations due to unbalance 
load. (b) Phase deviations due to “reactive power–to–phase droop” or Q–ϕ 
droop. 

the power is precisely shared between the two modules as 
shown in Fig. 6(c). 
 Here, parameters are chosen to be large in order to show the 
whole process clearly, so that there are some oscillations during 
the transient process. It can be concluded that (7) and (8) are 
required to work together in order to achieve a precise power 
sharing performance.  

In order to avoid voltage unbalances when supplying 
single-phase loads, each phase voltage references are calculated 
and modified as follows (Note that each phase reactive power is 
calculated respectively):  
 • sin( )a aref virg ph a Lat k Q iv V Rω δ −+ +=   (9) 

 • sin( )b bref virg ph b Lbt k Q iv V Rω δ −+ +=   (10) 

 • sin( )c cref virg ph c Lct k Q iv V Rω δ −+ +=   (11) 

C. UPS System Central Control 
According to the aforementioned analysis, due to virtual 

impedance action, each phase voltage of DC/AC module will 
have different deviations in case of unbalanced load condition. 
Thus, voltage amplitude must be restored as shown in Fig. 7(a). 
On the other hand, phase shift caused by the Q–ϕ droop control 
should be reduced by the central controller, as shown in Fig. 
7(b). According to the aforementioned analysis, since the utility 
phase information is employed as the phase reference, there 
may exist a phase difference between the utility voltage and 
UPS output voltage, which is an undesired condition for an 
online UPS system. Hence a central controller that deals with 
voltage amplitude and phase restoration is implemented. 
Considering that each phase voltage may experience different 
load conditions, references are generated and modified 
respectively.  

Each DC/AC sends its own RMS value of capacitor voltage 
to the central controller through the communication network. 
Central controller obtains the average of RMS values of each 
phase voltage respectively, shown in Fig. 8. For instance, 
average value of all DC/ACs phase a RMS voltage is derived,  

 ( )_
1

1 n

a avr ia
i

V V
n =

= ∑   (12) 

where Via is the phase a RMS voltage value of DC/AC #i.  
Similarly, average phase angle information is also calculated 

in the central controller, 
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Fig. 8. Overall control diagram for the online UPS system. 

 _
1

1 ( )
n

a avr ia
in

δ δ
=

= ∑   (13) 

where δia is the phase a angle of DC/AC #i. By employing the 
compensation block depicted in Fig. 8, the restoration signals 
for voltage amplitude and phase are derived as 

 ( )_ _ _ _ ( )k rec kref r k avr v recv V V G s= − ⋅   (14) 

 ( )_ _ _ _ ( )k rec kref r k avr ph recG sδ δ δ= − ⋅   (15) 

being vk_rec, k, Vkref_r, Vk_avr, Gv_rec, δk_rec, δkref_r, δk_avr and Gph_rec 
as restoration value of voltage amplitude, phase order (a, b, c), 
RMS voltage reference of phase k in central controller, average 
value of phase k RMS voltage value, voltage compensation 
block’s transfer function, phase restoration value of phase k, 
phase reference in central controller (utility phase angle), 
average value of phase k angle and phase compensation block 
transfer function respectively.  

In this scenario, the compensation blocks are implemented 
by using two typical PIs,  
 _ _ sec _ sec( )v rec pv ivG s k k s= +   (16) 

 _ _ sec _ sec( )ph rec p iG s k k sθ θ= +   (17) 

being kpv_sec as the voltage proportional term, kiv_sec the voltage 
integral term, kpθ_rec the phase proportional term and kiθ_sec the 
phase integral term.  

III. STABILITY ANALYSIS 

In order to analyze system stability, a mathematical model is 
derived in this Section. Considering that the whole system 
control scheme consists of three main control blocks, namely 
inner voltage and current loops, current sharing loops (virtual 
impedance and Q–ϕ droop) and central control (voltage 
amplitude and phase restoration), the system design model is 
divided into three parts, which are illustrated in detail in the 
following subsections.  
 

 
Fig. 9. Bode diagram of inner loop. (a) Bode diagram with variable kpv. (b) Bode 
diagram with variable kpc. 

