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With the introduction of smart energy grids and extensive penetration of renewable

energy resources in distribution networks, Micro-Grids (MGs), which are

comprised of various alternative energy resources and Advanced Metering

Infrastructure (AMI) systems for better implementation of DR programs, are

effectively employed. The design and development of Smart Energy Management

Systems (SEMSs) for MGs are interesting and attractive research problems. In this

paper a new SEMS architecture is presented to solve the multi-objective operation

management and scheduling problem in a typical MG while considering different

energy resource technologies, Plug-in Hybrid Electric Vehicles (PHEVs) and DR

programs. The energy management problem is formulated as a constrained mixed

integer nonlinear multi-objective optimization problem, in which the MG’s total

operating cost and net emissions must be minimized simultaneously. Three

different optimization algorithms are used to solve the above mentioned problem

and their outputs (Pareto optimal solutions) for the same problem are compared

and analyzed. VC 2013 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4826880]

I. INTRODUCTION

In recent years, growing trend of energy consumption and environmental pollutions has made

energy crisis a highly challenging problem in modern societies.1,2 Moreover, some technical issues

in power systems such as reliability, power quality, and power losses have led to noticeable con-

cerns for utilities. In this regard, using Distributed Generation (DG) units in power systems has

been considered as a valuable solution.3 Generally, DG is defined as a small scale energy producer

that feeds local loads.4,5 Distributed generators have various types such as Wind Turbine (WT),

Photo-Voltaic (PV) panel, Fuel Cell (FC), Micro-Turbine (MT), Diesel generator (D), and bat-

tery.2,11,12 Some advantages of using Distributed Energy Resources (DERs) can be declared as mit-

igation of energy crisis, environmental sustainability, reducing distribution and transmission costs

and, improving power quality and reliability.2 Recent research works show that by increasing the

penetration of DERs up to 20%, the CO2 emissions could be reduced by 2.07%–4.85%.1

The Plug-in Hybrid Electric Vehicles (PHEVs) have become popular due to their impacts

on reducing emission, inexpensive charging and diminishing fossil fuels usages. The PHEVs

have two operation modes, known as Grid-to-Vehicle (G2V) and Vehicle-to-Grid (V2G) modes.

Recent research works at NREL institute show that using these vehicles can significantly reduce

emissions, produced by the vehicles in transportation systems.7,8

The MG in its whole vision is a collection of various loads and DGs, which can operate in

grid connected and islanded modes.9,10 Due to the ability of MGs to operate in islanding mode and

feed their loads with their built-in energy resources they can increase the power quality and reliabil-

ity.9,10 The utilization of small-modular residential, commercial, and industrial units for onsite serv-

ice is the most important applications of the integrated units.14,18 The optimal performance manage-

ment and control of DGs together with effective participation of consumers in DR programs is one

of the most important tasks of MGs which is handled by an energy management module.15,17
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According to recent research, using energy management methods in residential sector can reduce

power consumption from 20% to 30%.16,18 A Smart Energy Management System (SEMS) has been

presented by Chen et al.17 for optimal operation of a MG where distribution generation units satisfy

existing loads considering cost minimization. In the mentioned case study, hourly wind speed and

radiation data have been estimated via an expert forecasting module. In a similar manner,

Bagherian et al. have designed a SEMS for optimal operation of a MG with different types of tech-

nologies and load models considering maximum profit as objective function.19 In this case, inter-

ruptible load has been considered as a part of DR program. Such a similar model has been pro-

posed in Ref. 18 where reduction of energy production costs in buildings has been considered as an

objective considering several constraints and uncertainties. Likewise, optimal operation management

of a MG considering Demand Side Management (DSM) is presented in Ref. 13, where load models

are considered as residential, industrial, and commercial. System modeling and online optimal man-

agement of MGs using multi-objective optimization techniques has been also described in related

literatures where the purpose of a SEMS module has been considered to be emission reduction, loss

minimization, energy consumption reduction, cost minimization, or profit maximization.20

In this paper, the proposed SEMS is formulated as a mixed integer nonlinear problem

implemented in GAMS environment and is solved by CPLEX solver.21 Although lots of

researches have been done in the field of energy management recently, rarely can be found a

precise model to handle the problem, hence there is a strong need to develop an expert SEMS

architecture to simplify the scheduling problem and complete the previous models.

