

Aalborg Universitet

Test Setup for Axially Loaded Piles in Sand

Thomassen, Kristina

Publication date: 2015

Document Version Publisher's PDF, also known as Version of record

Link to publication from Aalborg University

Citation for published version (APA): Thomassen, K. (2015). *Test Setup for Axially Loaded Piles in Sand*. Department of Civil Engineering : Aalborg University. DCE Technical reports No. 195

General rights

Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

- Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
- You may not further distribute the material or use it for any profit-making activity or commercial gain
 You may freely distribute the URL identifying the publication in the public portal -

Take down policy

If you believe that this document breaches copyright please contact us at vbn@aub.aau.dk providing details, and we will remove access to the work immediately and investigate your claim.

Test Setup for Axially Loaded Piles in Sand

Kristina Thomassen

Aalborg University Department of Civil Engineering Division of Structures, Materials and Geotechnics

DCE Technical Report No. 195

Test Setup for Axially Loaded Piles in Sand

by

Kristina Thomassen

October 2015

© Aalborg University

Scientific Publications at the Department of Civil Engineering

Technical Reports are published for timely dissemination of research results and scientific work carried out at the Department of Civil Engineering (DCE) at Aalborg University. This medium allows publication of more detailed explanations and results than typically allowed in scientific journals.

Technical Memoranda are produced to enable the preliminary dissemination of scientific work by the personnel of the DCE where such release is deemed to be appropriate. Documents of this kind may be incomplete or temporary versions of papers—or part of continuing work. This should be kept in mind when references are given to publications of this kind.

Contract Reports are produced to report scientific work carried out under contract. Publications of this kind contain confidential matter and are reserved for the sponsors and the DCE. Therefore, Contract Reports are generally not available for public circulation.

Lecture Notes contain material produced by the lecturers at the DCE for educational purposes. This may be scientific notes, lecture books, example problems or manuals for laboratory work, or computer programs developed at the DCE.

Theses are monograms or collections of papers published to report the scientific work carried out at the DCE to obtain a degree as either PhD or Doctor of Technology. The thesis is publicly available after the defence of the degree.

Latest News is published to enable rapid communication of information about scientific work carried out at the DCE. This includes the status of research projects, developments in the laboratories, information about collaborative work and recent research results.

Published Department of Civil Engineering by Aalborg University Department of Civil Engineering Sofiendalsvej 9-11 DK-9200 Aalborg SV, Denmark

Printed in Aalborg at Aalborg University

ISSN 1901-726X DCE Technical Report No. 195

Contents

1	Obj	ective
2	Tes	t Setup for axially loaded piles in sand 4
	2.1	Sand Box 5
	2.2	Soil Properties
	2.3	Pile Specifications
	2.4	Increasing Effective Stresses
3	Spe	cifications of Test Parts
4	Dat	a Acquisition Devices
	4.1	HBM Spider8
	4.2	HBM MGCplus 10
	4.3	MOOG Modular Test Controller 11
5	Dat	a Acquisition Software 11
6	De	vices for Soil Preparation
	6.1	Ascension Pipe
	6.2	Rod Vibrator
	6.3	CPT-device
7	Нус	Iraulic Systems
	7.1	Hydraulic System for Installation, Uninstallation and CPT13
	7.2	Hydraulic System for Tests
8	Me	asuring Devices and Configuration for Installation15
	8.1	Displacement Transducer WS15KT16
	8.2	Load Cell 1 17
9	Me	asuring Devices and Configuration for CPT19
	9.1	CPT Device
1() N	Aeasuring Devices and Configuration for Tests
	10.1	Load Cell 2 22
	10.2	Displacement of Hydraulic Cylinder 2 22
	10.3	Displacement Transducers WS10-1 and WS10-2
	10.4	Pore Pressure Transducers
	10.5	Membrane Suction Transducer
	10.6	Air Pressure Transducer

10.7	Vacuum Pump	27
10.8	Pressurised Tube	27
11	Measuring Devices and Configuration for Uninstallation	27
12	Miscellaneous Equipment	28
12.1	Aluminium Frames	28
12.2	For workspace	28
12.3	Transition Pieces	28
12.4	Felt Cloth and Membrane	29
12.5	Tools	29
13	Bibliography	30

Test Setup for Axially Loaded Piles in Sand

1 Objective

The test setup for testing axially static and cyclic loaded piles in sand is described in the following. The purpose for the tests is to examine the tensile capacity of axially loaded piles in dense fully saturated sand. The pile dimensions are chosen to resemble full scale dimension of piles used in offshore pile foundations today.

2 Test Setup for axially loaded piles in sand

Figure 1 shows the test setup and Figure 2 a principal sketch of the test setup.

Figure 1: Test setup with applied suction.

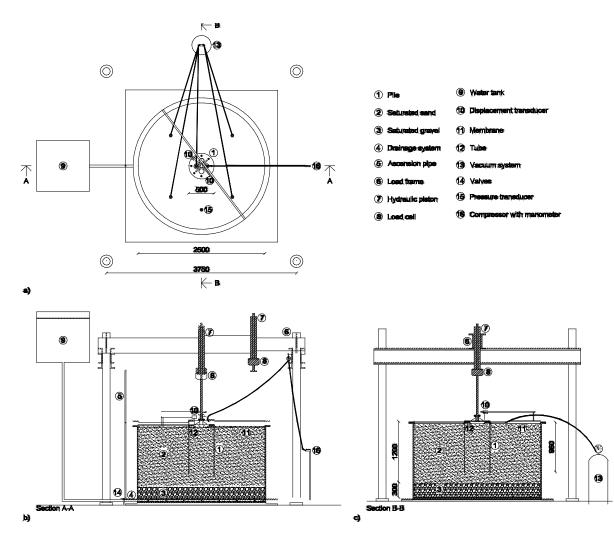


Figure 2: a) Layout of the test setup; b) Section A–A cross-sectional view of the test setup; c) Section B–B cross-sectional view of the test setup.

2.1 Sand Box

The sand box has internal dimensions of D = 2.5 m and h = 1.2 m. To get saturated sand, it is necessary to let water in and out of the sand box, therefore, a drainage system is placed in the bottom of the sand box. The drainage system consists of perforated pipes equally placed in 30 cm of gravel. The gravel is covered by a felt cloth to prevent the sand to enter the drainage system. Above the felt cloth, 1.2 m of Baskarp Sand No. 15 is placed.

The pipes in the drainage system are connected to a water tank located above the sand box. From this tank, water is led into the sand box while controlling the gradient of the water through the sand by monitoring the water head in the ascension pipe, cf. Figure 3.

Figure 3: The drainage pipes in the bottom of the sand box. The water tank. The ascension pipe.

2.2 Soil Properties

When doing laboratory testing of offshore foundations at Aalborg University, Baskarp Sand No. 15 is used. The material properties for this type of sand are well-defined from previous tests at Aalborg University (Borup og Hedegaard 1995). However, for the presented test setup, a new load of Baskarp Sand No. 15 was purchased in 2012. The new sand is also Baskarp Sand No. 15 and Figure 4 shows that the sieve analyses give the same grain distribution as the sand from 1995. However, no classification tests are conducted on the new load of sand, and it is just assumed that the two sands have the same properties.

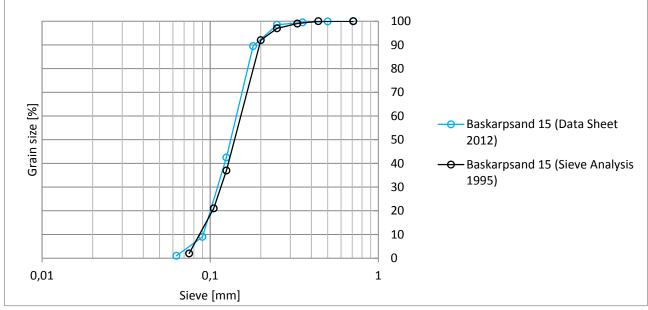


Figure 4: Sieve analyses for the old and new Baskarp Sand No. 15 (Borup og Hedegaard 1995) (SibelcoNordic 2008).

Table 1: Material	properties for Baska	p Sand No. 15	(Borup og Hed	egaard 1995).
Tuble 1. Material	properties for busiku	p 30110 110. 13	(Donup og neu	-cguuru 1999/.

Specific grain density	d_s	$[g/cm^3]$	2.64
Maximum void ratio	e_{max}	[-]	0.854
Minimum void ratio	e_{min}	[-]	0.549
50%-quantile	d_{50}	[mm]	0.14
Uniformity coefficient	$c_u = d_{60}/d_{10}$	[-]	1.78

2.3 Pile Specifications

Figure 5 shows the pile segment is made of steel and is 1 m long and has a diameter of 0.5 m. The wall thickness is 3 mm, which gives a diameter to wall thickness ratio of 17. According to (Randolph og Gourvenec 2011) the smallest offshore piles have a diameter from around 0.76 m and beyond and diameter to wall thickness ratios vary between 25 and 100. Therefore, the pile segment has a diameter which is smaller than the piles used in reality but is much closer to full scale than piles usually used in laboratory tests to understand the processes under axial loading. The smaller diameter to avoid instability of the pile wall during use. Besides the ratio only has an impact on the base resistance of the pile and the test pile is loaded in tension only.

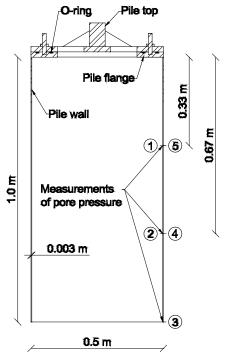


Figure 5: Principal sketch of the pile segment.

The pore pressure along the pile shaft is measured 1/3 L and 2/3 L from the pile top both on the inside and on the outside of the pile shaft. Moreover it is measured at the tip of the pile. Figure 5shows the positions of the pipes 1-5 connected to the pore pressure transducers on the pile. The pore pressure transducers placed on top of the pile. The specifications of the pore pressure transducers are given in Section Figure 5.

Figure 5 shows the position of pore pressure measurements. The external displacement transducers WS10-1 and WS10-2 are during tests positioned opposite each other connected to the nuts tightening the pile lid and the pile flange.

2.4 Increasing Effective Stresses

The effective stresses in the soil are increased by covering the soil surface inside and outside the pile segment with a rubber membrane and applying suction underneath it. Hereby, overlaying soil layers are simulated due to the increase of effective stresses. Thereby, the soil-pile interface behaviour can be

investigated at various soil depths. To make sure that the suction is applied equally over the sand layer and to avoid that sand is sucked into the tubes, a felt cloth is placed between the sand and the membrane.

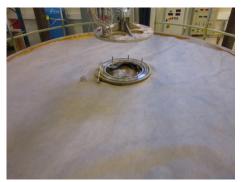


Figure 6: Felt cloth positioned on the sand surface.