A. Modeling of Inner Voltage and Current Loop 
According to Fig. 3, by combining (1) and (2), the transfer 

function from reference voltage to output capacitor voltage is 
derived as follows  

 2( ) cabc

nkref

v dG s
v as bs c

= =
+ +

  (18) 

with Loada LZ C= , ( )c PWM Loadb L G s G Z C= + , 

( ) ( ) ( )Load c PWM v c PWM Loadc Z G s G G s G s G Z= + +  , 

( ) ( )Load v c PWMd Z G s G s G=  where L, C, ZLoad, Gv(s) and 
Gc(s) are filter inductance, filter capacitance, load, inner 
voltage loop and inner current loop respectively; whereas the 
PWM delay is expressed as  

 
1( )

1.5 1PWM
s

G s
T s

=
+

  (19) 

where Ts is the PWM period.  
By plotting the bode diagram of (18), the influence of control 

parameters on the fundamental frequency and 5th, 7th harmonic 
frequency is analyzed through plotting Bode diagram of the 
system is presented in Fig. 9. The bandwidth of the controller is 
designed to be 1/6 of the switch frequency (10kHz), which is 
around 1.5kHz. At the same time, a band-pass filter closed loop 
control behavior, with 0dB gain at specific frequencies (50Hz, 
5th harmonic, 7th harmonic) must be guaranteed as shown in Fig. 
9. With kpv moving from 0.25 to 2, the bandwidth of the 
controller is increasing around 1.5kHz and 0dB gain is 
achieved at specific frequencies. Also a similar performance is 
observed while changing kpc. 
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Fig. 10. Control loops for voltage restoration and phase restoration.  

B. Virtual Impedance and Phase Droop Loops 
According to the IEC 62040-3, voltage variation should be 

limited to 10%, maximum 48% for IT loads. If the virtual 
impedance value is constant, the output voltage amplitude will 
be decreased proportionally to the inductor current. So that the 
virtual impedance value is chosen as,  

 
max

0.1L viri R
V

≤   (20) 

being iL the inductor current under full load condition and Vmax 
the nominal output voltage amplitude. As for the phase droop 
loop, it is analyzed together with the phase restoration loop 
since it is tightly related with output voltage phase angle.  

C. Central Controller 
According to the aforementioned analysis, since the central 

controller corresponds with UPS output voltage amplitude and 
phase, its mathematical model can be divided into two parts. In 
Fig. 10, voltage and phase restoration control (shown in Fig. 8) 
is simplified and presented with Gdelay being the delay function 
caused by communication network. Because each DC/AC 
module capacitors are connected to the same AC critical bus, 
vavr is equal to vc (output voltage of each DC/AC), referring to 
(12). On the other hand, vc is tightly controlled by inner loops 
from the view of communication frequency since dynamics of 
the local inner loop is much faster than communication. As a 
result, vc is treated as the modified voltage reference v. So the 
model for voltage restoration is able to be simplified as shown 
in Fig. 10 (Amplitude Restoration). For given Gdelay similar 
pattern as GPWM except for a bigger Tc, the model can be 
derived,  

 _ _

_1
v rec delay ref r ref vir L

v rec delay

G G v v R i
v

G G
+ −

=
+

  (21) 

Considering the dynamic performance of the system, the 
closed loop function is expressed as follows,  

 
2

2
_ sec _ sec

1.5( )
1.5 (1 )

vir c
v

c pv iv

R T s sG s
T s k s k

+
= −

+ + +
  (22) 

Fig. 11 shows the step response in simulation under different 
kpv_sec with load step test. For a fixed kiv_sec, different kpv_sec 
brings different dynamic process. Fig. 12 shows the  

 
Fig. 11. Step responses of voltage restoration control with different kpv_sec. 

pole-zero map of voltage restoration control block. As kpv_sec 
increasing from 0 to 2, one dominating pole moves towards the 
origin point, and the second one tends to move towards the 
stable region slowly, as shown in Fig. 12(a). Also, it can be 
observed that kiv_sec has small effect on the dominating poles 
movements. Both two dominating poles almost stay in the same 
position with variable kiv_sec. Thus mainly kpv_sec determines 
system dominating poles position, which has crucial impact on 
the system performance. 