The proposed SEMS architecture considers different objective functions, various technolo-

gies, and new concepts such as DR programs. Three different optimization methods have been

used to solve the multi-objective function and the results have been gathered subsequently. The

reset of the paper is organized as follows: Sec. II provides a model for the SEMS. The multi-

objective operation management problem is presented in Sec. III. Section IV describes the funda-

mentals of multi-objective optimization together with different approaches used for solving the

mentioned problem. Components of the sample MG as well as a brief description of the case

study are discussed in Sec. V. Finally, Sec. VI deals with the implementation of the proposed

algorithm to the optimization problem and demonstration of simulation results.

II. SEMS MODEL

The generic model of the proposed SEMS is shown in Figure 1. As can be seen in this fig-

ure, this model includes three hierarchical layers named as physical, pre-processing, and proc-

essing. These layers are briefly described in the following sections:

– Physical layer: As mentioned before, a MG consists of different loads and generation technolo-

gies. In the physical layer generating units and consumers are introduced separately. In genera-

tion part, units are classified into renewable resources, energy storage options, dispatchable DGs,

and the utility or the macro-grid. In demand side, loads are classified into two parts: schedulable

and non-schedulable loads. Schedulable loads such as washing machines and air conditioners are

the ones that have the ability to participate in DR programs. Therefore, the DR control signals

will be applied to them. Non-schedulable loads such as lighting are the ones which cannot be

shifted or curtailed upon the request from a system operator.

– Preprocessing layer: This layer consists of two important parts which are called forecasting and

management modules. The forecasting module applies the required data for the processing layer

such as irradiation, load and price data. Moreover Energy Storage Systems (ESSs) such as batteries

and FCs can be used effectively for saving energy during off-peak periods, yet there are some con-

straints such as State of Charge (SOC) and Depth of Discharge (DOD), which must be met prop-

erly. In an management module the storage options are planned and managed suitably considering

the limits mentioned beforehand. However, other factors such as battery lifetime, number of charge

and discharge cycles and temperature limit can be managed in this module.

– Processing layer: Having received the required information from the previous layers, the proc-

essing layer provides optimal set points for the generating units and schedulable loads using
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appropriate optimization algorithms. In other words, the modules corresponding to the last

layer, analyze the received information, and make a plan in a way to optimize the objective

functions considering the existing constraints.

III. PROBLEM FORMULATIONS

As stated earlier, the role of an energy management system in a MG is to supply the load

from various energy resources in an optimized manner. The required amount of energy can be

supplied from distributed generators such as MTs, PV panels, WTs, Ds, FCs, and batteries or

provided from the utility. In a MG, some environmental parameters affect the output power of

renewable-based generators such as PVs and WTs. In this case, their output power must be

forecasted based on meteorological information. According to the forecasted data, the purpose

of the SEMS is to optimize the objective functions while satisfying limits and network con-

straints. In this paper, objective functions of SEMS are the cost and emission minimization

over a 24-h period. The cost function includes operation cost, start-up/shut-down cost, energy

storage cost, cost of DR programs, and power exchange cost,

Min TCðPÞ ¼
XT

t¼1

fCDGðtÞ þ STDGðtÞ þ CESSðtÞ þ CGridðtÞ þ CDRðtÞg

¼
XT

t¼1

XL

i¼1

½uiðtÞPGiðtÞBGiðtÞ þ SGijuiðtÞ � uiðt� 1Þj�

þ
XM

j¼1

½ujðtÞPessjðtÞBessjðtÞ�

þuBuyðtÞPGridðtÞBGrid BuyðtÞ
�uSellðtÞPGridðtÞBGrid SellðtÞ þ PDRðtÞBDRðtÞ

8>>>>>>>>>><
>>>>>>>>>>:

9>>>>>>>>>>=
>>>>>>>>>>;
; (1)

FIG. 1. SEMS architecture.

053148-3 Parvizimosaed et al. J. Renewable Sustainable Energy 5, 053148 (2013)



where T is the total number of hours, L and M are the total number of generators and storage

units, ui(t) and uj(t) are status of ith DG and jth storage, uBuy(t) and uSell(t) are status of power

bought (sold) from (to) the utility, PGi(t), Pessj(t) and PGrid(t) are the power production of ith

DG, jth storage, and the grid, respectively, PDR(t) is the amount of power contributed in a DR

program, SGi is the start-up or shutdown cost, BGi(t) and Bessj(t) are the bids of ith DG and jth

storage, BGrid_Buy(t) and BGrid_Sell(t) are the bids from the utility when buys(sells) energy

from(to) the MG, BDR(t) is the cost of contribution in a DR program and PDemand(t) is the

amount of load at hour t.