The suction is controlled by a vacuum pump. The manometer on the vacuum system can be used as an indicator when regulating the pressure. However, to get the precise value of the suction it is necessary to attach a pressure transducer to the membrane and connect it to the MGCplus and monitor the pressure in Catman.

Figure 7: Vacuum system.

The suction is applied through four hoses connected to the membrane by means of quick-couplings, cf. Figure 8. The membrane is tightened at the edge of the sandbox by an aluminium frame, in the edge is a groove and the membrane is pressed into this groove between two O-rings making the connection air tight, cf. Figure 9a. The same assembly technique is used to tighten the membrane to the pile leaving room for holes in the membrane to lead the pore pressure pipes and bolts used to assemble the pile to the loading plate through, cf. Figure 9b. Here it is necessary with two O-rings, one on each side of the holes. It is important that the sand is 100% saturated and that very few air bobbles are present in the sand before applying the suction because the air expands under vacuum and will press the water out of the sand through the suction hoses. This will result in partially drained instead of fully saturated sand.

Figure 8: Membrane on sand surface connected to the vacuum pump by hoses.

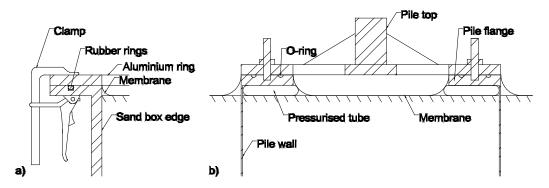


Figure 9: Sealing of the membrane at a) the sand box edge and b) at the pile flange.

3 Specifications of Test Parts

The test procedure consists of five parts:

- Installation
- Soil preparation
- CPT
- Test
- Uninstallation

The necessary equipment and specifications are given in the tables in Appendix A.

4 Data Acquisition Devices

4.1 HBM Spider8

Spider8 is used for data acquisition from CPT device, Load cell 1 and WS17kt.

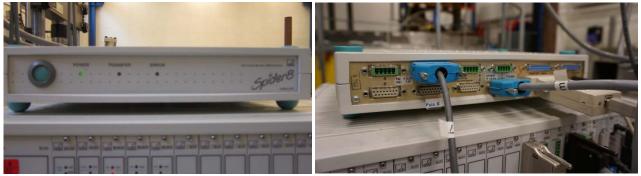


Figure 10: Left: Front of Spider8. Right: CPT device, Load cell 1 and displacement transducer connected to Spider8

Figure 11: The CPT device is connected to Spider8 through the box on the load frame through the socket "Cone" and the displacement transducer is connected via the socket "WS17kt".

4.2 HBM MGCplus

The MGCplus is used for data acquisition from the pore pressure transducers, the air pressure transducer, the membrane pressure transducer, the real pile head displacement and the load and displacement recorded by MOOG.

Figure 12: Left: Front of MGCplus. Right: the pore pressure transducers, the air pressure transducer, the membrane pressure transducer, the real pile head displacement and the load and displacement recorded by MOOG connected to MGCplus.

Figure 13: The displacement transducers are connected to MGCplus via the sockets "WS10-1" and "WS10-2". The pore pressure transducers are connected through CH6-1, CH6-2, CH6-5, CH6-6 and CH6-7. The membrane pressure transducer is connected to MGCplus via CH6-8.

4.3 MOOG Modular Test Controller

The modular test controller is connected to the MOOG computer, load cell 1, the displacement transducer and the MGCplus. The test specifications is given in the program MOOG and executed by the modular test controller.

Figure 14: MOOG Modular Test Controller.

5 Data Acquisition Software

The measurements of the devices connected to Spider8 and MGCplus are recorded in Catman 6.0.

The test sequences are made and measurements of the devices connected to the Modular Test Controller are recorded in the MOOG Integrated Test Suite V.2.6.4.

6 Devices for Soil Preparation

6.1 Ascension Pipe

6.2 Rod Vibrator

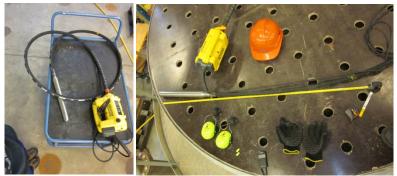


Figure 15: Rod vibrator and equipment for the vibration procedure.

6.3 CPT-device

The dimensions of the CPT are given in Figure 12. The cone has a diameter of 15 mm and a 30 decrease inclination. The CPT device can only measure the cone resistance and not the sleeve friction and the pore pressure. The cone resistance is measured by four strain gauges placed in a full bridge of the type TML FLE-1-11 with gauge factor 2.03, cf. Figure 13. A more detailed description of the CPT–device and the basis for interpretation of soil parameters for Baskarp Sand No. 15 (aka Aalborg Universitets Sand No 1.) from the CPT measurements is found in Larsen (2008, App. A).

The CPT must be re-calibrated regularly. The calibration procedure is described in App. A. Interpretation of the CPT measurements based on (Larsen 2008) and (Ibsen, et al. 2009) is given in App. B.

Figure 16: CPT-device.

Figure 17: Dimensions of the CPT bar and cone.

Figure 18: Strain gauges and wiring inside the CPT to measure the cone resistance.

7 Hydraulic Systems

7.1 Hydraulic System for Installation, Uninstallation and CPT

Hydraulic cylinder 1, which is used during installation, uninstallation and CPTs, is the one to the right on Figure 1. The pump pressure is regulated according to the measured displacement rate of the cylinder.

Figure 19: Hydraulic station.

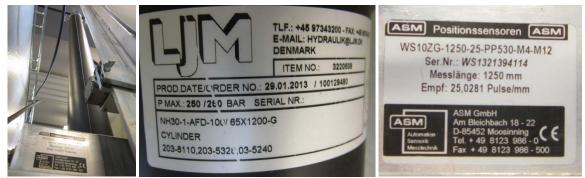


Figure 20: Hydraulic cylinder 1 and position transducer.

The cylinder can only be displacement controlled. The speed is adjusted on the black knob in the upper left corner of the switchboard. The intended speed is then displayed below the knob. While moving hydraulic cylinder 1 down the actual speed is measured and displayed to the right of the knob. The speed can then be adjusted during driving until an actual speed of e.g. 5 mm/s is reached. On the controller for hydraulic cylinder 1 two different speeds can be used. If the black knop on the controller is in horizontal or slightly upward position, the speed of hydraulic cylinder 1 corresponds to the speed chosen on switchboard. If the knob on the controller is turned downwards the hydraulic cylinder moves at maximum speed which is 6.18 mm/s.

Figure 21: Switchboard and controller for hydraulic cylinder 1.

7.2 Hydraulic System for Tests

Hydraulic cylinder 2 used for tests is the one to the left on Figure 1. The hydraulics is turned on at the switchboard. The pressure in the cylinder rises from 0 bars to 200 bars.

Figure 22: Hydraulic station and switchboard.

Hydraulic cylinder 1 can either be displacement or force controlled.

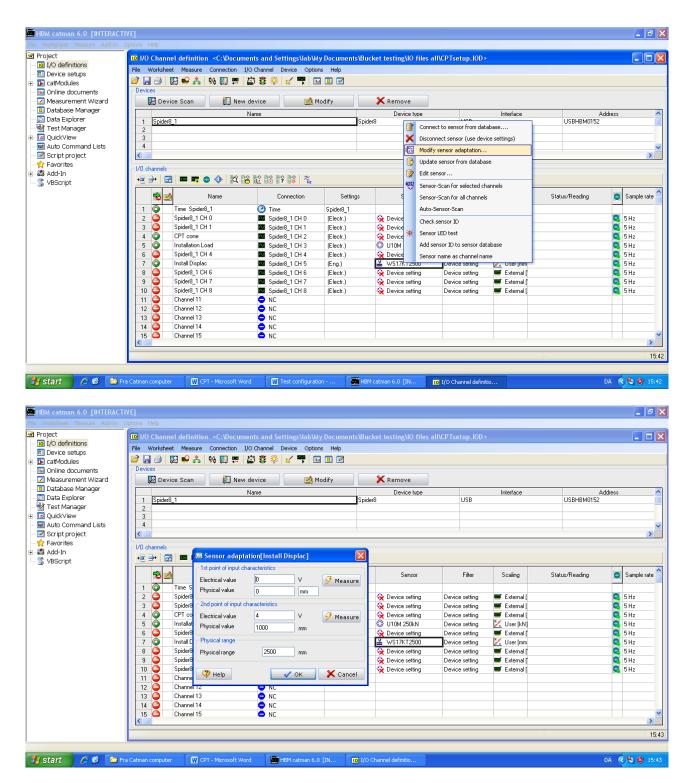
Figure 23: Hydraulic cylinder 2.

8 Measuring Devices and Configuration for Installation

In order to configure the different measuring devices in Catman it is necessary to make a device scan in Catman to locate Spider8 and MGCplus connected to the computer. Open Catman and press device scan.

HBM catman 6.0 [INTERACT	IVE]
File Worksheet Measure Add-In	Options Help
Image Worksheet Measure Auduit Image: The project Image: The project Image: The project<	Options Hep I/O-Definition -NONAME.INS> File Worksheet Measure Connection I/O Channel Device Devices Image: Connection Image: Connection Devices Image: Connection Image: Connection Device Scan Image: Connection Image: Connection Device Scan Image: Connection Image: Connection Image: Device Scan Image: Connection Image: Connection Image: Connection Image: Device Scan Image: Connection Image: Connection Image: Connection Image: Connection Image: Device Scan Image: Connection Image: Connection Image: Connection Image: Connection Image: Device Scan </td
I/O definitions Device seturs	
	Devices Device Scan Image: Scan Remove
Database Manager Data Explorer Test Manager GQLCVIew Auto Command Lists Script project	Device type Interface Address 1
	 I/O channels
H 😂 Add-In S VBScript	+E =+ 📝 🚥 🖷 💁 🗥 🕅 🗠 🗠 🗠 🗠 🗠 🗠 🗠
g . Sourpe	Device Scan
	Searching printer ports: LPT1 Interlink Modus
	1 Dhannel 1
	2 Channel 2 3 Channel 3

