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Chapter 12
A Wavelet-Based Approach to Pattern Discovery
in Melodies

Gissel Velarde, David Meredith, and Tillman Weyde

Abstract We present a computational method for pattern discovery based on the
application of the wavelet transform to symbolic representations of melodies or
monophonic voices. We model the importance of a discovered pattern in terms of the
compression ratio that can be achieved by using it to describe that part of the melody
covered by its occurrences. The proposed method resembles that of paradigmatic
analysis developed by Ruwet (1966) and Nattiez (1975). In our approach, melodies
are represented either as ‘raw’ 1-dimensional pitch signals or as these signals filtered
with the continuous wavelet transform (CWT) at a single scale using the Haar wavelet.
These representations are segmented using various approaches and the segments
are then concatenated based on their similarity. The concatenated segments are
compared, clustered and ranked. The method was evaluated on two musicological
tasks: discovering themes and sections in the JKU Patterns Development Database
and determining the parent compositions of excerpts from J. S. Bach’s Two-Part
Inventions (BWV 772–786). The results indicate that the new approach performs
well at finding noticeable and/or important patterns in melodies and that filtering
makes the method robust to melodic variation.

12.1 Introduction

Since the 19th century, music theorists have placed great importance on the analysis
of motivic repetition and variation (Marx, 1837; Reicha, 1814; Riemann, 1912;
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Schoenberg, 1967), leading to the development of paradigmatic analysis by Ruwet
(1966) and Nattiez (1986) during the latter half of the 20th century. Ruwet’s method
consists of an exhaustive similarity comparison of small units or segments in order to
generate a structural description (see Monelle, 1992). Paradigmatic analysis focuses
on clustering similar segments in a melody into “paradigms”, regardless of where
these segments might occur. It is typically carried out in parallel with syntagmatic
analysis which focuses on identifying sequential relationships between consecutive
segments. Syntagmatic and paradigmatic analysis can be seen as complementary
tools for exploring the semiotic structure of a melody.

Almost three decades after the work by Ruwet, the first computational models
to automate paradigmatic analysis of music appeared (Adiloglu et al., 2006; Anag-
nostopoulou and Westermann, 1997; Cambouropoulos, 1998; Cambouropoulos and
Widmer, 2000; Conklin, 2006; Conklin and Anagnostopoulou, 2006; Grilo et al.,
2001; Höthker et al., 2001; Weyde, 2001). However, it is difficult to evaluate these
models, as some are not fully automated (e.g., require a user-supplied segmentation),
the implementations are generally not public and they have not been tested on a
common ground truth. Although the notion of defining a ground truth at all for a mu-
sical analysis is controversial, the MIREX task on discovery of repeated themes and
sections (Collins, 2014) offers a practical opportunity to evaluate thematic analysis
algorithms. However, it should be noted that the ‘ground truth’ analyses used in this
task do not include any analyses by experts in paradigmatic analysis.

In this chapter, we focus on describing a fully automated method of musical anal-
ysis that closely resembles paradigmatic analysis. It has been implemented in Matlab
and it is publicly available.1 The method is based on segmenting melodies, cluster-
ing the resulting segments by similarity and then ranking the clusters obtained. In
Sect. 12.3 we present the results obtained when our method was used for discovering
repeating themes and sections in the Johannes Kepler University Patterns Develop-
ment Database (JKU PDD).2 We also compare these results with those obtained using
other methods. In order to test the generalizability of the proposed method, we also
evaluated it on a second musicological task, namely, that of identifying the parent
compositions of excerpts from J. S. Bach’s Two-Part Inventions (BWV 772–786).3

1 Available at http://www.create.aau.dk/music/software/. It is implemented in MATLAB (R2014a,
The Mathworks, Inc), using the following toolboxes: Signal Processing, Statistics, Symbolic
Math, Wavelet, and the MIDI Toolbox (Eerola and Toiviainen, 2004). We also used an imple-
mentation of the dynamic time warping algorithm (DTW) by Paul Micó, accessed on 30-April-
2013 from http://www.mathworks.com/matlabcentral/fileexchange/16350-continuous-dynamic-
time-warping.
2 https://dl.dropbox.com/u/11997856/JKU/JKUPDD-Aug2013.zip. Accessed on 12-May-2014.
3 MIDI encodings edited by Steve Rasmussen,
http://www.musedata.org/encodings/bach/rasmuss/inventio/. Accessed April 2011
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12.1.1 Melodic Structure and Wavelet Analysis

Our understanding of melodic structure has benefited from work that has been carried
out in a number of fields, including music theory, psychology neuroscience and
computer science. For example, melodic contour has been studied by Huron (1996),
who classified melodies into 9 types according to their shapes (e.g., ascending, de-
scending, arc-like, etc.) by considering the first, last and average pitches of a melody.
In contrast, Schenkerian analysis aims to recursively reduce the musical surface
or foreground to a fundamental structure (Urzatz) via one or more middleground
levels (Schichten) (Schenker, 1935). Furthermore, listeners typically hear melodies
to be “chunked” into segments or, more generally, groups (Cambouropoulos, 1997;
Lerdahl and Jackendoff, 1983; Tenney and Polansky, 1980). Neuroscientific evidence
from fMRI studies suggests that brain activity increases when subjects perceive
boundaries between musical movements, and, indeed, boundaries between events in
other, non-musical domains (Kurby and Zacks, 2008). Such evidence strongly sup-
ports the notion that segmentation is an essential component of perception, occurring
simultaneously at multiple timescales. Psychological approaches focus on perception
and memory and have tried to determine relevant melodic structures empirically (see,
e.g., Lamont and Dibben, 2001; Müllensiefen and Wiggins, 2011b).

Computational approaches to the analysis of melodic structure include geometric
approaches to pattern discovery, grammars, statistical descriptors, Gestalt features
and data mining (see, e.g., Conklin, 2006; Mazzola et al., 2002; Meredith et al., 2002;
Weyde, 2002). Wavelet analysis is a relatively new approach that has been widely
used in audio signal processing. However, to our knowledge, it has been scarcely used
on symbolic music representations, except by Smith and Honing (2008), who used
wavelets to elicit rhythmic content from sparse sequences of impulses of a piece, and
Pinto (2009), who used wavelets for melodic indexing as a compression technique.

As mentioned above, the wavelet-based method that we present below is closely
related to paradigmatic analysis. It is based on the assumption that, if a melody is
segmented appropriately, then it should be possible to produce a high-quality analysis
by gathering together similar segments into clusters and then ranking these clusters by
their importance or salience. In our study, we were particularly interested in exploring
the effectiveness of the wavelet transform (WT) (Antoine, 1999; Farge, 1992; Mallat,
2009; Torrence and Compo, 1998) for representing relevant properties of melodies in
segmentation, classification and pattern detection.