Similarly, a simplified control diagram for phase restoration 
is derived as shown in Fig. 10 (see phase restoration block), 
from which a mathematical model can be derived  

 _ _

_1
ph rec delay ref r ref LPF ph

ph rec delay

G G G k Q
G G

dd
d

+ +
=

+
  (23) 

Consequently, the dynamical model can be expressed as 
follows,  
 _(1 )LPF ph ph rec delayG k Q G Gd = +   (24) 

 ( )LPF c cG sω ω= +   (25) 

 2 3 2( ) ( )as bs cs ds es f
Q
d

= + + + +   (26) 

 ( ) 1 (1.5 1)delay cG s T s= +   (27) 

with the following parameters: 
1.5 c c pha T kω= , c phb kω= , 1.5 cc T= , 

_ sec1.5 1c c pd T k θω= + + , _ sec _ secc i p ce k kθ θω ω= + + , 

_ seci cf k θ ω= , where ωc is the cut-off frequency of power 
calculation low-pass filter and Tc is the communication delay 
time. The phase regulation coefficient kph is on the numerator, 
which indicates that it has no effect on the system dominating 
poles distribution. The pole-zero map in Z domain under 
different control parameters for phase restoration is presented 
in Fig. 13. It can be observed that a similar pole-zero map 
performance is obtained, which meaning that the proportional 
term of phase restoration dominates the system stability. 
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Fig. 12. pole-zero map of voltage amplitude restoration. (a) pz map with 
variable kpv_sec. (b) pz map with variable kiv_sec. 

 
Fig. 13. pole-zero map for phase restoration. (a) PZ map with variable kpθ_sec. (b) 
PZ map with variable kiθ_sec. 

 
Fig. 14. Communication delay impact on voltage amplitude and phase 
restoration control. (a) Phase restoration. (b) Amplitude restoration. 

 
Fig. 15. Experimental setup. 

Furthermore, communication delay Tc is also taken into 
consideration. If Tc is increased to 0.5s, one dominating pole of 
phase restoration is moving towards the boundary of stable 
area. On the other hand, one zero tends to move out of the unit 
circle, indicating a slow dynamic performance, as shown in Fig. 
14(a). Fig. 14(b) presents the pole-zero map for voltage 
amplitude restoration. The same phenomenon is obtained. 
Normally, CAN bus have a time delay of hundreds of 
microseconds according to [43]. So from Fig. 14, it can be 
concluded that the dominating poles for both voltage amplitude 
and phase restoration are always kept inside the stable region.
  

IV. EXPERIMENTAL RESULTS 
In order to validate the feasibility of the proposed control, a 

modular online UPS system, shown in Fig. 1, was built in the 
laboratory. Fig. 15 shows the experimental setup, which  
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TABLE I. PARAMETERS FOR EXPERIMENTAL SETUP 
Symbol Parameter Values 

Converters 
fsw Switch frequency 10kHz 
Lg Grid side inductor of AC/DC filter 1.8mH 
C1 Capacitor of AC/DC filter 27μF 
Lc Converter side inductor of AC/DC 

filter 
1.8mH 

L Filter inductance of three AC/DCs 1.8mH 
C Filter capacitance of three AC/DCs 27μF 

AC/DC 
Vdc AC/DC reference voltage 650V 
Pv Proportional voltage term 0.1 
Iv Integral voltage term 1 
Pc Proportional current term 19 
Ic Integral current term 677 

DC/AC module 
kpv Proportional voltage term 0.55 
krv Resonant voltage term 70 

k5rv, k7rv 5th, 7th resonant voltage term 100,100 
kpc Proportional current term 1.2 
krc Resonant current term 150 

k5rc, k7rc 5th, 7th resonant current term 30,30 
Vref_r Reference voltage 230V (RMS) 

Central Control 
kpv_sec Proportional voltage term 1 
kiv_sec Integral voltage term 20.5 
kpθ_sec Proportional phase term 0.2 
kiθ_sec Integral phase term 9 

kph Phase control coefficients 0.0001rad/VAr 
Rvir Virtual resistor 20Ω 

 
TABLE II. TRANSIENT DURATION TIME UNDER LINEAR AND NONINEAR 

LOAD 
 Voltage overshoot or sag (%) Duration time (ms) 

Linear Load 

14% (overshoot or sag) 20-40 
12% (overshoot or sag) 40-60 
11% (overshoot or sag) 60-100 
10% (overshoot or sag) 100-1000 

Nonlinear Load 
12% (overshoot) /27% (sag) 40-60 
11% (overshoot) /27% (sag) 60-100 
10% (overshoot) /20% (sag) 100-1000 

consists of four Danfoss converters, one of which works as an 
AC/DC module to regulate the DC bus. The other three operate 
as DC/AC modules. The control algorithm was implemented 
into a dSPACE 1006 platform for real-time control of the 
experimental setup. A list of critical parameters that have 
significant effect on the system performance is presented in 
Table I. Experiments including both steady and transient 
operation were carried out to validate the proposed control 
strategy. And the transient duration time is tested according to 
the IEC 62040-3, which is shown in Table II. 