oject	1/O-Definit	ion <noname.iod></noname.iod>							
I/O definitions	File Workshee	t Measure Connection I/	O Channel Device Option	is Help					
Device setups catModules	2 🖬 🔿 🛛	2 单 🚓 % 💷 🚃	🕸 💈 🛞 🖌 🔫 🛄	i 🗖 🗹					
Online documents	Devices								
Measurement Wizard	🛛 🕅 Devi	ce Scan 🛛 🚺 New	device 🛛 🕅 M	odify	X Remove				
Database Manager			Name		Device type		Interface		Address
Data Explorer	1 MGColu		Name	M	iColus	GPIBO	Interrace	4	adress
Test Manager	2 Spider8				ider8	USB		USBHBM0152	
QuickView	3								
Auto Command Lists	4								
Script project	< []								>
Favorites Add-In	1/0 channels								
Add-In VBScript	+= =+ 🖂	🚥 🚾 💿 🚸 🕱 🎼							
VBSCript				1					
	20	Name	Connection	Settings	Sensor	Filter	Scaling	Status/Reading	💿 Sample rat
	1	Time MGCplus_1 (Sample rate		MGCplus_1 Sar					
	2	Atmospheric pressure MOOG displacement	MGCplus_1 CH 1 MGCplus 1 CH 2-1	NET (Eng.) NET (Eng.)	Device setting	Auto Auto	External [Group 1 (50 Group 1 (50
	4	MOOG load	MGCplus_1 CH 2-1	NET (Eng.)	Device setting	Auto	External [Group 1 (50
	5 🙆	MGCplus 1 CH 2-3	MGCplus 1 CH 2-2	NET (Eng.)	Device setting	Auto	External [Group 1 (50 Group 1 (50)
	6 6	MGCplus_1 CH 2-4	MGCplus 1 CH 2-4	NET (Eng.)	Device setting	Auto	External [Group 1 (50
	7 🙆	MGCplus 1 CH 2-5	MGCplus_1 CH 2-5	NET (Eng.)	Device setting	Auto	External [Group 1 (50
	8 🙆	MGCplus_1 CH 2-6	MGCplus_1 CH 2-6	NET (Eng.)	Q Device setting	Auto	🖼 External [Group 1 (50
	9 🙆	MGCplus_1 CH 2-7	MGCplus_1 CH 2-7	NET (Eng.)	Q Device setting	Auto	🖼 External [💽 Group 1 (50
	10 🕥	MGCplus_1 CH 2-8	MGCplus_1 CH 2-8	NET (Eng.)	🙀 Device setting	Auto	📟 External [🧟 Group 1 (50
	11 🕥	PP1	MGCplus_1 CH 3-1	NET (Eng.)	😪 Device setting	Auto	🖼 External [🧟 Group 1 (50
	12 🕥	PP2	MGCplus_1 CH 3-2	NET (Eng.)	🙀 Device setting	Auto	📟 External (🔍 🧟 Group 1 (50
	13 🕥	PP3	MGCplus_1 CH 3-3	NET (Eng.)	😪 Device setting	Auto	📟 External [🧟 Group 1 (50
	14 🕥	MGCplus_1 CH 3-4	MGCplus_1 CH 3-4	NET (Eng.)	🔆 Device setting	Auto	📟 External [💁 Group 1 (50
	15	PP5	MGColus 1 CH 3-5	NET (Ena.)	💊 Device settina	Auto	🔤 External f		Group 1 (50
								1	


8.1 Displacement Transducer WS15KT

The displacement of hydraulic cylinder 1 is measured by a displacement transducer with a max range of 2500 mm. The transducer is connected to the Spider8 and the measurements are recorded in Catman.

Figure 24: Displacement transducer for hydraulic cylinder 1.

The configuration in Catman is as follows.

8.2 Load Cell 1

Load cell 1 is connected to Spider8 and the measurements are recorded by Catman.

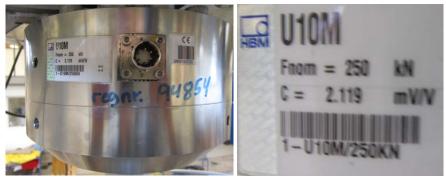
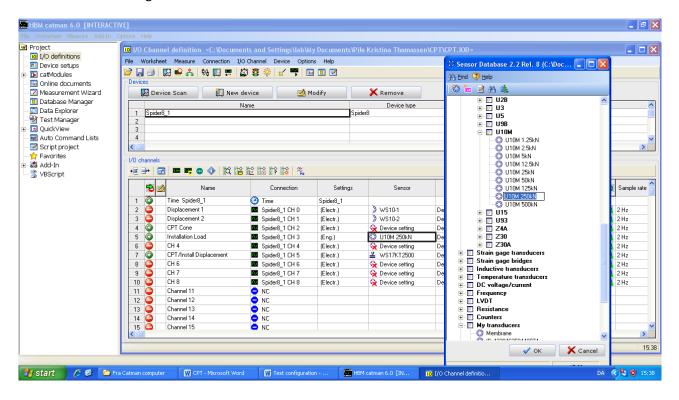



Figure 25: Load cell 1.

The load cell is a standard HBM device and its configuration can be found in the sensor database within Catman as follows. Right click on the Sensor column and chose "Connect to sensor from database".

HBM catman 6.0 [INTERACTIVE]			1				_ 7 🗙
Database 2.2 Ref. 8 (C: Documents and Edit 33 End 29 Help	d Settings\lab\My Documents\HBM\catmanEasy\HBM_	_SENSO 🖃 🗖 🔀	Kristina Thomassen\CP	T\CPT.IOD>			
10 U28 10 U3 10 U3 10 U5 10 U98 10 U10M 10 U10M	J10M_250kN 250kN	Sensor-ID Description Type Serial number	Remove Device type	LPT1	Interface	Addres	s
© U10M 5kN U10M 12.5kN	Sensor data Sensor management sducer settings Full bridge Circl	uit					>
→ [] U13 → [] U93 → [] Z4A → [] Z30	sducer characteristic Linear Selectrical->Physical Selectrical->Physical Selectrical->Physical Correction	Correction	WS10-2 Device setting U10M 250kN	Filter Device setting Device setting Device setting Device setting Device setting Device setting	Scaling		2 Hz 2 Hz
emperature transducers C voltage/current requency VDT tesistance iounters Iy transducers	ctrical unit mV/V Physical unit kN 0 Zero 0 Zero 2 Sensitivity 250 Nominal Define via two points	Ivalue	≚ WS17KT2500 Q Device setting Q Device setting	Device setting Device setting Device setting Device setting	User [mm External] External] External]		2 Hz 2 Hz
	🖻 Update entry	Quit					>
🛃 start 🛛 🤌 🙆 🛅 Fra Catma	an computer 🛛 🗰 CPT - Microsoft Word 🛛 🙀 Test confi	guration 🛛 🔛 HBM o	atman 6.0 [IN 🚺 I/	'O Channel definitio		DA	🔇 🔩 😻 15:37

9 Measuring Devices and Configuration for CPT

The configuration of the displacement transducer WS15KT and Load cell 1 is presented in Chapter 8.

9.1 CPT Device

For the configuration of the CPT devise open the Device Setup and set the measuring range to 12 mV/V. Return to the I/O Definition and in Scaling choose User and define a linear relationship between the output in mV/V and Newton given by the calibration factor found by the procedure described in Appendix B.

E H	BM catman	6.0 [IN	TERACT
File	Worksheet	Measure	Add-In
📴 P	roject		
	🧕 I/O defini		
	Device se	tups	
÷… 🖸	🛃 catModule	3 S	
[🖬 Online do	cuments	
	🖉 Measurer	nent Wiza	rd
[I	🧾 Database	Manager	
<u>[</u>	🗿 Data Expl	orer	
	👌 Test Man	ager	
÷	🛃 QuickViev	v	
A	🖬 Auto Com	imand List	s
	🖉 Script pro	ject	
1	🎖 Favorites		
	🔋 Add-In		
§	🖇 VBScript		

	5 • 🖽 🖗	😰 📅 👯			The second se					
mple rat		Frequ	ency		Device ID					
) Hz	 Mean value 	N.A.	HBM	Spider8-55/	01,F06932,P26					
5lot	Name	Туре	Reading	Unit	Transducer type	Measuring range	Filter type	Tare value	Allow Tare	Shunt active
	🛇 unnamed	SR55f	1,71	mV/V	Fullbridge	12 mV/V 👻	Variable	0,000 mV/V 🚳	×	
	O unnamed	SB55f	3.83	mVΛV	Fulbridge	3 mV/V	Variable	0.000 mV/V	(x)	
Worksl roject	definitions	otions Help			s and Settings\lab\My Doo		Thomassen\Instal	ation\installation.IOD>		-
∎ cativ ∎ Onlii	ne documents	Devices	9 🕰 📩 🖗 🛙		hannel Device Options H					
	surement Wizard abase Manager	🔛 Device	Scan De	fine user s	caling < CPT Cone>			Lister.		A 11
	a Explorer	1 Spider8_1	C	Scaling method				Interface		Address
	t Manager	2	[Linearisation ta	able	*				
	kView Command Lists	3 4								
🛾 Scrij	pt project	<			VIN	N]			
Favo		/// channels		1 0	0		Measure			
🛿 Add 🕈 VBS		+2 🔤 🔂	🚥 📺 💿	2 1	5172					
3 ,00	unp:			3			Signal	Scaling	Status/Reading	Courts
		2	IN.	4			Gross	Scaling	Status/Heading	Sample
			ime Spider8_1)isplacement 1	6			O Net	🖌 User (mm		2 Hz
)isplacement 2	7			O Peak 2	vser [mm]		2 Hz
			PT Cone	8			UT Bak 2	User [N]		2 Hz
			nstallation Load	9 10				🔀 User [kN]		🚳 2 Hz
			CH 4	11			Apply shunt	📟 External [💁 2 Hz
			PT/Install Disp					🔀 User (mm		2 Hz
			2H6 2H7					🔤 External [2 Hz
				7302 N				External [2 Hz 2 Hz
			Channel 11		Software zero					2112
			Channel 12	Help	💆 Load	Save 🗸	🖌 ок 🛛 🗙 с	ancel		
		13 🥥 C	Channel 13		- NC					
		14 😂 🛛	Channel 14							
			Channel 15		😑 NC					

10 Measuring Devices and Configuration for Tests

The configuration of the measuring devices in Catman is started by turning on the MGCplus starting Catman and making a Device Scan. Both used and unused channels of the MGCplus connection boards are displayed in I/O definitions. The names of the channels of the connected measurement devices can be changed appropriately.