Wavelet analysis is a mathematical tool that compares a time-series with a wavelet
at different positions and time scales, returning similarity coefficients. There are two
main forms of the WT, the continuous wavelet transform (CWT) and the discrete
wavelet transform (DWT). The CWT is mostly used for pattern analysis or feature
detection in signal analysis (e.g., Smith and Honing, 2008), while the DWT is used
for compression and reconstruction (e.g., Antoine, 1999; Mallat, 2009; Pinto, 2009).
In our method, we sample symbolic representations of melodies or monophonic
voices to produce one-dimensional (1D) pitch signals. We then apply the continuous
wavelet transform (CWT) to these pitch signals, filtering with the Haar wavelet
(Haar, 1910). Filtering with wavelets at different scales resembles the mechanism by
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Fig. 12.1 A schematic overview of the main stages of the proposed method

which neurons, such as orientation-selective simple cells in the primary visual cortex,
gather information from their receptive fields (Hubel and Wiesel, 1962). Indeed, more
recently, Gabor wavelet pyramids have been used to model the perception of visual
features in natural scenes (Kay et al., 2008).

Wavelet coefficient encodings seem to be particularly appropriate for melodic
analysis as they provide a transposition-invariant representation. We also use wavelet
coefficient representations to determine local segment boundaries at different time
scales, which accords well with the notion that listeners automatically organize the
musical surface into coherent segments, or groups, at various time scales (Lerdahl
and Jackendoff, 1983).

12.2 Method

The method presented in this chapter extends our previously reported approach to
melodic segmentation and classification based on filtering with the Haar wavelet
(Velarde et al., 2013), and also incorporates an approach to segment construction
similar to that developed by Aucouturier and Sandler (2002) for discovering patterns
in audio data. A schematic overview of the method is shown in Fig. 12.1. In the
following sub-sections we explain the method in detail.

12.2.1 Representation

A wide variety of different strategies have been adopted in music informatics for
representing melodies, including (among others) viewpoints (Conklin, 2006), strings
(McGettrick, 1997), contours (Huron, 1996), polynomial functions (Müllensiefen
and Wiggins, 2011a), point sets (Meredith et al., 2002), spline curves (Urbano, 2013),
Fourier coefficients (Schmuckler, 1999) and global features (van Kranenburg et al.,
2013).

The representations used in this study are illustrated in Fig. 12.2. The top graph
in this figure shows what we call a raw pitch signal. This is a discrete pitch signal,
v, with length, L, constructed by sampling from MIDI files at a rate, r, in samples
per quarter note (qn). MIDI files encode pitches as MIDI Note Numbers (MIDI NN).
We denote the pitch value at time point t by v[t]. This representation is not used for
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Fig. 12.2 Representations used in the method. From top to bottom: a raw pitch signal, a normalized
pitch signal, a wavelet coefficient representation and an absolute wavelet coefficient representation

segment comparison directly. It is either filtered by the Haar wavelet or transformed
into what we call a normalized pitch signal in order to obtain a transposition-invariant
representation which is then segmented.

The second graph in Fig. 12.2 shows a normalized pitch signal, obtained by
subtracting the average pitch of a segment from the pitch values in that segment.
This process is applied to each segment individually after segmentation. It serves to
reduce the measured dissimilarity between segments that have very similar contour
but occur at different pitch heights (i.e., have different transpositions).

The third graph in Fig. 12.2 shows a wavelet coefficient representation resulting
from carrying out a continuous wavelet transform (CWT) on the pitch signal with
the Haar wavelet at a single time scale. This process tends to highlight structural
features at the scale of the wavelet. The Haar wavelet (Haar, 1910) is used because it
measures the movement direction of the melody and because its shape reflects the
step-wise nature of symbolic pitch signals. Figure 12.3 shows an example of a Haar
wavelet.

The CWT computed at a single time scale acts as a filter by the convolution of v,
the pitch signal, with the scaled and flipped real-valued wavelet for each translation,
u, and scale, s:

ws[u] =
L

∑
`=1

ψs,u[`]v[`] . (12.1)

To avoid edge effects due to finite-length sequences (Torrence and Compo, 1998), we
pad on both ends with a mirror image of v (Woody and Brown, 2007). To maintain
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Fig. 12.3 The Haar wavelet

the signal’s original length, the segments that correspond to the padding on both ends
are removed after convolution.

The bottom graph in Fig. 12.2 shows an absolute wavelet coefficient representation.
The value at each time point in this representation is the absolute value of the wavelet
coefficient at that time point.

The type of wavelet to use depends on the kind of information one wishes to
extract from the signal, since the wavelet coefficients combine information about
the signal and the analysing function (Farge, 1992). We use the Haar wavelet (Haar,
1910) as the analysing function, as defined by Mallat (2009):

ψt =


1, if 0≤ t < 0.5,
−1, if 0.5≤ t < 1,
0, otherwise.

(12.2)

The choice of time scale depends on the scale of structure in which one is interested.
Local structure is best analysed using short time scales, while longer-term structure
can be revealed by using wavelets at longer time scales. When features of the wavelet-
based representations are used for segmentation (as will be described in Sect. 12.2.2),
using a shorter wavelet leads to smaller segments in general. We therefore expect
shorter wavelets to be more appropriate for finding smaller melodic structural units
such as motives, while longer wavelets might be expected to produce segments at
longer time scales such as the phrase level and above. In the experiments reported
below, we used a variety of different scales in order to explore the effect of time scale
on performance.

12.2.2 Segmentation

Segmentation is a central component of music perception, occurring simultaneously
at multiple timescales as an adaptive mechanism of the brain. It has been shown
that brain activity increases transiently at musical movement boundaries, as well as
other non-musical event boundaries (Kurby and Zacks, 2008). In agreement with the
neuroscientific evidence, most theories of music perception and cognition note the



12 A Wavelet-Based Approach to Pattern Discovery in Melodies 309

importance of segmentation, or grouping at various different time scales. Typically,
such theories concentrate on the perceived associations of events, relating visual
Gestalt principles to the musical domain. Examples of such theories include Tenney
and Polansky’s theory of temporal Gestalt-units (Tenney and Polansky, 1980), Lerdahl
and Jackendoff’s theory of grouping structure (Lerdahl and Jackendoff, 1983) and
Cambouropoulos’ Local Boundary Detection Model (LBDM) (Cambouropoulos,
1997, 2001). The rules in these models address changes in both local parameters and
longer-term averages. Similarly, wavelet filters could be used to represent melodic
movements at different scales, leading to different levels of localization on the time-
axis for deriving group boundaries. Conklin (2006) also stresses the importance
of melodic analysis on segmentation. He additionally demonstrates the effect of
different symbolic melodic representations called viewpoints at different time scales
(note, beat, bar, phrase and piece level) in the context of style discrimination.