A. Parallel DC/AC Transient Response 
Power sharing performance among different modules is 

evaluated as shown in Fig. 16. In Fig. 16 (a) and (b), active and 
reactive power sharing performance among three modules is 
presented. Module #3 is started at around t3 = 4.5s while 
module #1 and #2 are already working in parallel. The active 
power and reactive power are equally shared during the whole 
transient process. In Fig. 16(c), it can be observed that it 
requires 20ms to recover the voltage when module #3 starts to 
work. 

A load step was carried out at t=1s. As it can be seen, good 
power sharing performance among the modules is shown in 
Fig. 17. Due to the low pass filter for power calculation block, 
power dynamic process was slower. Moreover, both proper  

 
Fig. 16. DC/AC modules parallel performance. (a) Active power sharing 
between three modules. (b) Reactive power sharing between three modules. (c) 
Output voltage details. 

 
Fig. 17. Active and reactive power of 3 DC/AC modules. (a) Three DC/AC 
active power. (b) Three DC/AC reactive power. 

 
Fig. 18. Active and reactive power per phase. (a) Phase a active and reactive 
power of three DC/ACs. (b) Phase b active and reactive power of three 
DC/ACs. (c) Phase c active and reactive power of three DC/ACs. 
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active and reactive power sharing performance was also 
guaranteed in phase (a, b and c) of DC/ACs, as shown in Fig. 
18. Furthermore, the control performance of the voltage 
restoration block is also shown in Fig. 19. Fig. 19(a) to (c) show 
the RMS value of each phase output voltage. A voltage sag of 
around 8.6%, compared to the nominal output value, has been 
produced. In Fig. 19(d), AC critical bus voltage was also 
controlled tightly during voltage sags smaller than 10%. 

B. Phase Regulation Control Test 
In this scenario, phase errors between the utility voltage and 

UPS output starting from about 51.5o, as illustrated in Fig. 7(b), 
was reduced to zero once starting the phase restoration control 
at t=0.5s, as shown in Fig. 20(a). However, it has some 
influence over the voltage amplitude in Fig. 20(b). A voltage 
overshoot of around 4V RMS occurred, which 1.74% of the 
nominal output voltage value. This meets the transient voltage 
requirement for UPS system that mentioned in the standard IEC 
62040-3. Due to the voltage amplitude restoration control 
action, the amplitude was restored back to the nominal value 
few cycles later. 

C. Grid Synchronization Process Tests 
Considering the UPS as a whole system, both steady and 

dynamic performance of the system should be tested at AC 
critical bus of the UPS system in order to validate UPS system 
steady and dynamic performance. Synchronization process for 

 
Fig. 19. RMS voltage (Three DC/ACs and AC critical bus). (a) Phase a voltage 
RMS. (b) Phase b voltage RMS. (c) Phase c voltage RMS. (d) AC critical bus 
voltage RMS. 

 
Fig. 20. Phase restoration. (a) Phase errors. (b) RMS Voltage . 

 
Fig. 21. Synchronization process between vab_utility and vab_UPS under linear load 
condition. (a) Overall process. (b) Details at ta. (c) Details at tb. (d) Details at tc.  

 
Fig. 22. Synchronization process between vab_utility and vab_UPS under nonlinear 
load condition. (a) Overall process. (b) Details at td. (c) Details at te. (d) Details 
at tf. 

the whole UPS system was tested under both linear and 
nonlinear load condition. The initial phase error was set to π. 
Fig. 21 illustrates the synchronizing process with linear load in 
one phase while Fig. 22 presents results when the nonlinear 
load is connected. It can be concluded that good 
synchronization performance had been obtained.  