Project	Un char	nel definition <c:\document< th=""><th></th><th>. D</th><th></th><th>104-4- T</th><th>Rabiterration 101</th><th></th><th></th><th></th></c:\document<>		. D		104-4- T	Rabiterration 101			
I/O definitions					le Kristina Thomassen	IStatic Test\Testv	nthMembrane.IO)>		
Device setups		eet Measure Connection I/O C								
🖬 catModules	💕 🔒 🎒	🔯 🖷 📩 % 🛄 🛒 🖄	💈 🛞 🖌 🌄 🔟	🔲 🗹						
🖬 Online documents	Devices —									
🖌 Measurement Wizard	De 🔛	vice Scan 🔛 New dev	rice 🗾 🖄 Mo	odify	🗙 Remove					
🔟 Database Manager		Nan	ne		Device type		Interface		Address	
Data Explorer	1 MGC	plus_1		мс	Cplus	GPIBO		4		
Test Manager	2									
QuickView Auto Command Lists	3 4									
Script project										>
Favorites										
Add-In	1/0 channels									
VBScript	+= =+ 6	2 📼 📭 💿 🚸 🕅 🛱 🗄 🛛	ê li li li li 🌾 👘							
	-20	Mame Name	Connection	Settings	Sensor	Filter	Scaling	Status/Reading	9 💿	Sample rat
	1 🕥	Time MGCplus_1 (Sample rate 1)	O Time	MGCplus_1 San	ple					
	2 🕥	Atmospheric pressure	MGCplus_1 CH 1	NET (Eng.)	P6A 10bar	Auto	🖼 External [💁 G	iroup 1 (1
	3 🕥	Moog displacement	MGCplus_1 CH 2-1	NET (Eng.)	🔆 Device setting	Auto	🦌 User (mm		🧠 G	iroup 1 (1
	4 🕥		MGCplus_1 CH 2-2	NET (Eng.)	🔆 Device setting	Auto	🧏 User [kN]			iroup 1 (1
	5 🤤	MGCplus_1 CH 2-3	MGCplus_1 CH 2-3	NET (Eng.)	🔆 Device setting	Auto	📟 External [iroup 1 (1
	6 🥥	MGCplus_1 CH 2-4	MGCplus_1 CH 2-4	NET (Eng.)	😪 Device setting	Auto	📟 External (iroup 1 (1
	7 🥥		MGCplus_1 CH 2-5	NET (Eng.)	😪 Device setting	Auto	📟 External [iroup 1 (1
	8 🥥		MGCplus_1 CH 2-6	NET (Eng.)	😪 Device setting	Auto	📟 External [iroup 1 (1
	9 🤤		MGCplus_1 CH 2-7	NET (Eng.)	Q Device setting	Auto	🖼 External [iroup 1 (1
	10 🤤		MGCplus_1 CH 2-8	NET (Eng.)	Q Device setting	Auto	🖼 External [iroup 1 (1
	11 🕥		MGCplus_1 CH 3-1	NET (Eng.)	PP1 pile	Auto	🖼 External [iroup 1 (1
	12		MGCplus_1 CH 3-2	NET (Eng.)	PP2 pile	Auto	External [iroup 1 (1
	13		MGCplus_1 CH 3-3 MGCplus 1 CH 3-4	NET (Eng.) NET (Eng.)	Oevice setting	Auto Auto	External [iroup 1 (1 iroup 1 (1
	14		MGCplus_1CH 3-4	NET (Eng.)	Device setting	Auto	External [iroup 1 (1 iroup 1 (1
	<	FF3 12116046-001A [CH6-5]	Macbius TCH 3-5	INET IEnd.T	No FF3 Dile	Auto	External I		1 4	

After the configuration of the measuring devises as described in the following, check the Device setups. Make sure that the Transducer circuit and the Excitation is correct for all devices.