As shown in Fig. 12.1, the Segmentation phase of our method is split into three
subphases: Preliminary segmentation, Comparison and Concatenation. Each of these
subphases will now be described.

12.2.2.1 Preliminary Segmentation

In this study, we explored three strategies for producing a preliminary segmenta-
tion: constant-duration segmentation; segmentation at zero crossings in the wavelet
coefficient and absolute wavelet coefficient representations; and segmentation at
local maxima in the absolute wavelet coefficient representation. The lower three
graphs in Fig. 12.4 show three of the possible combinations of representation and
segmentation.

The simplest segmentation strategy that we explore is constant-duration segmen-
tation in which the signal is chunked into segments of constant duration (with the
possible exception of the final segment which could be shorter than the other seg-
ments). The second graph in Fig. 12.4 shows an example of this type of segmentation
combined with a normalized pitch signal representation.

We also experiment with zero-crossings segmentation in the wavelet-based repre-
sentations, where segment boundaries are set at time points with value zero in the
representation. Zero-crossings occur when the inner product between the melody
and the Haar wavelet is zero. This means that the average pitch in the first half of the
scale period is equal to the average pitch in the second half of the scale period.

The third segmentation strategy we use is absolute maxima segmentation, where
segment boundaries are set at time points corresponding to local maxima in the
absolute wavelet coefficient representation. These maxima occur when the inner
product of the wavelet and the signal is locally maximal. In our case, this corresponds
to time points when there is a maximal positive or negative correlation between the
shape of the melody and the Haar wavelet. These points occur when there is a locally
maximal fall or rise in average pitch content at the scale of the wavelet used. The
absolute maxima of a real wavelet such as the Haar wavelet are a special case of the
modulus maxima of a wavelet transform in general. The latter were used by Muzy
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Fig. 12.4 Segmentation approaches used in the method, from top to bottom: a raw pitch signal
without segmentation; normalized pitch signal and constant-duration segmentation at a scale of 4 qn;
wavelet coefficient representation filtered with the Haar wavelet at a scale of 1 qn and segmented
at zero-crossings at a scale of 4 qn; absolute wavelet coefficient representation filtered at a scale
of 1 qn and segmented at absolute maxima at a scale of 4 qn. Note that the wavelet scales used
to generate the representations shown in the third and fourth graphs are different from those used
to produce the segmentations. The segmentation points therefore do not necessarily coincide with
zero-crossings or maxima in the wavelet coefficient representations shown

et al. (1991) to show the structure of fractal signals and by Mallat and Hwang (1992)
to indicate the location of edges in images. The bottom graph in Fig. 12.4 shows
an example of absolute maxima segmentation of an absolute wavelet coefficient
representation.

The segments obtained using these three strategies generally have different dura-
tions. However, in order to measure similarity between them using standard metrics
such as city block or Euclidean distance, it is necessary for the segments to be the
same length. We achieve this by defining a maximal length for all segments and
padding shorter segments as necessary with zeros at the end.

12.2.2.2 Comparison

Segments are compared by building an m×m distance matrix, H, giving all pair-wise
distances between segments in terms of normalized distance. m is the number of
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segments. We use three different distance measures: Euclidean distance, city block
distance and dynamic time warping (DTW). For city block and Euclidean distances,
the segments compared must be of equal length and in these cases the normalization
consists of dividing the pairwise distance by the length of the smallest segment
before segment-length equalization by zero padding. When using DTW, which is an
alignment-based method, it is not necessary to equalize the lengths of the segments
being compared. In this case, therefore, the normalization consists of dividing the
distance by the length of the aligned segments.

We use the Euclidean distance dE(x,y) between two segments, x and y, which is
defined as follows:

dE(x,y) =

√
n

∑
j=1

(x[ j]− y[ j])2 , (12.3)

and the city block distance dC(x,y) between x and y:

dC(x,y) =
n

∑
j=1
|x[ j]− y[ j]| . (12.4)

The dynamic time warping distance (DTW), dD(x,y), is the minimal cost of a warping
path between sequences x and y. A warping path of length, L, is a sequence of pairs
p = ((n1,m1), ...,(nL,mL)), where ni is an index into x and mi is an index into y.
p needs to satisfy several conditions which ensure that it can be interpreted as an
alignment between x and y that allows skipping elements in either sequence (see
Müller, 2007, p. 70). The DTW distance, dD(x,y), is then defined to be the total cost
of a warping path, defined to be the sum of a local cost measure, c(x[ni],y[mi]), along
the path:

dD(x,y) =
L

∑
i=1

c(x[ni],y[mi]) , (12.5)

where, here, c(x[ni],y[mi]) is defined to be simply the absolute difference, |x[ni]−
y[mi]|.

Having computed all the pairwise distances in the matrix, H, these values are
then normalized in the range [0,1] by dividing each pairwise distance by the largest
distance in the matrix for that distance type.

12.2.2.3 Concatenation of Segments

The final subphase of the segmentation phase is to concatenate consecutive segments
found in the preliminary segmentation to form larger units that are then compared,
clustered and ranked in the subsequent phases of the method.

The first subphase of the segmentation phase gives a preliminary segmentation of
the melody. It is preliminary, as it may be the case that a repeated (or approximately
repeated) segment discovered in the preliminary segmentation only occurs as part
of a longer repeated segment, such that a paradigmatic relation is found. In such
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cases, one would generally only be interested in the longer repeated segment (this
relates to the concept of “closed patterns” (see Lartillot, 2005, and Chap. 11, this
volume) and Meredith et al.’s (2002) concept of “maximal translatable patterns” (see
also Chap. 13, this volume). One would only want to report the shorter segment
if it also occurred independently of the longer segment. In the third subphase of
the segmentation phase, we therefore concatenate, or merge locally, the preliminary
segments derived in the preliminary segmentation into generally longer units, that
are then passed on to the later phases of the method.