Likewise, the emission function includes the amount of emission from DGs, storages, and

the grid and can be formulated as follows:

Min TEðPÞ ¼
XT

t¼1

fEDGðtÞ þ EESSðtÞ þ EGrid BuyðtÞg

¼
XT

t¼1

XL

i¼1

½uiðtÞPGiðtÞEGiðtÞ� þ
XM

j¼1

½ujðtÞPessjðtÞEessjðtÞ�

þ uBuyðtÞPGridðtÞEGridðtÞ

8>><
>>:

9>>=
>>;; (2)

where EGi(t) and Eessj(t) are the amount of gas emitted from ith DG and jth storage and

EGrid_Buy(t) is the amount of emission from the grid at hour t. Both objective functions should

be minimized simultaneously, considering the following constraints:

• Power supply balance:

XL

i¼1

PGiðtÞ þ
XM

j¼1

PessjðtÞ þ uBuyðtÞPGridðtÞ � uSellðtÞPGridðtÞ

¼ PDemandðtÞ � uCurtailðtÞPCurtailðtÞ � udiff ReqðtÞPdif f ðtÞ þ udiff nonReqðtÞPdif f ðtÞ; (3)

where Pcurtail(t) and Pdiff(t) are the amount of curtailed and deferred loads, respectively, and

udiff_Req(t)/udiff_nonreq(t) are the status of deferrable loads in a DR program at hour t.
• Status of power exchange between MG and the utility:

uBuyðtÞ þ uSellðtÞ � 1: (4)

• Power generation limit:

PGi;min � PGiðtÞ � PGi;max

Pessj;min � PessjðtÞ � Pessj;max

Pgrid;min � PGridðtÞ � Pgrid ;max:

(5)

• Battery charge/discharge constraints:

QjðtÞ ¼ Qjðt� 1Þ � 1

gDj

uDjðtÞPessjðtÞ þ gCjuCjðtÞPessjðtÞ

uDjðtÞ þ uCjðtÞ � 1; Qmin � QjðtÞ � Qmax; Qjð1Þ ¼ Qe;

(6)

where Qj(t) is the SOC, uCj (t)/uDj(t) are the status of charging/discharging for the jth storage de-

vice, gDj and gCj are discharging/charging efficiencies of jth storage and Qe is initial SOC at

hour t. The first equation illustrates charge/discharge process while the second one shows that
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charge and discharge processes cannot occur simultaneously at any time. Initial SOC has been

indicated in the last equation.
• Spinning reserve constraint:

XL

i¼1

fPmax;i � PiðtÞg þ
XM

j¼1

fPmax;j � PessjðtÞgþðPmax;grid � PgridðtÞÞ � PDemand;totalðtÞ � RESVðtÞ:

(7)

According to Eq. (7), the spinning reserve capacity (RESV) is defined as the total amount of

maximum unit set-point of all committed units minus total demand at each hour. Spinning

reserve must be sufficient enough to maintain the desired reliability of a power system. It is usu-

ally a pre-specified limit or equal to the largest unit or a given percentage of the forecasted

demand, usually is equal to 10%.
• DR constraint

Pcurtail;minðtÞ � PcurtailðtÞ � Pcurtail;maxðtÞ
Pdiff ;minðtÞ � Pdif f ðtÞ � Pdiff ;maxðtÞXT

t¼1

fudiff ReqðtÞPdif f ðtÞ � udiff nonReqðtÞPdif f ðtÞg ¼ 0: (8)

According to Eq. (8), the loads inside a typical MG can be classified into three major categories:

critical, curtailable, and deferrable loads. The critical loads have high priorities and cannot be

shed. Curtailable loads can be shed, if an emergency condition occurs. Likewise, deferrable

loads (e.g., washing machine) can be shifted from peak time to off-peak periods upon the

MGCC request.