	it va	-	🖬 🐼 🗖	8 8	🔘 개도 결비	- + + + + + +	· 📂 📳	>> 44	M 📭	Ν?	• 🧿						
Image: Control of the model of the	ine ve	lue swi	ches Control	inputs													
Image: Control of the model of the	sduc	er In	out characteristi	c Signal c	onditioning	Analog outputs	Strain g	ages Peal	k value buffe	ers							
AB22 Display and Control Unit not mounted Image: Second Seco	ilot		🗹 Nan	ie	Туре	Reading	Unit	Signal	АР		Sensor		Tr	ansducer circuit		Excitation	
CP Haddix not mounted mode ne SG full bridge SV I Amospheric pressure MLS5 0.017 bar Net AP 801 SG full bridge SV None I MoGG displacement ML801 43.060 X Net AP 801 DC 10 V None I MGCha_1 DH 23 ML801 43.060 X Net AP 801 DC 10 V None I MGCha_1 DH 24 ML801 40.000 X Net AP 801 DC 10 V None I MGCha_1 DH 24 ML801 40.000 X Net AP 801 DC 10 V None I MGCha_1 DH 24 ML801 40.000 X Net AP 801 DC 10 V None I MGCha_1 DH 27 ML801 0.000 X Net AP 801 DC 10 V None I MGCha_1 DH 27 ML801 0.000 X Net AP 801 DC 10 V No I MGCha_1 DH 27 ML801 9.000 X N			HBM MGC	olus devid	ce 1 unna	med (HBM,CP3	2B,0,P2.	07)									1
○ 11 Atmospheric pressure ML55 0.017 bar Net AP 01 SG full birdge 5V 0 0 multi channel modu ML801 2 Net AP 001 DC 10 V None 0 1 MOG displacement ML801 49.963 Net AP 001 DC 10 V Amen 1 MOG displacement ML801 49.963 Net AP 001 DC 10 V Amen 1 MGCplus_1 CH 2.3 ML801 0.002 % Net AP 001 DC 10 V Amen 1 MGCplus_1 CH 2.3 ML801 0.001 % Net AP 001 DC 10 V Amen 1 MGCplus_1 CH 2.4 ML801 0.001 % Net AP 001 DC 10 V Amen 1 MGCplus_1 CH 2.4 ML801 0.001 % Net AP 001 DC 10 V Amen 1 MGCplus_1 CH 2.4 ML801 0.001 % Net AP 01 DC 10 V Amen 1 MGCplus_1 CH 2.4 ML801 10.001 % <			AB22 Display	and Contr	ol Unit not m	ounted											-
ip multi channel modu ML801 2 Net AP 801 DC 10 V None 11 MO06 diglacement ML801 46.952 % Net AP 801 DC 10 V DC 10 V 12 11 MO06 load ML801 46.952 % Net AP 801 DC 10 V DC 10 V 12 11 MO6Puts_1 CH 2.3 ML801 -0.002 % Net AP 801 DC 10 V DC 10 V 12 11 M66Puts_1 CH 2.4 ML801 -0.001 % Net AP 801 DC 10 V DC 10 V 12 11 M66Puts_1 CH 2.5 ML801 0.000 % Net AP 801 DC 10 V DC 10 V 13 M66Puts_1 CH 2.6 ML801 0.000 % Net AP 801 DC 10 V DC 10 V DC 10 V 14 M66Puts_1 CH 2.8 ML801 0.001 % Net AP 801 DC 10 V DC 10 V DC 10 V 15 multi channel modu ML801 1399.641 kPa Net AP 810 S6 full bidge DC 10 V <																	
1 MOG displacement ML801 48,952 % Net AP 801 0 DC 10 V DC 10 V 1 MOG displacement ML801 49,988 % Net AP 801 0 DC 10 V 0 1 MGCplus_1 CH 2.3 ML801 40,002 % Net AP 801 0 DC 10 V 0 1 MGCplus_1 CH 2.4 ML801 40,001 % Net AP 801 0 DC 10 V 0 1 MGCplus_1 CH 2.4 ML801 0,001 % Net AP 801 0 DC 10 V 0 1 MGCplus_1 CH 2.4 ML801 0,000 % Net AP 801 0 DC 10 V 0 1 MGCplus_1 CH 2.8 ML801 0,000 % Net AP 801 0 DC 10 V 0 1 MGCplus_1 CH 2.8 ML801 40.001 % Net AP 810 5 S fi fil bridge 2.5 V 1 PP1 <th< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></th<>																	
2 1 MOG load ML801 49.805 % Net A P 801 DC 10 V 3 1 MGCphus_1 CH 2.3 ML801 -0.002 % Net A P 801 DC 10 V 5 1 MGCphus_1 CH 2.4 ML801 -0.001 % Net A P 801 DC 10 V 5 1 MGCphus_1 CH 2.4 ML801 0.000 % Net A P 801 DC 10 V 5 1 MGCphus_1 CH 2.5 ML801 0.000 % Net A P 801 DC 10 V 5 1 MGCphus_1 CH 2.8 ML801 -0.001 % Net A P 801 DC 10 V 6 1 MGCphus_1 CH 2.8 ML801 -0.001 % Net A P 810 DC 10 V 6 1 PP1 ML801 1192.924 KPa Net A P 810 SG ful bidge SG ful bidge 7		d,			ML801			Net	AP 801			DC	10 V		Nor	ne	
3 9 1 M6Cpkuz_1 CH 2.3 ML801 4.0002 % Net A P 801 0	1	<u>10 v</u>	II MOOG displa	acement	ML801	48,952	%	Net	AP 801			DC	10 V				
4 9-1 MGCpku_1CH 24 ML801 40011 2 Net AP 801 0C10V 0C10V 0 5 9-1 MGCpku_1CH 25 ML801 0.001 2 Net AP 801 0C10V 0 5 9-11 MGCpku_1CH 25 ML801 0.000 2 Net AP 801 0C10V 0 7 9-11 MGCpku_1CH 25 ML801 0.001 2 Net AP 801 0C10V 0 8 9-11 MGCpku_1CH 25 ML801 0.001 2 Net AP 801 0C10V 0C10V 0 9 1 MGCpku_1CH 28 ML801 0.001 2 Net AP 801 0C10V 0C10V 0 10 0 1 MGCpku_1CH 28 ML801 1299.641 KPa Net AP 810 56 full bridge 0								Net				DC	10 V				
5 9. 11 M6Cplus_1 CH 2.5 ML801 0.001 ½ Net A P 801 0 0C 10 V 0 6 9. 11 M6Cplus_1 CH 2.5 ML801 0.0000 ½ Net A P 801 0	3				ML801				AP 801			DC	10 V				
3 9 11 M6Cplus_1 CH 2-6 ML801 0.000 % Net A P 801 0								Net									
2 1 MGCplus_1 CH 2-7 ML801 0.001 % Net AP 801 DC 10 V DC 10 V 3 1 MGCplus_1 CH 2-8 ML801 0.001 % Net AP 801 DC 10 V DC 10 V 4 1 MGCplus_1 CH 2-8 ML801 0.001 % Net AP 801 DC 10 V DC 10 V 4 1 PP1 ML801 1399.641 KPa Net AP 810 S6 ful bridge Z.5 V 2 1 PP2 ML801 1399.641 KPa Net AP 810 S6 ful bridge A 3 1 PP3 ML801 1195.040 KPa Net AP 810 S6 ful bridge A 5 V MSCplus_1 CH 34 ML801 1192.032 KPa Net AP 810 S6 ful bridge A 5 V ML801 1192.032 KPa Net AP 810 141815583796296 AS 66 ful bridge S6 ful bridge 5 V ML801 </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>Net</td> <td></td> <td></td> <td></td> <td>DC</td> <td>10 V</td> <td></td> <td></td> <td></td> <td></td>								Net				DC	10 V				
8 9 1 MGCplus_1 CH 2.8 ML801 40.001 ½ Net AP 801 DC 10 V 2.5 V 1 0 10 FP1 ML801 1390.641 KPa Net AP 810 SG full bridge 2.5 V 2 11 FP1 ML801 1390.641 KPa Net AP 810 SG full bridge 3 11 FP2 ML801 11050.302 KPa Net AP 810 SG full bridge 3 11 FP3 ML801 11092.233 KPa Net AP 810 SG full bridge 4 0 11 MGCplus_1 CH 3.4 ML801 11092.233 KPa Net AP 810 SG full bridge 5 11 PF5 ML801 11092.233 KPa Net AP 810 SG full bridge 6 11 PF5 ML801 11300.302 KPa Net AP 810 SG full bridge SG full bridge 7 11 PF7	6				ML801			Net				DC	10 V				
Image: Second	7							Net									
1 PP1 ML801 1399.641 kPa Net AP 810 SG full bridge Additional 2 11 PP2 ML801 1263.192 kPa Net AP 810 SG full bridge Additional 3 11 PP3 ML801 1150.941 kPa Net AP 810 SG full bridge Additional 4 11 MGCplus_1 CH 34 ML801 1150.941 kPa Net AP 810 SG full bridge Additional 5 11 PP5 ML801 1172.015 kPa Net AP 810 At 8155683796296 SG full bridge Additional 6 11 PP5 ML801 1172.015 kPa Net AP 810 At 8155683796296 SG full bridge Additional 6 11 PP5 ML801 1150.002 kPa Net AP 810 At 815573050844 SG full bridge Additional SG full bridge Additional Additional SG full bridge Additional Additional	8							Net									
2 0 11 PP2 ML801 1263,192 kPa Net AP 810 S6 full bridge Image: S6 full bridge 3 0 11 PP3 ML801 1155,801 kPa Net AP 810 S6 full bridge S6 full bridge S6 full bridge 4 0 11 MGCpLus_1 CH 34 ML801 1102,2233 kPa Net AP 810 S6 full bridge		d,	multi chan	nel modul	ML801		kPa	Net	AP 810			SG	full bridge		2.5	v	
3 1 IPP3 ML801 1156.840 kPa Net AP 810 SG full bridge SG full bridge 4 1 MGCplus_1 CH 34 ML801 11020-223 kPas Net AP 810 SG full bridge SG full bridge 5 11 PP5 ML801 11020-223 kPas Net AP 810 SG full bridge SG full bridge 6 11 PP5 ML801 11020-223 kPas Net AP 810 H18155735063444 SG full bridge SG full bridge 7 11 PP7 ML801 11507.203 kPa Net AP 810 118155735059444 SG full bridge SG full bridge 6 11 PP7 ML801 11507.203 kPa Net AP 810 11815574317.1286 SG full bridge SG full bridge 1 Multi channel modu ML801 2 Net AP 801 SG full bridge SG full bridge 2 11 MGCplus_1 CH 4.1 ML801 40.940 AP 801 <td>1</td> <td>\diamond</td> <td>II PP1</td> <td></td> <td>ML801</td> <td>1399,641</td> <td>kPa</td> <td>Net</td> <td>AP 810</td> <td></td> <td></td> <td>SG</td> <td>full bridge</td> <td></td> <td></td> <td></td> <td></td>	1	\diamond	II PP1		ML801	1399,641	kPa	Net	AP 810			SG	full bridge				
4 ¹	2	\diamond	PP2		ML801	-1263,192	kPa	Net	AP 810			SG	full bridge				
5 11 PP5 ML801 1172/815 kPa Net AP 810 1418155883796296 A S6 full bridge 5 1 PP5 ML801 1380,802 kPa Net AP 810 141815573906344 A S6 full bridge A 7 1 PP7 ML801 1380,802 kPa Net AP 810 1418155730053444 A S6 full bridge A 3 1 Membrane ML801 1159,202 kPa Net AP 810 1418155733071296 A S6 full bridge A 1 1 Membrane ML801 1159,203 kPa Net AP 810 E 14181543171296 A S6 full bridge A 1 1 MGCplus_1 CH 4+1 ML801 149,203 x Net AP 801 DC 10 V None 2 1 MGCplus_1 CH 4+2 ML801 49,943 x Net AP 801 DC 10 V A 3 1 MGCplus_1 CH 4+2 ML801 49,948 Net	3	\diamond	I PP3		ML801	1156,840	kPa	Net	AP 810			SG	full bridge				
6 1 IPP6 ML801 I300,002 kPa Net A P 810 I 418155735069444 A S6 full bridge 7 11 PP7 ML801 I1557201 kPa Net A P 810 I 418155735069444 A S6 full bridge 8 11 PP7 ML801 I1557201 kPa Net A P 810 I 418155735171286 A S6 full bridge 8 II Membrane Mdu0 II.57,955 KPa Net A P 810 I 41815543171286 A S6 full bridge 11 11 McChaus_1 CH 4.1 ML801 429,203 X Net A P 801 DC 10 V None 12 11 MGCplus_1 CH 4.2 ML801 40,545 X IN Net A P 801 DC 10 V None 2 11 MGCplus_1 CH 4.2 ML801 40,546 X IN Net A P 801 DC 10 V DC 10 V	4	\diamond	I MGCplus_1	CH 3-4	ML801	-1092,233	kPas	Net	AP 810			SG	full bridge				
7 ¹	5				ML801	1172,815	kPa	Net	AP 810	Θ	418155683796296	🔥 SG I	full bridge				1
8 1 Membrane ML801 1157/953 kPa Net AP 801 AP 801 SG full bridge None 1 1 1 MGCplus_1 CH 4.1 ML801 X Net AP 801 DC 10 V None 2 1 MGCplus_1 CH 4.2 ML801 49.545 X Net AP 801 DC 10 V None 3 1 MGCplus_1 CH 4.2 ML801 49.545 X Net AP 801 DC 10 V Method 3 1 MGCplus_1 CH 4.3 ML801 49.545 X Net AP 801 DC 10 V Method	6				ML801	1380,882	kPa	Net	AP 810	Θ	418155735069444	🔥 SG I	full bridge				1
glip nutli channel modul ML801 X Net AP 801 DC 10 V None 1 % 11 MGCpLus_1 CH 4.1 ML801 -49.203 % Net AP 801 DC 10 V DC 10 V 2 % 11 MGCpLus_1 CH 4.2 ML801 -40.545 % IN Net AP 801 DC 10 V DC 10 V 3 % 11 MGCpLus_1 CH 4.3 ML801 -40.548 % IN Net AP 801 DC 10 V DC 10 V	7	\diamond	II PP7		ML801	1159,203	kPa	Net	AP 810	Θ	418155743171296	🔥 SG I	full bridge				
1 1 MGCplus_1CH 41 ML801 49/209 % Net AP 801 DC 10 V A 2 1 MGCplus_1CH 42 ML801 49/209 % Net AP 801 DC 10 V A 3 1 MGCplus_1CH 43 ML801 49/209 % Net AP 801 DC 10 V A	8	\diamond	II Membrane		ML801	1157,963	kPa	Net	AP 810	Θ	418154912731481	🔥 SG I	full bridge				
2 11 MGCplus_1 CH 4-2 ML801 48.545 X IN Net AP 801 D C 10 V 3 12 11 MGCplus_1 CH 4-3 ML801 -48.545 X IN Net AP 801 D C 10 V		1	multi chan	nel modul	ML801		%	Net	AP 801			DC	10 V		Nor	ne	
2 11 MGCplus_1 CH 4-2 ML801 48.545 X IN Net AP 801 D C 10 V 3 12 11 MGCplus_1 CH 4-3 ML801 -48.545 X IN Net AP 801 D C 10 V	1	-	MGCplus 1	CH 4-1	ML801	-49,203	%	Net	AP 801			DC	10 V				
3 💁 11 MGCplus_1 CH 4-3 ML801 40:948 % IN Net AP 801 D C 10 V	2							Net	AP 801			DC	10 V				
									AP 801								
	4								AP 801								-
																	14
14	💾 sta	art	60	向 Fra Ca	atman com	🔒 Dokume	nter	HE HE	3M catman 6		10 I/O Channel def	MGColi	us Assista	CPT - Microsoft	W Test co	nfigurati DA	08888

	1.5								·• 1			
Slot		3	Name	Туре	Reading	Unit	Signal	АР		Sensor	Transducer circuit	Excitation
	I		HBM MGCplus devi	ce1 unna	med (HBM,CP:	32B,0,P2.	07)					
			AB22 Display and Conti	rol Unit not m	iounted							
	Θ		CP Harddisk not mount									
1	\diamond	1!	Atmospheric pressure	ML55	0,017	bar	Net	AP 01			SG full bridge	5V
2	đ		multi channel modu	ML801		%	Net	AP 801			DC 10 V	None

		·							<u>.</u>			
Slot	C,	<u></u>	Name	Туре	Reading	Unit	Signal	АР		Sensor	Transducer circuit	Excitation
	E		HBM MGCplus devi	ice 1 unna	med (HBM,CP3	2B,0,P2.	07)					
			AB22 Display and Cont	rol Unit not m	iounted							
	Θ		CP Harddisk not mount	ed								
1	$ \diamond $	11 .	Atmospheric pressure	ML55	0,017	bar	Net	AP 01			SG full bridge	5 V
2	d,		multi channel modu	ML801		%	Net	AP 801			DC 10 V	None
2.1	10 1	11	MOOG displacement	ML801	48,952	%	Net	AP 801			DC 10 V	
2.2	<u>10 v</u> 1	11	MOOG load	ML801	49,868	%	Net	AP 801			DC 10 V	
2.3	1 <u>0</u> v 1	1!	MGCplus_1 CH 2-3	ML801	-0,002	%	Net	AP 801			DC 10 V	
				111.004	0.004	<u>~-</u>		100.004			no.eou	