Segments are concatenated based on their similarity. We therefore set a threshold,
τ , that defines the level of similarity between preliminary segments required to allow
concatenation. The m×m distance matrix, H, is therefore binarized as follows:

H(i, j) =

{
1, if H(i, j)≤ τ ,
0, otherwise,

(12.6)

for 1≤ i≤ m and i≤ j ≤ m (note that we use 1-based indexing in this chapter).
Segments are concatenated to form units based on the information contained in

the upper triangle including the leading diagonal in the binarized similarity matrix, H,
scanning the matrix horizontally and diagonally. A unit, (i, j), i≤ j, consists of the
concatenated segments i, . . . , j, and we use two concatenation processes to generate
units.

A process of horizontal concatenation generates units that consist of consecutive
occurrences of the “same” segment (i.e., corresponding to horizontal sequences of
consecutive 1s in the binarized similarity matrix, H). The units, (i,k), generated by
this process are those for which hor(i,k) is true, where

hor(i,k) ⇐⇒ (hor(i,k−1)∧H(k−1,k) = 1) ∨ (i = k) . (12.7)

A process of diagonal concatenation generates units that are repeated in the piece,
and dia(i, j) must be true, where

dia(i, j) ⇐⇒ (dia(i, j−1)∧∃`,k | `− k = j− i∧dia(k, `−1)∧H( j−1, `−1) = H( j, `) = 1)

∨ ( j− i = 1∧∃` | H(i, `−1) = H( j, `) = 1) . (12.8)

Any hor(i, j) or dia(i, j) that is not a strict subset of another generates a unit (i, j).
Subsets will be identified as trivial units.

When these two concatenation processes are carried out on the matrix in Fig. 12.5,
horizontal concatenation generates the unit (9,10) and diagonal concatenation gener-
ates the units (1,2), (4,5) and (7,8).

The concatenation method presented here is similar to the one described by
Aucouturier and Sandler (2002).
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Fig. 12.5 Upper triangular matrix, grey means 1 and white 0. It corresponds to the binarized distance
matrix H of the sequence v1 = abxabyabzz

12.2.3 Comparison and Clustering of Units

In this second comparison, the units constructed in the previous concatenation step
(Sect. 12.2.2.3) are compared using the same process of similarity measurement
as that described in Sect. 12.2.2.2. Any two units (`, j) and (p,r) obtained by con-
catenation, will then be units x and y respectively, to be compared in this second
comparison.

Having obtained values for the pairwise similarity between units, these similarity
values are then used to cluster the units into classes. To achieve this, we use a
simple hierarchical agglomerative clustering method called single linkage, or nearest-
neighbour, which produces a series of successive fusions of the data, starting from N
single-member clusters that fuse together to form larger clusters (Everitt et al., 2011;
Florek et al., 1951; Johnson, 1967; Sneath, 1957). Here, the distance matrix obtained
from the comparison as described in Sect. 12.2.3 is used for clustering. Single linkage
takes the smallest distance between any two units, one from each group or cluster.
The distance D(X ,Y ) between clusters X and Y is described as

D(X ,Y ) = min
x∈X ,y∈Y

d(x,y) , (12.9)

where clusters X and Y are formed by the fusion of two clusters, x and y, and d(x,y)
denotes the distance between the two units x and y (Everitt et al., 2011). Consider
the case of five units or clusters v, w, x, y and z, as shown on the left in Fig. 12.6 as
points in a Euclidean space. The minimal distance occurs for x and y, and for z and
w. Then, two new clusters are formed, a cluster s consisting of x and y and a cluster t
consisting of z and w. The next minimal distance occurs for v and t, forming a new
cluster u consisting of v and t. Finally, clusters s and u are grouped together into a
cluster c. The right plot in Fig. 12.6 shows a dendrogram of the formed clusters. The
y-axis corresponds to the distances between clusters; for instance, clusters x and y
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Fig. 12.6 Example of the hierarchical clustering of units or clusters v, w, x, y and z. Left plot shows
the units in a Euclidean space. Right plot shows a dendrogram of the formed clusters

have a distance of 1, and clusters t and u have a distance of 2.2. In this example, the
number of clusters ranges from 1, where all units form a single cluster, to 5, where
each cluster contains just one unit. The number of clusters can be set to be three,
having clusters s, t and u or it can be set to two, giving clusters s and u. Finally, the
number of clusters is set to yield the best classification results.4

12.2.4 Ranking

In general, if X and Y are two parts of some object, then one can describe X ∪Y in
an in extenso fashion simply by specifying the properties of each atomic component
in X and Y . Alternatively, if there exists a sufficiently simple transformation, T , that
maps X onto Y , then it may be possible to provide a compact description of X ∪Y by
providing an in extenso description of X along with a description of T .5

In the current context, each cluster generated by the previous stage of the method
contains units (i.e., parts of a melody) that are similar to each other. If every member
of a cluster can be generated by a simple transformation of one member (e.g., if all
the units within a cluster are exact repeats of the first occurrence), then the portion
of the melody covered by the cluster (i.e., the union of the units in the cluster) can
be represented by giving an explicit description of the first occurrence along with
the positions of the other occurrences. If the members of the cluster do not overlap,
then such a representation can be compact because the starting position of a unit can
usually be specified using fewer bits than explicitly describing the content of the
unit. This would give a losslessly compressed encoding of the part of the melody

4 When preliminary experiments were performed on the JKU PDD, using between 3 and 10 clusters,
the best classification results were obtained using 7 clusters. We therefore used 7 clusters in the
experiments reported in Sect. 12.3 below.
5 This idea is discussed in more detail in Chap. 13, this volume.
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covered by the union of the units in the cluster. This is the essential idea behind the
compression-driven geometric pattern discovery algorithms described by Meredith
(2006, 2013) and Forth (2012). If we represent the music to be analysed as a set of
points in pitch-time space and if a cluster (or ‘paradigm’), C, only contains the exact
occurrences of a pattern, p, then the compression ratio achieved is

CR(C) =
|⋃q∈C{q}|
|p|+ |C|−1

, (12.10)

where | · | denotes the cardinality of a set. Here, however, the units within a cluster are
not necessarily exact repetitions of some single pattern. This means that the degree
of compression achievable with one of the clusters generated in the previous sections
will not, in general, be as high as in (12.10).

Collins et al. (2011) have provided empirical evidence that the compression ratio
achievable in this way by a set of occurrences of a pattern can be used to help predict
which patterns in a piece of music are heard to be noticeable and/or important. In the
method presented in this chapter, we therefore adapt (12.10) to serve as a measure
of importance or noticeability for the clusters generated in the previous phase of the
method. Here, we define the “compression ratio”, CRk, of cluster k as follows:

CRk =
∑

nk
i=1 Si

(nk + S̄k)
, (12.11)

where nk is the number of units in cluster k, Si is the length in sample points of unit i
in cluster k, and S̄k is the mean length of a unit in cluster k. Clusters are ranked into
descending order by this value of “compression ratio”. All clusters are kept in the
final output.