D. Linear Load Sharing Tests 
Fig. 23-25 show both balanced and unbalanced load switch 

performance of the online UPS system. An R type load was 
connected between phases a and b, while phase c is 
disconnected. Fig. 23 shows both steady state and dynamic 
voltage and current in case of highly unbalanced load. It can be 
observed that 5 utility periods (100ms) are required to recover 
the unbalanced voltages with small voltage oscillation when it 
was suddenly connected.  

Similarly, around 5 utility periods, which is 100ms, are 
required to restore voltage when the unbalanced load was 
disconnected. And this meets the requirement for linear load 
changing test shown in TABLE II. Additionally, an LR type 
load was connected between phases a and b, while phase c is 
disconnected. Fig. 24 presents both active power and reactive 
power performance. At tg, the LR type load was connected and 
exited this state at th. It can be seen that active power are 
equally shared as shown in Fig. 24(a). At the same time,  
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Fig. 23. Voltage and current under unbalanced linear load condition (voltage: 
250V/Div, Current: 10A/Div). (a) Output voltage and phase a current. (b) 
Output voltage and phase b current. (c) Output voltage and phase c current.  

 
Fig. 24. Active power and reactive power sharing performance under 
unbalanced nonlinear load condition. (a) Active power. (b) Reactive power of 
phase a. (c) Reactive power of phase b. (c) Reactive power of phase c. 

although each phase faces different reactive power, it is still 
equally shared among each phase among the three modules 
(Fig. 24(b)-(d)). And the UPS system output voltage 
performance is presented in Fig. 25(a) and (b). It can be 
observed that 1 utility period (20ms) are required to recover the 
voltage. Fig. 25 (c) and (d) depicts the voltage performance 
under another kind of unbalanced load condition – phase a and 
b are connected with LR type load while phase c are connected 
with R type load. It can be observed that voltage is recovered to 
nominal value very fast. Also balanced load test results are 
shown in Fig. 26. It takes around 40ms for the  

 
Fig. 25. Voltage and current under unbalanced load condition (Voltage: 
250V/Div, Current: 10A/Div). (a) Output voltage and phase a current when 
load is turned on. (b) Output voltage and phase a current when load is turned 
off. (c) Output voltage and phase a current when load is turned on. (d) Output 
voltage and phase a current when load is turned off. 

 
Fig. 26. UPS line to line voltage (phase a to b) and phase a current (Voltage: 
250V/Div, Current: 5A/Div). (a) Balanced load connected. (b) Balanced load 
disconnected.   

 
Fig. 27. UPS output voltage and current under nonlinear load condition 
(Voltage: 250V/Div, Current: 5A/Div). (a) Output voltage and phase a’s 
current. (b) Phase a voltage of UPS and the utility. 

UPS to recover output voltage to nominal value when the load 
is suddenly switched on. Once the load is disconnected again, a 
similar dynamic performance is guaranteed. The recovery 
process takes around 30ms. This also meets requirement shown 
in Table II. 

E. Nonlinear Load Sharing Tests 
A diode rectifier circuit was connected to the AC critical bus. 

UPS line-to-line voltage and phase current were presented. 
From Fig. 27(a), it can be seen that a small voltage distortion 
had occurred when the UPS system was connected to the 
nonlinear load. Fig. 27(b) shows the system performance while 
UPS keeps synchronizing with the utility.  It is noteworthy that 
the power quality of the UPS output voltage is still maintained 
while remaining synchronized with the utility when nonlinear 
load is suddenly connected and disconnected. 
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V. CONCLUSION 
In this paper, a control strategy intended for an online UPS 

system was developed under a modular online UPS structure. 
Active and reactive power is equally shared among different 
DC/AC modules in linear, nonlinear, balanced and unbalanced 
load condition under both steady and dynamic process, which is 
validated through the experimental results. An improved 
system frequency and phase performance during the transient 
process is obtained due to the synchronization capability of the 
central control. Moreover, the total UPS system output voltage 
is tightly controlled and fast recovered to the nominal voltage 
value and it meets the UPS application standard IEC62040-3. 
Critical parameters impacts on the system performance are 
analyzed hierarchically in this paper, which is a guidance to 
design the system parameters. With the built modular online 
UPS system, experimental results are obtained to support the 
proposed control algorithm. 
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