Slot Image Name Type Reading Unit Signal AP Sensor Transducer circuit 2.8 Image 1 MGCplus_1 CH 2:8 ML801 0.001 % Net AP 801 DC 10 V SG full bridge 2.5 3 Image 1 PP1 ML801 1399.641 R ^a AP 810 SG full bridge 2.5 3.1 1 PP1 ML801 1399.641 R ^a Net AP 810 SG full bridge 2.5 3.2 1 PP2 ML801 1156.840 R ^b Net AP 810 SG full bridge 2.5 3.3 11 PP3 ML801 1156.840 R ^b Net AP 810 SG full bridge 2.5 3.4 11 MGCplus_1CH 3:4 ML801 1156.840 R ^b Net AP 810 SG full bridge SG full bridge 2.5 3.6 11 PP5 ML801 11390.842 R ^b AP 810 H818573371256	Excitation
3 1 PP1 MLB01 1399,641 KPa AP 810 SG full bridge SG full bridge 2.5 31 I 11 PP1 MLB01 1399,641 KPa AP 810 SG full bridge SG full bridge 2.5 32 II PP2 MLB01 -1263,192 KPa Net AP 810 SG full bridge SG full bridge 36 SG full bridge 31 ML PP3 MLB01 -1263,192 KPa Net AP 810 SG full bridge SG full bridge SG full bridge 31 ML PP3 MLB01 -1092,233 KPa Net AP 810 SG full bridge SG full bri	īV
3.1 ○ 11 PP1 ML801 1399,641 kPa Net AP 810 SG full bridge 3.2 ○ 11 PP2 ML801 -1263,192 kPa Net AP 810 SG full bridge SG full bridge 3.3 ○ 11 PP2 ML801 -1263,192 kPa Net AP 810 SG full bridge 3.3 ○ 11 PP3 ML801 1156,940 kPa AP 810 SG full bridge SG full bridge 3.4 ○ 11 MGCplus_1 CH 34 ML801 -1092,233 kPa Net AP 810 It1875683796236 SG full bridge 3.5 ○ 11 PP5 ML801 1172,915 kPa Net AP 810 It1875683796236 SG full bridge 3.6 ○ 11 PP5 ML801 1139,203 kPa Net AP 810 It1815563796236 SG full bridge SG full bridge 3.6 ○ 11 PP7 ML801 1139,203 kPa Net	i V
22 ○ 11 PP2 ML001 -1263,192 № AP 810 SG full bridge 33 ○ 11 PP3 ML001 1156,040 № AP 810 SG full bridge 34 ○ 11 MG2plas_1 CH 34 ML001 1192,223 № AP 810 SG full bridge 35 ○ 11 MC5plas_1 CH 34 ML001 1172,815 № AP 810 418155683796296 SG full bridge 36 ○ 11 PP5 ML001 1380,882 № AP 810 4181555683796296 SG full bridge 37 ○ 11 PP7 ML001 1380,203 № AP 810 € 41815573059444 △ SG full bridge 38 ○ 11 PP7 ML001 1157,363 № Net AP 810 € 418154312731481 △ SG full bridge 38 ○ 11 ML001 1157,363 № Net AP 810 € 418154312731481<	
3.3 ○ 11 PP3 ML801 1156,840 kPa Net AP 810 SG full bridge SG full bridge 3.4 ○ 11 MGcplus_1 CH 34 ML801 -1092,233 kPas Net AP 810 SG full bridge SG full bridge 3.5 ○ 11 PP5 ML801 1172,815 kPa Net AP 810 → 1418155683796296 △ SG full bridge 3.6 ○ 11 PP5 ML801 1380,882 kPa Net AP 810 → 1418155735063444 △ SG full bridge 3.7 ○ 11 PP7 ML801 1159,203 kPa Net AP 810 → 1418155743171236 △ SG full bridge 3.8 ○ 11 Membrane ML801 1157,953 kPa Net AP 810 → 141815912731481 △ SG full bridge	
0.4 ○ 11 MGCplue_1 CH 34 ML801 -1092,233 kPas Net AP 810 SG full bridge SG full bridge 15.5 ○ 11 PP5 ML801 1172,015 kPa Net AP 810 418155683795296 △ SG full bridge A 16.6 ○ 11 PP5 ML801 11390,082 kPa Net AP 810 ○ 418155735069444 △ SG full bridge A 17.0 ○ 11 PP7 ML801 1159,203 kPa Net AP 810 ○ 418155743171236 △ SG full bridge A 18.8 ○ 11 Membrane ML801 1157,953 kPa Net AP 810 ○ 418154312731481 △ SG full bridge A	
35 ○ 11 PP5 ML801 1172,815 № AP 810 ➡ 18155583796296 ▲ SG full bridge 36 ○ 11 PP6 ML801 1380,882 № AP 810 ➡ 418155583796296 ▲ SG full bridge □ 37 ○ 11 PP7 ML801 1159,203 № AP 810 ➡ 41815573069444 ▲ SG full bridge □ 38 ○ 11 PP7 ML801 1159,203 kPa Net AP 810 ➡ 418154312731481 ▲ SG full bridge □	
36 ◊ 11 PP6 ML801 1380,882 kPa Net AP 810 ☐ 418155735063444 △ S6 full bridge 37 ◊ 1! PP7 ML801 1159,203 kPa Net AP 810 ☐ 418155743171296 △ S6 full bridge 38 ◊ 1! Membrane ML801 1157,963 kPa Net AP 810 ☐ 418154912731481 △ S6 full bridge	
377 🐼 11 PP7 ML801 1159,203 kPa Net AP 810 🖨 418155743171296 🕂 SG full bridge 388 爻 11 Membrane ML801 1157,963 kPa Net AP 810 🖨 418154912731481 ⚠ SG full bridge	
18 📀 11 Membrane ML801 1157,963 kPa Net AP 810 🖻 418154912731481 🛣 SG full bridge	
a and a set of the se	
	ne
18 12 11 MGCplus 1 CH 5-8 ML801 0,000 % Net No AP No AP	
	v
	•
.1 U VS10-1 ML801 -137,398 mm Net AP 8361 € 4179438375 A potentionmeter	
2 5 11 MGCplus_1 CH 6-2 ML801 148.056 mm Net AP 836i potentiometer	
.4 동 11 MGCplus, 1 CH 6-4 ML801 · 1490330 mm Net AP 836i potentiometer	
.5 🛃 11 WS10-2 ML801 -139,378 mm Net AP 836i 🖨 41794385775463 🔨 potentiometer	
56 5 11 MGCplus 1 CH 6-6 ML801 EIGE033 mm Net AP 836i potentiometer	

10.1 Load Cell 2

The load cell is connected to the Modular Test Controller and the measurements are recorded by both MOOG and Catman.

Figure 26: Load cell 2.

Like Load cell 1, Load cell 2 is a standard HBM transducer and can be found in the same manner in the Catman Database.

10.2 Displacement of Hydraulic Cylinder 2

The vertical position of hydraulic cylinder 2 is measured by a displacement transducer connected to the MOOG Modular Test Controller.

Figure 27: Displacement transducer for Hydraulic cylinder 2.

10.3 Displacement Transducers WS10-1 and WS10-2

The real displacement of the pile head is measured by means of two ASM WS10 displacement transducers with a range of 0–125 mm. The displacement transducers are connected to Spider8 and the data are recorded in Catman.

Figure 28: Left: Bar on which the transducers are positioned. Right: Position of the displacement transducers above the pile lid.

Figure 29: Displacement transducer WS10-1.

Figure 30: Displacement transducer WS10-2.

It is possible to define your own set of transducers in the HBM database. Right click on the Sensor column and chose "Connect to sensor from database" and press New. It is then possible to define your own transducer. The displacement transducers are defined as potentiometers and the calibration factor (sensitivity) is defined manually.

HBM catman & 0 FINTED	ACTIVE1						💶 🗖 🔼
itabase 2.2 Rel. 8 (C:\Docum	ents and Settings\lab\My Documents\HBM\catmanEasy\HBM	_SENSO 📮 🗖 🔀					
it 🐴 Eind 🥨 <u>H</u> elp			e Kristina Thomassen\	Static Test\TestW	/ithMembrane		
🐁 🗅 🛍 🗙 😓 🚵 🗛	🏥 🚳				rennembrane.	100	
	420946218055556	Sensor-ID					
U10M 500kN	W\$10-2	Description					
🔟 U15			🗙 Remove				
E U93		Туре	Device type		Interface		Address 🔥
☑ Z4A ☑ Z30		Serial number	Cplus .	GPIBO		4	
Z30A	Sensor data Sensor management						
ain gage transducers							
ain gage bridges	Potentiometer V Cir	ruit					>
uctive transducers nperature transducers							
voltage/current	10 Excitation [V]						
quency	4 wire 🔽 Connection type						
т			Sensor	Filter	Scaling	Status/Reading	💿 Sample rate 🔷
sistance Inters	Transducer characteristic				-		
transducers			 Device setting Device setting 	Auto Auto	External [Group 1 (1 H
Membrane	Electrical->Physical 🤤 None	 Correction 	WS10-1	Auto	External [Group 1 (1 H
ID 422946258449074 PP1	Electrical->Physical Correction		Q Device setting	Auto	External [Group 1 (1 H
PP2			Q Device setting	Auto	🛒 External [Group 1 (1 H
PP3	Electrical unit mV/V Physical unit mm		🔆 Device setting	Auto	📟 External [Group 1 (1 H
PP5	0 Zero 0 Zero		- £ WS10-2	Auto	🛒 External [🧟 Group 1 (1 H
PP6 PP7	973,8 Sensitivity 125 Nomin	al value	😪 Device setting	Auto	🛒 External [🚳 Group 1 (1 H
WS10-2			😪 Device setting	Auto	🛒 External [Group 1 (1 H
WS10-1	Define via two points		😪 Device setting	Device setting	🝯 External [Sroup 1 (1 H
se width modulation 🛛 🗸							
	🖉 Update entry	/ 🖸 Quit					
							×
		15:03					>
							15:03
🛃 start 🔰 🤌 🙆	🕽 Fra Catman computer 🛛 🚰 Dokumenter 🛛 🕅 CPT - I	Microsoft Word 🛛 🕅 Te	st configuration	HBM catman 6.0 [If	v 10 1/0.0	hannel definitio Di	A 🔇 💐 😵 💑 15:03
		The second se	CAT/	a			

10.4 Pore Pressure Transducers

The calibration factors for each pore pressure transducer are given from the manufacturer for each transducer. Hence, it is important to change the calibration factor, if any of the transducers are replaced by another. The transducer is connected to the MGCplus and the data is recorded in Catman.

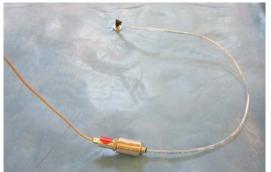


Figure 31: Example of pore pressure transducer.

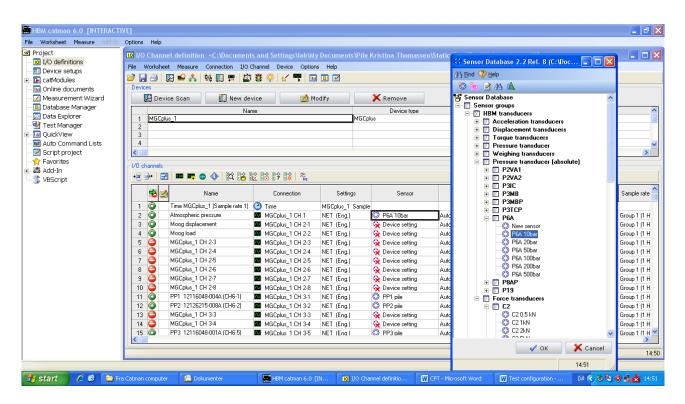
The pore pressure transducers can also be defined as a new device in the database.