12.3 Experiments

The method described above was evaluated on two tasks: discovering repeated themes
and sections in monophonic music; and identifying the parent works of excerpts from
J. S. Bach’s Two-Part Inventions (BWV 772–786). The methods used and results
obtained in these experiments will now be presented.

12.3.1 Experiment 1: Discovering Repeated Themes and Sections
in Monophonic Music

Various computational methods for discovering patterns in music have been devel-
oped over the past two decades (see Janssen et al., 2013, for a recent review), but
only recently have attempts been made to compare their outputs in a rigorous way.
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Notable among such attempts are the two tasks on discovering repeated themes and
sections that have been held at the Music Information Retrieval Evaluation eXchange
(MIREX) in 2013 and 2014 (Collins, 2014). In these tasks, algorithms have been
run on a set of five pieces and the analyses generated by the algorithms have been
compared with ground truth analyses by expert analysts. A number of measures
were devised for evaluating the performance of pattern discovery algorithms in this
competition and comparing the output of an algorithm with a ground truth analysis
(Collins, 2014). Collins has also provided a training database, the JKU PDD, which
exists in both monophonic and polyphonic versions. The JKU PDD consists of the
following five pieces along with ground truth analyses:

• Orlando Gibbons’ madrigal, “Silver Swan” (1612);
• the fugue from J. S. Bach’s Prelude and Fugue in A minor (BWV 889) from Book

2 of Das wohltemperirte Clavier (1742);
• the second movement of Mozart’s Piano Sonata in E flat major (K. 282) (1774);
• the third movement of Beethoven’s Piano Sonata in F minor, Op. 2, No. 1 (1795);

and
• Chopin’s Mazurka in B flat minor, Op. 24, No. 4 (1836).

The monophonic versions of the pieces by Beethoven, Mozart and Chopin were
produced by selecting the notes in the most salient part (usually the top part) at each
point in the music. For the contrapuntal pieces by Bach and Gibbons, the monophonic
encodings were produced by concatenating the voices (Collins, 2014).

We used the JKU PDD as a training set for determining optimal values for the
parameters of the analysis method described above. Heuristics based on knowledge
gained from previous experiments (Velarde et al., 2013) were used to start tuning
the parameters. Then, in an attempt to approach optimal values, all parameters were
kept fixed, except one which was varied along a defined range to find an optimal
adjustment. This process was repeated for all parameters. Finally, the method was
run on the JKU PDD with 162 different parameter value combinations, consisting of
all possible combinations of the following:

• 1 sampling rate: 16 samples per qn
• 3 representations: normalized pitch signal, wavelet coefficients filtered at the scale

of 1 qn, absolute wavelet coefficients filtered at the scale of 1 qn
• 3 segmentation strategies: constant-duration segmentation, segmentation at zero-

crossings, segmentation at absolute maxima
• 2 scales for segmentation: 1 qn and 4 qn
• 1 threshold for binarizing the similarity matrix: 0.001
• 3 distances for measuring similarity between segments on the first comparison:

city block (CB), Euclidean (Eu) and dynamic time warping (DTW)
• 3 distances for measuring similarity between segments on the second comparison:

city block (CB), Euclidean (Eu) and dynamic time warping (DTW)
• 1 strategy for equalizing the lengths of segments for comparison: segment length

normalization by zero padding
• 1 clustering method: Single linkage (nearest neighbour)
• 1 value for the number of clusters: 7
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• 1 criterion for ranking clusters: compression ratio

12.3.1.1 Results

We used the monophonic version of the JKU PDD with the evaluation metrics
defined by Collins (2014) and Meredith (2015), which we computed using Collins’
Matlab implementation.6 The evaluation metrics consist of a number of variants on
standard precision, recall and F1 score, designed to allow algorithms to gain credit for
generating sets of occurrences of patterns that are similar but not identical to those in
the ground truth. The standard versions of the metrics are not adequate for evaluating
pattern discovery algorithms because they return 0 for a computed pattern even if it
differs from a ground truth pattern by only one note.

The more robust versions of the precision, recall and F1 score are designed to
measure (1) the extent to which an algorithm finds at least one occurrence of a pattern
(establishment recall/precision/F1 score); (2) the extent to which an algorithm finds
all the occurrences of a pattern (occurrence recall/precision/F1 score); and (3) the
overall similarity between the set of occurrence sets generated by an algorithm and
the set of occurrence sets in a ground truth analysis (three-layer precision/recall/F1
score). As these different metrics reveal different aspects of the method’s strengths
or weaknesses, we decided to evaluate our method based on the standard F1 score,
where P is precision and R is recall

F1 =
2PR

P+R
(12.12)

and on the mean of establishment F1 (F1 est), occurrence F1 at (c=.75)
(F1 occ(c=.75)), occurrence F1 at (c=.5) (F1 occ(c=.5)) (Collins, 2014), and three-
layer F1 (F1 T L) (Meredith, 2015):

F1 mean =
F1 est +F1 occ(c=.75)+F1 occ(c=.5))+F1 T L

4
. (12.13)

Figure 12.7 shows the highest mean F1 scores (F1 mean) for each combination,
considering segmentation scale, representation type and segmentation type. The left
plot shows nine combinations where the segmentation scale was 1 qn, while the
right plot shows the scores of nine combinations where the segmentation scale was
4 qn. For each plot in Fig. 12.7, there are 3 bars grouped for each segmentation
method, where the grey tones (dark grey, light grey and white) indicate the three
representation types, and finally, the distance measures associated with the first
and second comparison (e.g., “EU,EU”, “CB,CB”, etc.). Figure 12.8 shows the
corresponding standard F1 scores for the same combinations. Finally, Fig. 12.9 shows
the runtimes in seconds obtained with our implementations of the method, associated
with each combination.