IV. MULTI-OBJECTIVE OPTIMIZATION

Many real-world optimization problems are dealing with finding optimal solutions consider-

ing different objectives simultaneously. In a multi-criteria optimization problem, since a particu-

lar solution isn’t the best with regard to all objectives, a set of optimal solutions known as

Pareto-optimal are introduced instead. Generally, in a multi-objective optimization problem dif-

ferent objective functions are required to be optimized simultaneously considering a set of

equality and inequality constraints as follows:

Minimize F ¼ ½f1ðXÞ; f2ðXÞ; :::; fnðXÞ�T

Subject to :
giðXÞ < 0 i ¼ 1; 2; :::;Nueq

hiðXÞ ¼ 0 i ¼ 1; 2; :::;Neq;

(
(9)

where F is a vector including objective functions and X is a vector containing optimization var-

iables, fi (X) is the ith objective function, gi (X) and hi (X) are the equality and inequality con-

straints, respectively, and n is the number of objective functions. For a multi-objective optimi-

zation problem, any two solutions X and Y can have one of these two possibilities: one

dominates the other or none dominates the other. In a minimization problem, without loss of

generality, a solution X dominates Y if the following two conditions are satisfied:

8j 2 f1; 2; :::; ng; fjðXÞ � fjðYÞ
9k 2 f1; 2; :::; ng; fkðXÞ < fkðYÞ:

(10)

Through the entire search space, the non-dominated solutions are considered as “Pareto-optimal”

and form the Pareto-optimal set or Pareto-optimal front. Likewise, “Pareto-dominance” is a

053148-5 Parvizimosaed et al. J. Renewable Sustainable Energy 5, 053148 (2013)



concept used for determining the eligibility of each solution to be stored in the repository of

non-dominated solutions.

A. Fuzzy weighted sum method (FWSM)

In a FWSM, a fuzzy-based clustering approach is applied to store the non-dominated solu-

tions in a predefined and finite-size repository. In this regard, first a fuzzy membership function

is used to evaluate each objective function related to any individual inside the repository as

follows:22,23

lf iðXÞ ¼

1; fiðXÞ � f min
i

0; fiðXÞ � f max
i

f max
i � fiðXÞ
f max
i � f min

i

; f min
i � fiðXÞ � f max

i ;

8>>>><
>>>>:

(11)

where fi
min and fi

max are the lower and upper bounds of ith objective function, respectively. In

the proposed algorithm, the values of fi
min and fi

max are evaluated by optimizing each objective

function separately. In the next step, the normalized membership value is calculated for each

element inside the repository, as follows:

NlðjÞ ¼

Xn

k¼1

xk � lf kðXjÞ

Xm

j¼1

Xn

k¼1

xk � lf kðXjÞ
; (12)

where m is the number of non-dominated solutions, xk is the weight factor for kth objective

function. The normalized membership value is a decisive criterion used for storing the best

non-dominated solutions in the repository.

B. e-Constraint method

This method is based on converting a multi-objective optimization problem into a Single

objective one. A mathematical formulation of a multi-objective function is presented in

Eq. (13). It minimizes the whole objectives considering equality and inequality constraints. In a

FIG. 2. Geometric description of two-dimensional e-constraint.24
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e-constraint method, Eq. (13) can be rewritten as Eq. (14) in which one of the objectives is con-

sidered as the main objective and the other objectives are treated as constraints. By variation of

the constraint bounds, different Pareto fronts can be achieved,24

Min: FðxÞ ¼ ffiðxÞ; :::; fnðxÞg
s:t: gðxÞ � 0; hðxÞ ¼ 0; (13)

Min:FðxÞ ¼ fiðxÞ
s:t fiðxÞ � ej; j¼ 1; 2;::::; n & j 6¼ i

gðxÞ � 0; hðxÞ ¼ 0; (14)

where g(x) is the vector of inequality constraints, h(x) is the vector of equality constraints, i
and j are the main and the constraint objective function indices, respectively. In this method

with a very small change in value of epsilon (e) for each constraint, a set of solutions are

obtained. The epsilon (e) value should be wisely chosen in a way not to miss any Pareto opti-

mal solution because of the fact that choosing very small values can cause a large number of

redundant solutions. This method has been shown in Figure 2.

C. Goal attainment method (GAM)

The main idea of this method is to find solutions in a way to meet a predetermined target.