HBM catman 6.0 [INTERACTIV	/E]					- 2 ×
or Database 2.2 Rel. 8 (C:\Docum	nents and Settings\lab\My Documents\HBM\catmanEasy\HBM	_SENSO 🔳 🗖 🔀				
🛃 Edit 🔠 Eind 🥨 Help			tina Thomassen\Sta	atic Test\TestWi	hMembrane.IOD>	
🛛 🖒 🖒 🏠 🗶 🗞 🖿 AA	û 🙆					
	420944241898148	Sensor-ID				
	PP1	Description	Remove			
👋 U10M 500kN			Device type		Interface	Address 🔥
⊞ ∐ U15		Туре	Device type	GPIBO	Intellace	4
		Serial number				
	Sensor data Sensor management					
						×
Strain gage transducers Strain gage bridges	Full bridge Circ	cuit				
Inductive transducers						
Temperature transducers						
DC voltage/current	Auto Carrier frequency		Sensor	Filter	Scaling Statu	us/Reading 👩 Sample rate 🛆
Frequency					-	
Resistance	Transducer characteristic		-		🛒 External [Q Group 1 (1 H
Counters					🖬 External [Group 1 (1 H
My transducers	Electrical->Physical One	 Correction 			External [External]	Group 1 (1 H Group 1 (1 H) Group 1 (1 H)
Membrane PP1	Electrical->Physical Correction				External [Group 1 (1 H
					External [Group 1 (1 H
🔅 PP3	Electrical unit mV/V Physical unit kPa		PP2 pile		🛒 External [Group 1 (1 H
	-0,06 Zero 0 Zero		Device setting	Auto	🛒 External [🗟 Group 1 (1 H
	11,722 Sensitivity 500 Nomina	al value	-		🍯 External [🧟 Group 1 (1 H
					🛒 External [Sroup 1 (1 H
	Define via two points				🝯 External [Group 1 (1 H
Pulse width modulation					■ External [■ External í	Group 1 (1 H Group 1 (1 H) Group 1 (1 H)
					External [Group 1 (1 H
	😰 Update entry	y 🚺 Quit			External [Group 1 (1 H
						>
		14:59				14:58
🐉 start 🛛 🏉 🚱 🕞 Fra) Catman computer 🛛 📋 Dokumenter 🛛 🕅 CPT - Microsoft	't Word 🛛 🗰 Test configu	uration 🔛 HBM	catman 6.0 [IN	I/O Channel definitio	a 🛛 DA < 🌭 🌯 😵 🎭 💑 14:59

10.5 Membrane Suction Transducer

The membrane suction transducers can also be defined as a new device in the database.

	ments and Settings\lab\My Documents\HBM\catmanEasy\HBM_S		elp	Kristina Thomasser	h\Static Test\Test	WithMembrane.IOD >	> 	-
) 🚾 A	A 🛝 🎱							
^	422946258449074 S	ensor-ID						
	ID 422946258449074 D	escription		🗙 Remove				
	т	ype	huce	Device type	CDIDO	Interface	4	Address
		erial number	MGC	pius	GPIBO		4	
	۰ »	enai number						
	Sensor data Sensor management		_					
	Transducer settings		1					
	Full bridge 🗸 Circuit							
2	2,5 Excitation [V]							
	Auto Carrier frequency		Settings	Sensor	Filter	Scaling	Status/Reading	💿 Sample
			T (Eng.)	🙀 Device setting	Auto	🖭 External [🔍 Group
	Transducer characteristic		T (Eng.)	🔆 Device setting	Auto	🛒 External [💁 Group '
	📔 Linear 🗸 Electrical->Physical 🤤 None	 Correction 	T (Eng.)	Device setting	Auto	📟 External [💁 Group '
			[(Eng.)	Q Device setting	Auto	🔤 External [Group Group
	Electrical->Physical Correction		T (Eng.)	Oevice setting PP1 pile	Auto Auto	External [External [Group Group
	Electrical unit mV/V Physical unit %		T (Eng.) T (Eng.)	PP1 pile	Auto	External [Group 1
			T (Eng.)	Q Device setting	Auto	External [Group 1
	0 Zero 0 Zero		T (Eng.)	Q Device setting	Auto	External [Group
	2 Sensitivity 100 Nominal va	alue	T (Eng.)	PP3 pile	Auto	🖼 External [Group
			T (Eng.)	PP4 pile	Auto	🖭 External [🔍 Group '
_	Define via two points		T (Eng.)	🔇 PP5 pile	Auto	🛒 External [💁 Group 1
~			T (Eng.)	🔇 Membrane	Auto	📟 External [🔍 Group 1
>			T (Eng.)	Device setting	Auto	🔤 External [😋 Group 1
	🖉 Update entry	🚺 🔯 Quit	T (Ena.)	🚱 Device settina	Auto	🖬 External 🛙		🔯 Group 1
		_						


10.6 Air Pressure Transducer

To separate the changes in pore pressure from the changes in air pressure in the laboratory, an absolute pressure sensor of the type HBM p6a 10 bar 2mV/V is placed next to the test setup during tests. The transducer is connected to the MGCplus and the data is recorded in Catman.

Figure 32: Air pressure transducer.

The air pressure transducer is a standard HBM transducer and can be found in the database.

10.7 Vacuum Pump

10.8 Pressurised Tube

11 Measuring Devices and Configuration for Uninstallation

See Chapter 8 about installation.

12 Miscellaneous Equipment

12.1 Aluminium Frames

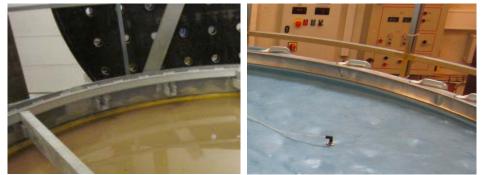


Figure 33: Aluminium frame 1 (to the left) is used during installation and uninstallation of the pile, sand preparation, and when conducting CPTs. Aluminium frame 2 (to the right) is used during tests.

12.2 For workspace

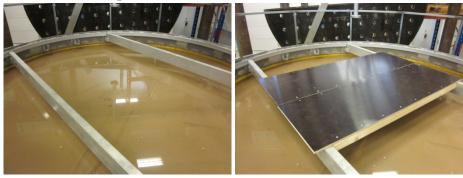


Figure 34: Aluminium bars no. 7 and 8 and footbridges.

12.3 Transition Pieces

Figure 35: Transition piece 1 (to the left) is used when conducting CPTs. Transition piece 2 (to the right) is used when installing or uninstalling the pile.

Figure 36: Transition piece for operating the pile with the ceiling crane.

12.4 Felt Cloth and Membrane

Figure 37: Felt cloth and Membrane

12.5 Tools

Figure 38: Brush for cleaning the pile.

Figure 39: Screwdrivers etc. for moving the rigs with the hydraulic pistons.

Figure 40: Compressor for cleaning the pore pressure pipes and the sand box edge.

Figure 41: Clamp for tightening the aluminium frames to the sand box edge.

Figure 42: Ratchet for connecting the pile and the CPT to the transition pieces and for tightening the rig with Hydraulic piston 1 to the load beam when conducting CPTs.

13 Bibliography

Borup, M., og J. Hedegaard. Data Report 9403 - Baskarp Sand No 15. Aalborg University, 1995.

- Brinkgreve, R. B. J., og W. Swolfs. *PLAXIS 3D Foundation, Material mModels Manual, Version 2.* PLAXIS, 2007.
- Ibsen, L. B., M. Hanson, T. Hjort, og M. Thaarup. *MC-Parameter Calibration for Baskarp Sand No. 15.* DCE Technical Report No. 62, Aalborg University, 2009.
- Larsen, Kim André. *Static Behaviour of Bucket Foundations.* Aalborg: Department of Civil Engineering, Aalborg University, 2008.

Randolph, M., og S. Gourvenec. Offshore Geotechnical Engineering. Spon Press, 2011.

SibelcoNordic. »Baskarpsand Siktanalys B15.« Data sheet, 2008.

Thomassen, Kristina. *Test procedure for Axially Loaded Piles in Sand*. DCE Technical Report No. 196, Aalborg University, 2015.

Appendix A Equipment and Specifications

Specifications	-	Unit		
Installation rate	6	mm/s		
Gradient	0,9 <i>i</i> _{crit}	-		
Measurements	Unit	Measured by	Connected to	
Displacement	mm	WS17KT	Spider8	
Load	kN	Load cell 1	Spider8	
Time	S			
Equipment	Manufacturer	Туре	Specification	Calibration factor
Hydraulic pump 1	Hydra	1SPA1 2-S	250 bar	
Hydraulic cylinder 1	IJМ		250 bar	
Position transducer	ASM	WS10ZG-1250-25- PP530-M4-M12	1250 mm	25.0291 pulse/mm
Displacement transducer	ASM	WS17KT-2500-10V- L10-M4-M12	2500 mm	4.000 V/m
Load cell 1	HBM	U10M	250 kN	2.119 mV/V
Ceiling crane				
Pile	AAU			
Transition piece 2	AAU			
Aluminium ring 1	AAU			
Data acquisition	Manufacturer	Туре		
Spider8	HBM	Spider8		
Catman	HBM	Catman 6.0		

Table 2: Installation and uninstallation equipment and specifications.

Table 3: Soil preparation equipment and specifications.

Specifications		Unit
Vibrator penetration rate	2	min/hole
Gradient	0,9	-
Equipment	Manufacturer	Туре
Rod vibrator	Wacher Neuson	IRFU 45 (rod vibrator) M2000 (motor)
Earmuffs		
Vibration gloves		
Stopwatch		
Helmet		

Specifications		Unit		
Penetration rate	5	mm/s		
Measurements	Unit	Measured by	Connected to	
Cone resistance	Ν	CPT device	Spider8	
Displacement	mm	WS17kt	Spider8	
Load	kN	Load cell 1	Spider8	
Time	S			
Equipment	Manufacturer	Туре	Specification	Calibration factor
Hydraulic pump 1	Hydra	1SPA1 2-S	250 bar	
Hydraulic cylinder 1	IJМ		250 bar	
Position transducer	ASM	WS10ZG-1250-25- PP530-M4-M12	1250 mm	25.0291 pulse/mm
Displacement transducer	ASM	WS17KT-2500-10V- L10-M4-M12	2500 mm	4.000 V/m
Load cell 1	HBM	U10M	250 kN	2.119 mV/V
CPT device	AAU		4000 N	Must be calibrated on a regular basis, see App. A
Transition piece 1	AAU			
Data acquisition	Manufacturer	Туре		
Spider8	HBM	Spider8		
Catman	НВМ	Catman 4.0		
Equipment CPT calibration	Manufacturer	Туре	Specification	Calibration factor
Load cell	HBM	S9 5	5 kN	2mV/V
Lathe				

Table 4: CPT equipment and specifications.