6 https://dl.dropbox.com/u/11997856/JKU/JKUPDD-Aug2013.zip. Accessed on 12-May-2014.
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Fig. 12.7 Mean F1 score (F1 mean)

We ran the experiment twice, the first time keeping trivial units and the second time
discarding trivial units. Figures 12.7, 12.8 and 12.9 show the results when keeping
trivial units. A Wilcoxon signed rank test indicated that keeping or discarding trivial
units did not significantly affect the results of mean F1 scores (Z = −1.2439, p =
0.2135), standard F1 scores (Z =−1.633, p = 0.1025), or runtimes (Z =−0.8885,
p = 0.3743), for a segmentation scale of 1 qn. Similarly, no difference was found
in the results when keeping or discarding trivial units for a scale of 4 qn for mean
F1 scores (Z = 1.007, p = 0.3139), standard F1 scores (Z = 0, p = 1), or runtimes
(Z =−0.53331, p = 0.5940). Therefore, only the results of the first run are shown
and explained in the following paragraphs.

Fig. 12.8 Standard F1 score
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Fig. 12.9 Runtimes in seconds obtained using our implementation of the method. The implementa-
tion was programmed using Matlab 2014a and run on a MacBook Pro using MAC OS X with a 2.3
GHz, Intel Core i7 processor and 8 GB 1600 MHz DDR3 RAM

According to the parameters tested, we observe that the segmentation scale used
in the preliminary segmentation phase has a greater effect on the results. Figures 12.8
and 12.9 show that using a smaller segmentation scale of 1 qn as opposed to 4 qn was
in general slower but produced better results. A Wilcoxon signed rank test indicated
there is a statistically significant difference between the use of a smaller and larger
scale (Z = 2.6656, p = 0.007), suggesting that a scale of 1 qn should be used in the
preliminary segmentation phase, for higher (mean or standard) F1 scores.

In terms of mean F1 score (Fig. 12.7), the normalized pitch signal representation
worked slightly better than the wavelet representations when constant-duration seg-
mentation was used. We speculate that only with additional pattern data containing
greater variation between occurrences would the benefit of wavelet over normalized
pitch representations emerge (see Sect. 12.3.2.1 for more discussion on this point).
DTW was used less frequently than Euclidean or city block distance in the best-
performing combinations. It seems possible that DTW might have proved more useful
if the input representations had included temporal deviations such as ritardando or
accelerando such as might occur in an encoding generated from a live performance.

From Figs. 12.7, 12.8 and 12.9 it is not possible to determine whether the running
time is more dependent on the segmentation approach or on the distance measure
used. Tables 12.1 and 12.2, show the highest mean F1 scores of combinations using
the same distance measure for both comparison phases, averaged by representation
approach. From Table 12.1, it is possible to observe that when using a scale of 1 qn for
the preliminary segmentation phase, Euclidean and city-block distances have similar
performance, and their F1 scores are higher than the ones delivered when using DTW
distance. However, this gap becomes smaller when the scale is 4 qn. The results in
Table 12.2 show that the running times using DTW are more than 8 times slower
than those obtained using Euclidean or city-block distances. Evaluating runtimes
according to segmentation approaches, it is possible to observe that for the smaller
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Table 12.1 Mean F1 scores averaged over representations, combinations of same distance measure
for both comparisons. The rows correspond to the different combinations of distances (CB = city-
block, Eu = Euclidean and DTW = dynamic time warping), while the columns correspond to the
segmentation approaches (CS = constant-duration segmentation, ZC = zero-crossings segmentation,
and AM = absolute maxima segmentation). Mean and standard deviation values are shown per row
and per column

Segmentation scale 1 qn Segmentation scale 4 qn
CS ZC AM Mean SD CS ZC AM Mean SD

CB-CB 0.74 0.69 0.75 0.73 0.03 0.65 0.60 0.70 0.65 0.05
Eu-Eu 0.73 0.68 0.72 0.71 0.03 0.63 0.59 0.70 0.64 0.05
DTW-DTW 0.57 0.64 0.60 0.60 0.04 0.59 0.61 0.66 0.62 0.03
Mean 0.68 0.67 0.60 0.62 0.60 0.69
SD 0.10 0.03 0.08 0.03 0.01 0.03

Table 12.2 Corresponding mean running times in seconds of the combinations in Table 12.1

Segmentation scale 1 qn Segmentation scale 4 qn
CS ZC AM Mean SD CS ZC AM Mean SD

CB-CB 24.3 60.8 17.9 34.32 23.17 2.2 5.4 5.2 4.23 1.80
Eu-Eu 24.4 57.1 17.8 33.10 21.02 2.1 5.3 5.1 4.16 1.79
DTW-DTW 664.4 2248.2 720.1 1210.91 898.77 21.5 61.5 67.4 50.14 25.01
Mean 237.69 788.70 251.93 8.58 24.04 25.92
SD 369.56 1263.98 405.44 11.17 32.44 35.97

Table 12.3 Mean F1 scores averaged over representations, when the concatenation phase is not
performed. The rows of the Table indicate the distances used for comparison (CB = city-block, Eu
= Euclidean and DTW = dynamic time warping), while the columns correspond to the segmentation
approaches (CS = constant-duration segmentation, ZC = zero-crossings segmentation, and AM =
absolute maxima segmentation). Mean and standard deviation values are shown per rows and per
columns

Segmentation scale 1 qn Segmentation scale 4 qn
CS ZC AM Mean SD CS ZC AM Mean SD

CB 0.10 0.18 0.11 0.13 0.04 0.22 0.23 0.18 0.21 0.03
Eu 0.10 0.14 0.10 0.11 0.02 0.22 0.21 0.16 0.20 0.03
DTW 0.10 0.09 0.11 0.10 0.01 0.22 0.20 0.18 0.20 0.02
Mean 0.10 0.14 0.11 0.22 0.21 0.18
SD 0.00 0.04 0.01 0.00 0.02 0.01

scale of 1 qn in the preliminary segmentation phase, the runtimes of constant-duration
segmentation and wavelet absolute maxima segmentation are similar and about twice
as fast as the runtimes of the zero-crossings segmentation. On the other hand, for
a larger scale of 4 qn in the preliminary segmentation phase, constant-duration
segmentation is three times faster than wavelet segmentation approaches.

Table 12.3 shows the effect of not using the concatenation phase: melodies un-
dergo the preliminary segmentation phase, but skip the first comparison and the
concatenation phases, such that all preliminary segments are used for the comparison,
clustering and ranking phases. The results in Table 12.3 show that omitting the con-
catenation phase severely reduces the performance of the method on this task. In this
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case, when segments are not concatenated, a segmentation scale of 4 qn is, in almost
all combinations, twice as good as a segmentation scale of 1 qn. On the other hand,
as seen in Table 12.1, a preliminary segmentation phase with a finer segmentation
scale, helps to improve the identification of patterns in this dataset.