Through the solution space, if there is no solution to satisfy the optimal operation, the optimiza-

tion algorithm tries to find a solution with the lowest deviation from the optimal point. This

method is a powerful tool to find the best-compromised solution in multi-objective problems,

Min �
X

pi

s:t fi � aipi � fi
�; i ¼ 1; 2;::::; n;

(15)

where fi(xi) is the ith objective function, ai is the weighting vector, pi is the slackness scalar

variable vector, fi
* is the designed goals vector, and xi is the vector of control variables.

Equation (15) shows that in a multi-objective problem with variation of weighting vectors, rela-

tive tradeoffs between objectives are achieved. Objectives will reach to their optimum values

FIG. 3. Geometric description of two-dimensional GAM.21
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by minimizing slack variables. Therefore, in a multi-objective problem, each slack variable tries

to optimize its own objective function. Tradeoff between these variables will result in best solu-

tion. This method has been shown in Figure 3.

Slack vector determines the direction of fi
*þ aipi in the solution space and the weighting

vector determines the closest intersection of fi
*þ aipi with the horizontal axis, with respect to

the origin considering the best solution in the search space.25

V. CASE STUDY

In this section, a typical Low Voltage (LV) MG is considered as a test case as shown in

Figure 4. This network consists of three different feeders: residential, commercial, and indus-

trial consumers. The daily load curve for the mentioned feeders in a typical day is shown in

Figure 5 which represents the energy demand of 1705 kWh for the examined period.6 The MG

also includes various DG resources such as MT, D, PV, and WT as well as storage options

such as FC and battery.

Table I shows the operating limits of DGs and their available units in the model. The

power factor for all DGs is assumed to be unity. In this L.V network, there exist 10 battery

units with the capacity of 16 kWh and the maximum charging power of 4 kW according to resi-

dential feeder maximum current and voltage that are assumed to be 16 A and 230 V, respec-

tively. The SOC of batteries is considered between 20% and 100% of their rated capacities.

Finally, charging/discharging efficiency is assumed to be 0.94.

Similarly, Table II illustrates bid coefficients, start-up and shut-down cost of DG sources.

To simplify our analysis, start-up/shut-down costs are assumed to be equal. Furthermore,

it’s assumed that all DGs operate in electrical mode and no heat is produced or absorbed during

the operation period. The normalized estimated power obtained from WT and PV is shown in

Figure 6. Table III presents the amount of gas emitted from DGs and the grid in kg/MWh, as

well. Market energy prices, has been also taken from Amsterdam Power Exchange (ApX) for a

given day and is shown in Figure 7.6 It’s noteworthy to say that the DR program has considered

two load types: curtailable and deferrable loads. These loads are categorized into high and low

priority ones with different price tariffs. It is also assumed that all kinds of loads can be shifted

FIG. 4. A typical L.V micro-grid.6
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but only residential load can be curtailed. The maximum amounts of loads that can be curtailed

and deferred upon the operator request are assumed to be 5% and 2% of the total demand in

each feeder, respectively. Besides, the deferral price tariffs for high and low priority loads are

6.9 and 69 Euro Cent (Ect) per kWh, respectively, while the prices for the curtailable loads are

considered as 13.8 and 138 Ect per kWh, respectively.18

PHEVs availabilities based on historical data for a 24-h period is shown in Figure 8.

PHEVs usually travel in a period of time from 7 to 21; hence their availabilities are reduced in

these hours.26

VI. NUMERICAL RESULTS

In this part of the work, the proposed optimization algorithms are implemented to solve the

operation management problem and their performances are compared. In the suggested model,

TABLE I. Technical specifications of energy sources.6

Type Min. power (kW) Max. power (kW) Number

MT 6 30 1

FC 3 30 1

D 0 30 1

PV 0 25 5

WT 0 15 2

Bat �4 4 10

Grid �70 70 1

TABLE II. Bid coefficients of DGs.6

Type ai (Ect/kWh) bi (Ect/h) Start-up/shut-down cost (Ect)

MT 4.37 85.06 9

FC 2.84 255.18 16

D 3 20 0

PV 54.84 0 0

WT 10.63 0 0

Bat 4.43 0 0

FIG. 5. Typical daily load profiles for the mentioned MG.6
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FIG. 6. Normalized estimated power outputs from WT and PV.6

TABLE III. Gas emission of DG sources and grid.23

Type CO2 (kg/MWh) SO2 (kg/MWh) NOx (kg/MWh)

MT 720 0.0036 0.1

FC 460 0.003 0.0075

D 650 0.23 10

PV 0 0 0

WT 0 0 0

Batt 10 0.0002 0.001

Grid 950 0.5 2.1

FIG. 7. Real-time market prices from ApX on October 8, 2003.6
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the objective function considers both the total cost of the micro-grid which includes power gen-

eration costs and start-up/shut-down costs of units and the net emission of pollutants. For the

proposed MG shown in Figure 3, the optimization problem is formulated deterministically.