Pull-out rate *			-		
	0,002	mm/s			
Loading frequency **	0,1	Hz			
Sample rate *	1	Hz			
Sample rate **	2	Hz			
Measurements	Unit	Measured by	Connected to	Connection boards	Box name
Time (MOOG)	s	-	-	_	
Time (Catman)	S				
Load	Ν	Load cell 2	Modular Test controller MGCplus	AP801	
Disp. of hydraulic cylinder 2	mm	Disp. of hydraulic cylinder 2	Modular Test controller MGCplus	AP801	
Disp. pile head	mm	WS10-1 WS10-2	MGCplus	AP836i	WS10-1 WS10-2
Pore pressure 1 ***	kPa	PP1	MGCplus	AP810i	CH6-1
Pore pressure 2 ***	kPa	PP2	MGCplus	AP810i	CH6-2
Pore pressure 3 ***	kPa	PP3	MGCplus	AP810i	CH6-5
Pore pressure 4 ***	kPa	PP4	MGCplus	AP810i	CH6-6
Pore pressure 5 ***	kPa	PP5	MGCplus	AP810i	CH6-7
Membrane pressure ***	kPa	Membrane	MGCplus	AP810i	CH6-8
Air pressure ***	kPa	р6а	MGCplus	AP810i	рба
Equipment	Manufacturer	Туре	Specification	Calibration factor	Zero point
Hydraulic pump 2	Hydra	1SPA1 2-S	250 bar	-	-
Hydraulic cylinder 2	LJM		250 bar		
Disp. of hydraulic cylinder 2	MooG	S106			
Load cell 2	HBM	U10M	250 kN	2.1171 mV/V	0 mV
WS10-1	ASM	WS10-125-R1K-L10- SBO-D8	125 mm	7.7879 mV/V/mm	0 mV
WS10-2	ASM	WS10-125-R1K-L10- SBO-D8	125 mm	7.7904 mV/V/mm	0 mV
PP1 ***	LISAB	NS-B (12126215- 004A)	5 bar	13.802 mV/V	0.270 mV
PP2 ***	LISAB	NS-B (12126215- 008A)	5 bar	13.702 mV/V	0.970 mV
PP3 ***	LISAB	NS-B (12126215- 006A)	5 bar	13.980 mV/V	-0.030 mV
PP4 ***	LISAB	NS-B (12126215- 013A)	5 bar	14.862 mV/V	-0.690 mV
PP5 ***	LISAB	NS-B (12116048- 001A)	5 bar	13.918 mV/V	0.300 mV
Air pressure *** Membrane *** Felt cloth ***	HBM	рба	10 bar	2 mV/V/bar	
Vacuum pump *** Pressurized tube ***					
Data acquisition	Manufacturer	Туре			
MGCplus	HBM	MGCplus			-
Modular Test Controller	MOOG	Modular test controller			
Catman	HBM	Catman 6.0			
MOOG	MOOG	Test suite V.2.6.4.			
* Static loading tests					
** Cyclic loading tests					
eyene iouung tests					

Table 5: Test equipment and specifications.

Appendix B Calibration of CPT-device

The CPT device is calibrated before conducting a series of tests. The CPT device is fastened in a lathe. The cone is protected by a block of hard rubber with an indentation fitting the cone. A HBM force transducer type S9 5 of 5 kN = 2 mV/V (registration no. 54086) is inserted between the cone and the bench to measure the force on the cone when the lathe handle is turned.

The measurements of the force transducer and the CPT device, respectively, are recorded in Catman. The CPT output is in mV/V while the output from the force transducer is in N. The measuring range of the CPT should be 12 mV/V. Prior to the calibration test, the output of the CPT and the force transducer should be zeroed. Let Catman display a real-time graph and apply a force up to maximum 4 kN. Release the force and re-load a couple of times to validate the correlation between the force and the CPT output. Figure 43 shows a calibration example.

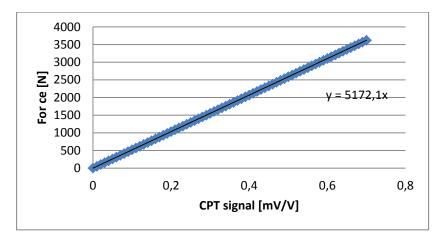
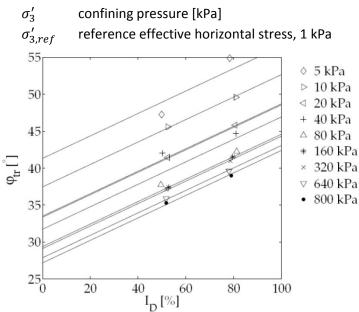


Figure 43: Example of determination of calibration factor.

Appendix C Interpretation of CPT results

The CPT cone resistance, q_c , plotted against the depth is used to verify homogeneous compaction of the sand. This means that the cone resistances found from the five CPTs conducted before each test should be very similar. Moreover, the cone resistances should show similar soil conditions for all the conducted loading tests to ensure that the soil conditions and, thereby, the test results in the various tests are comparable.


From the CPT-results the following soil parameters are determined:

- Friction angle, φ_{tr} [°].
- Dilation angle, ψ_{tr} [°].
- Relative density, D_r [-].
- Effective unit weight, γ' [kN/m³].
- Initial stiffness of the sand, E_0 [kPa].

The expressions for the internal angle of friction and the dilation angle are based on results from triaxial tests on Baskarp Sand No. 15 (Ibsen, et al. 2009). The friction angle and dilation angle are considered dependent on the density index and the confining pressure, σ'_3 . The triaxial tests were performed with two different density indices and nine different confining pressures. The expressions for the friction angle and the dilation angle given below were determined by plotting the angles against the density index. The figure shows the friction angles plotted against the density index.

$$\varphi_{tr} = 15.2^{\circ} \cdot D_r + 27.39^{\circ} \cdot (\sigma'_3/\sigma'_{3,ref})^{-0.2807} + 23.21^{\circ}$$
$$\psi_{tr} = 19.5^{\circ} \cdot D_r + 14.86^{\circ} \cdot (\sigma'_3/\sigma'_{3,ref})^{-0.09764} - 9.946^{\circ}$$

Where:

Friction angle versus relative density (Ibsen, et al. 2009).

The density index is found by an iterative procedure involving the following four equations.

$$\gamma' = \frac{d_s - 1}{1 + e_{in-situ}} \gamma_w$$
$$\sigma_1' = \gamma' \cdot x$$
$$D_r = c_2 \left(\frac{\sigma_1' / \sigma_{1,ref}'}{\left(q_c / q_{c,ref}\right)^{c_1}}\right)^{c_3}$$
$$D_r = \frac{e_{max} - e_{in-situ}}{e_{max} - e_{min}}$$

Where:

γ'	effective unit weight of soil [kN/m ³]
d_s	relative density [-], $d_s = 2.64$
e _{in-situ}	in-situ void ratio [-]
γ_w	unit weight of water [kN/m ³]
σ_1'	effective vertical stress [MPa]
$\sigma'_{1,\mathrm{ref}}$	reference effective vertical stress, 1 MPa
q_c	cone resistance [MPa]
$q_{c,ref}$	reference CPT cone resistance, 1 MPa
x	depth below soil surface [m]
C_1, C_2, C_3	constants [-], $(c_1, c_2, c_3) = (0.75, 5.14, -0.42)$
e_{max}	maximum void ratio [-], $e_{max} = 0.854$
e_{min}	minimum void ratio [-], $e_{min}=0.549$

As the in-situ void ratio and the effective unit weight are unknown, the relative density is found by inserting a guessed value of $e_{in-situ}$ and iterate until the difference between two successive values of $e_{in-situ}$ is less than 10^{-4} .

The effective horizontal stress, σ'_3 , is dependent on the effective vertical stress and the coefficient of horizontal earth pressure at rest, K_0 . K_0 depends on the friction angle, giving the following expression for σ'_3 . Thereby, the friction angle is the only unknown in the expression for the friction angle and can then be found by iteration.

$$\sigma'_{3} = \sigma'_{1} \cdot K_{0}$$

= $(\gamma' \cdot x + P_{0}) \cdot K_{0}$
= $(\gamma' \cdot x + P_{0}) \cdot (1 - \sin \varphi_{tr})$

Where

 K_0 earth pressure coefficient at rest [-] P_0 overburden pressure [kPa]

Inserting this expression into the formula for the friction angle shows that $\varphi_{tr} \rightarrow \infty$ for $\sigma'_3 \rightarrow 0$. Furthermore, the figure shows that the expression for the friction angle does not fit the triaxial test for $\sigma'_3 = 5$ kPa well. As the CPTs only reach a depth of 1 m, σ'_3 lies between 0 kPa and 2 kPa for the tests without overburden pressure (i.e. without suction under the membrane). To be able to use the equation for the friction angle, σ'_3 is set to 5 kPa for the tests without overburden pressure. As a result, the friction angle may be judged slightly lower than the correct value, however, the difference is considered tolerable.

(Brinkgreve og Swolfs 2007) gives the following expression for the secant stiffness of the soil, E_{50} . This value of E_{50} is then used to find the tangential modulus, E_0 (Ibsen, et al. 2009).

$$\begin{split} E_{50} &= (0.6322 \cdot D_r^{2.507} + 10920) \left(\frac{c \cdot \cos \varphi_{tr} + \sigma_3' \cdot \sin \varphi_{tr}}{c \cdot \cos \varphi_{tr} + \sigma_3'^{ref} \cdot \sin \varphi_{tr}} \right) \\ E_0 &= \frac{2 \cdot E_{50}}{2 - R_f} \end{split}$$

Where:

E_{50}	secant stiffness [kPa]
С	cohesion [kPa]
$\sigma_3^{\prime ref}$	reference horizontal stress [kPa], $\sigma_3^{\prime ref}=100$ kPa
E_0	tangential stiffness [kPa]
R_f	ratio between q_f and q_a [-], the standard value is $R_f = 0.9$ cf. (Brinkgreve og Swolfs 2007)
q_f	ultimate deviatoric stress [kPa]
q_a	asymptotic value of the shear strength [kPa]

Recent publications in the DCE Technical Report Series

ISSN 1901-726X DCE Technical Report No. 195