12.3.1.2 Comparison with Other Computational Methods

The other computational methods addressing the MIREX task on Discovery of
repeated themes and sections, included geometric approaches (Meredith, 2013),
incremental mining methods (Lartillot, 2014) and methods based on audio techniques
(Nieto and Farbood, 2013, 2014).7 For comparison, we selected our submission VM1,
as this configuration was also selected for comparison in the published results of the
task. The details of the parameters settings of VM1 are described by Velarde and
Meredith (2014).

Table 12.4 shows the results obtained by the different algorithms in the 2014
MIREX task on the monophonic version of the JKU Patterns Test Database (PTD).
As can be seen in this table, our method ranked highest at discovering at least one
occurrence of each ground truth pattern (F1 est) as well as being the fastest method.
Lartillot’s method (OL1) performed better at finding inexact occurrences of patterns
(F1 occ(c=.75)) but is considerably slower. VM1 and OL1 performed at a similar
level with respect to finding exact occurrences of the patterns, and, in both cases,
the standard deviation was high. The addition of more pieces to training and test
databases over time will enable researchers to investigate the generalizability of their
methods.

Table 12.4 Results on the JKU test set. NF1 (Nieto and Farbood, 2014), OL1 (Lartillot, 2014),
VM1 (Velarde and Meredith, 2014) and DM10 (Meredith, 2013)

F1 est F1 occ(c=.75) T L F1 F1 Runtime

NF1 Mean 0.50 0.41 0.33 0.02 480.80
SD 0.14 0.27 0.12 0.05 558.43

OL1 Mean 0.50 0.81 0.43 0.12 35508.82
SD 0.17 0.12 0.13 0.13 52556.11

VM1 Mean 0.73 0.60 0.49 0.16 100.80
SD 0.14 0.09 0.14 0.15 119.18

DM10 Mean 0.55 0.62 0.43 0.03 161.40
SD 0.06 0.09 0.08 0.04 194.87

7 Results of the annual MIREX competitions on Discovery of Repeated Themes and Sections can
be found on the MIREX website at at http://www.music-ir.org/.
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Fig. 12.10 Notation and pitch-signal representations of the first ground truth pattern for the third
movement of Beethoven’s Piano Sonata in F minor, Op. 2, No. 1 (1795)

12.3.1.3 Comparing Patterns Discovered Automatically with Patterns
Identified by Experts

In this section, we present the output of the computational method compared to the
JKU PDD ground truth analysis of the monophonic version of the third movement
of Beethoven’s Piano Sonata in F minor, Op. 2, No. 1 (1795). In order to visualize
the ground truth and computationally discovered patterns and their occurrences, we
will present them as pitch signals rather than in notation. To help with understanding
the correspondence between the pitch signal representation and notation, Fig. 12.10
shows both representations of the first ground truth pattern.

The ground truth analysis for this piece identifies seven patterns and their occur-
rences as shown in Fig. 12.11. In this figure, plots on the left correspond to patterns,
while plots on the right correspond to pattern occurrences. Each pattern occurrence
is marked with vertical dotted lines in the graphs on the right side of the figure. All
pitch signals have been shifted to start at time 0. The patterns are ordered, from top
to bottom, in decreasing order of salience. The lengths of these seven ground truth
patterns range from 12 to 119 qn. Some occurrences of the patterns overlap as is the
case for the occurrences of pattern 1 and pattern 3, or pattern 2 and pattern 5.

The computational analysis of the piece can be seen in Fig. 12.12. The parameters
used are the following:

• 1 sampling rate: 16 samples per qn
• representations: absolute wavelet coefficients filtered at the scale of 1 qn
• segmentation at absolute maxima
• scales for segmentation: 1 qn
• threshold for binarizing the similarity matrix: 0.001
• distance for measuring similarity between segments on the first comparison: city

block (CB)
• distance for measuring similarity between segments on the second comparison:

city block (CB)
• clustering method: Single linkage (nearest neighbour)
• value for the number of clusters: 7
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Fig. 12.11 JKU PDD Ground truth patterns for the third movement of Beethoven’s Piano Sonata
in F minor, Op. 2, No. 1 (1795). Pitch signal representation, with signals shifted to start at time 0.
Plots on the left correspond to the patterns, while plots on the right correspond to the entire piece,
with each pattern occurrence marked with a vertical dotted line at its starting and ending position

• criterion for ranking clusters: compression ratio

In this example, the number of clusters is the same as the number of patterns
in the ground truth. Once again, the salience of patterns can be seen from top to
bottom, where the most salient pattern is shown in the top plot. Six out of seven
pattern shapes match approximately the ground truth pattern shapes (in some cases,
some notes may be missing at the beginning or end of a pattern). The pattern that
has been ranked as the most salient, corresponds to pattern 2 in the ground truth
analysis, and all its four occurrences have been found. The shape of the second most
salient computed pattern, does not resemble the shape of any of the patterns in the
ground truth. Pattern 2 is a short-duration pattern, whose cluster contains several
melodic units, including segments that approximate the occurrences of pattern 1 in
the ground truth (this cannot be seen in Fig. 12.12). The remaining computed pattern
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shapes (patterns 3–7) can be found in the ground truth, each with the same number
of occurrences. The ranking of salience is not exactly the same as in the ground truth,
but it is similar in chunks, such that:

• the first two computed clusters correspond to the first two pattern occurrences in
the ground truth;

• computed cluster 3 corresponds to the occurrences of ground truth pattern 3;
• computed clusters 4–6 correspond to the occurrences of ground truth patterns 4–6,
• and finally the last computed cluster corresponds to the occurrences of the last

ground truth pattern.

The second cluster contains several melodic units. In future work, we would like
to cluster such clusters until they satisfy a given condition and discard clusters that
fail to satisfy the condition. We expect that the effect on such clusters of keeping or
discarding trivial units may be more evident if we carry out this process.