Based on forecasted values of wind speed and solar radiation, multi-objective scheduling prob-

lem is solved by a CPLEX Solver using GAMS software. The Pareto front for emission and

cost objectives obtained by mentioned algorithms is shown in Figure 9.

The best compromised solutions and the simulation times have been shown in Table IV.

The Normalized Best Fitness (NBF), which is a decisive value for determining the best solu-

tions, for each multi-objective method is calculated according to Eq. (11) and is indicated in

this table. It is also noteworthy to say that the weight factor for emission objective is consid-

ered more than the one for the cost objective. As observed from the mentioned table, the best

NBF belongs to the e-constraint method considering both objectives, so it is chosen as the

desired method in this paper. Likewise, the schedule of multi-operation management inside the

MG is shown in Figure 10 through e-constraint method. The numerical results indicate that for

FIG. 8. PHEVs availability.26

FIG. 9. Comparison of emission and cost Pareto optimal fronts.
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a certain period of time (from 9:00 to 17:00) when the energy prices are high, the surplus of

power is sold to the utility and in this way, the MG revenue increases. Conversely, the utility

takes the lead in supplying the load inside the MG during the first hours of the day when there

exists low price spikes.

The amount of energy bought from and sold to the grid is 421 kWh and 488 kWh, respec-

tively. The cost of energy bought from and sold to the grid is 1091.6 Ect and 11418.4 Ect,

respectively, where this huge difference comes from the difference between cost of energy in

peak and non-peak hours. Generally the profit resulting from exchanging power with the grid is

10326.8 Ect that can cover production cost of other devices too.

The participation of loads in DR programs is also shown in Figure 11. As observed from

the figure, both curtailable and deferrable loads can be curtailed and deferred between 9:00 and

16:00, respectively, when the electricity tariffs are high. It should be noted that the deferred

loads can be fed in other times with cheaper tariffs in a way that the total consumed and cur-

tailed demand equals to zero. The amount of curtailable loads is 34.9 kWh and a cost of 481.6

Ect due to consumers’ participation in this program is paid to them. Also the total amount of

these loads in peak hours is 14 kWh and a cost of 96.3 Ect will be paid by utility to consumers

in this regard.

The hourly cost and the cumulative cost of power exchange with grid are shown in Figure

12. As seen in this figure, the hourly cost due to power exchange with grid has been increased

when the market price is high. And also the cumulative cost of power exchange is decreased

because of the power sold to the grid.

Moreover, the control signals for charge/discharge process (“1” for charging and “�1” for

discharging) or idle condition (“0”) of hybrid electric vehicles are shown in Figure 13. Charge

and discharge process of hybrid electric vehicles is also shown in Figure 14. It’s observed

from the simulation results that the charging processes of the batteries are done at the first

hours of the day when the prices are low but the discharge actions are postponed to the midday

when the load curve reaches peak values.

FIG. 10. Optimal dispatch of units and grid.

TABLE IV. Comparison of solutions in three methods.

Methods Simulation time (s) Cost (Ect) Emission (kg) NBF

e-Constraint 18.063 9048 764.0 0.893

FWSM 242.23 8712 781.6 0.832

GAM 12.803 8538 786.8 0.886
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FIG. 11. Participation of loads in DR program.

FIG. 12. Hourly cost and cumulative cost of power exchange with grid.

FIG. 13. Control signal of PHEVs batteries.
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VII. CONCLUSION

In this paper, three different multi-objective optimization algorithms are proposed and

implemented to solve the multi-objective energy management problem in a typical MG with

high penetration of renewable energy resources considering the effects of PHEVs and DR pro-

grams. To evaluate the performance of the proposed algorithm, a test system is introduced and

the simulation results are gathered subsequently. The numerical results indicate that the e-
constraint method not only demonstrates superior performances in the case of both objective

functions minimization but also yields a true and well-distributed set of Pareto-optimal solu-

tions giving the system operators various options to select an appropriate power dispatch

scheme.
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