12.3.2 Experiment 2: Classification of Segments from J. S. Bach’s
Two-Part Inventions

We also evaluated the method on a second task where the goal was to recognize
the parent works of excerpts from J. S. Bach’s 15 Two-Part Inventions (BWV 772–
786). In contrast to the first experiment, in this task, all segments were used in the
evaluation, not just concatenated units. Also, whereas in the first experiment there
was room for disagreement about the validity of the ground truth, in this second
task, the ground truth was not controversial—there was no doubt as to which parent
Invention each test excerpt belonged to. The notion that the piece to which an excerpt
belongs can be identified on the basis of the content of the excerpt is based on the
premise that the musical material in the excerpt is motivically related to the rest of the
piece. Specifically, in the case of Bach’s Two-Part Inventions, it is well established
that the opening exposition of each of these pieces presents the motivic material
that is developed throughout the rest of the piece, which is typically divided into
three sections (Dreyfus, 1996; Stein, 1979). In this experiment, we followed the
experimental setup described by Velarde et al. (2013), building the classifier from the
expositions of the pieces and the test set from the three following sections of each
piece. More precisely, an initial, 16 qn segment from each piece was used to build
the classifier, and the remainder of each piece was split into three sections of equal
length which were used to build the test set. We could have attempted to determine
the length of each exposition precisely, but we wanted to avoid making subjective
analytical judgements. We therefore used a fixed length of 16 qn as the length of
each “exposition” section despite the fact that the actual lengths of the expositions in
the Inventions vary. This particular length was chosen because it was the length of
the longest exposition in the pieces, thus ensuring that no exposition material would
be included in the test set.
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Fig. 12.12 Patterns discovered by the method for the third movement of Beethoven’s Piano Sonata
in F minor, Op. 2, No. 1 (1795), JKU PDD monophonic version. Pitch signal representation, with
signals shifted to start at time 0. Plots on the left correspond to the patterns, while plots on the right
correspond to the entire piece, with each pattern occurrence marked with a vertical dotted line at its
starting and ending position

We were also interested in investigating the amount of initial expository material
required to enable the parent works of excerpts to be accurately identified. We
therefore constructed classifiers from the first 4, 8 and 16 qn of the pieces.

Figure 12.13 shows schematically how the classifiers and the test sets were con-
structed. The classifier set C was built from segments sci, j from the expositions of
the 15 Inventions, where each segment could be from either the upper or the lower
voice. sci, j is the jth segment in Invention i. Each test set T was built from segments
st, where each st could be from either the upper or the lower voice. We denote the jth
segment in Invention i by sti, j. To classify a segment st to one of the 15 classes, we
applied 1-nearest neighbour classification (Mitchell, 1997). That is, we computed the
distances between st and all sc in C, and classified st to the class i of the sci, j that had
the smallest distance to st. Each test excerpt was assigned the class most frequently
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Fig. 12.13 Scheme of classifier and test construction based on signal vi

predicted by its segments. In both cases we used the next nearest neighbour to break
ties.

We expected higher classification rates with classifiers built from more exposition
material, similar performance for the different combinations of wavelet-base clas-
sifiers, and higher classification rates in the first section compared to the following
two, as the subject appears in the first section following the exposition at least once
in each part (Stein, 1979).

The following parameters were used in the experiment:

• Sampling rate: 8 samples per qn8

• Representation: normalized pitch signal (WR), wavelet coefficients filtered at the
scale of 1 qn (WR) and absolute wavelet coefficients filtered at the scale of 1 qn
(WRA)

• Segmentation: constant-duration segmentation (CS), wavelet zero-crossing (ZC)
and wavelet absolute maxima (AM)

• Scale segmentation at 1 qn
• Segment length normalization by zero padding
• Clustering: 1-nearest neighbour
• Distance measure: city block

12.3.2.1 Results

Figures 12.14 and 12.15 show the classification accuracy on each section, with the
concatenation phase omitted and included, respectively. Both figures show the effect
of segmentation and representation (columns vs. rows), and the number of qn used
for the classifiers (asterisk, square, and circle markers). As expected, the amount of
material used from the exposition (4, 8, or 16 qn) affects the classification success
rates: the more material used, the higher the success rates. Moreover, segmentation
has a stronger effect on the classification than representation. With respect to the
results between sections, the classification rates for the first section are higher than

8 The sampling rate was chosen to be the same as that used by Velarde et al. (2013).
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those for the second and third sections. Representations associated with constant-
duration segmentation are accurate in the first section after the exposition, where
the subject is presented at least once in one of the voices (Stein, 1979), but far less
accurate in the second and third sections where an increasing degree of variation
of the original material occurs. Also, in sections 2 and 3, segment boundaries may
not fall on whole-quarter-note time points, instead they may be shifted by a small
amount, as an effect of the equal division of the sections. This may result in poor
discriminatory information contained in segments when using constant-duration seg-
mentation. The approach based on wavelet representation and segmentation is more
robust to variation compared to constant-duration segmentation and the unfiltered
pitch signal, resulting in similar classification rates for each classifier among all three
sections.

A Wilcoxon signed rank test indicated that the concatenation phase did not sig-
nificantly affect the results of accuracy per segmentation method (CS: Z = 1.6036,
p = 0.1088, ZC: Z = 0.4472, p = 0.6547, AM: Z = 1.6036, p = 0.1088) or accuracy
per representation type (VR: Z = 1.4142, p = 0.1573, WR: Z = 1.6036, p = 0.1088,

Fig. 12.14 Performance for each section with the classifier based on the exposition
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Fig. 12.15 Performance for each section with the classifier based on the exposition, and the con-
catenation phase included in the segmentation process

WA: Z = 0.8165, p = 0.4142 ) for classifiers built from the first 16 qn. However,
while including the concatenation phase did not significantly affect the results, it
slightly reduced the mean accuracy by 4%. We speculate that this may be a result of
the concatenation phase causing some test-set segments to become much longer than
the classifier segments, which would lead to segments of very unequal length being
measured for similarity. This, in turn, could result in poorer classification accuracies.

12.4 Summary and Conclusions

We have presented a novel computational method for analysis and pattern discovery
in melodies and monophonic voices. The method was evaluated on two musicological
tasks. In the first task, the method was used to automatically discover themes and
sections in the JKU Patterns Development Database. In the second task, the method
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was used to determine the parent composition of excerpts from J. S. Bach’s Two-Part
Inventions (BWV 772–786). We explored aspects of representation, segmentation,
classification and ranking of melodic units. The results of the experiments led us to
conclude that the combination of constant-duration segmentation and an unfiltered,
“raw”, pitch-signal representation is a powerful approach for pieces where motivic
and thematic material is restated with only slight variation. However, when motivic
material is more extensively varied, the wavelet-based approach proves more robust
to melodic variation.

The method described in this chapter could be developed further, perhaps by
evaluating the quality of clusters in order to discard clusters that are too heterogeneous.
Other measures of pattern quality could also be explored for ranking patterns in the
algorithm output, including measures that perhaps more precisely model human
perception and cognition of musical patterns. Moreover, it would be interesting to
study the method’s performance on a corpus of human performances of the pieces in
experiment 1, in order to test, in particular, the robustness of our distance measures.

Acknowledgements Gissel Velarde is supported by the Department of Architecture, Design and
Media Technology at Aalborg University. The contribution of David Meredith to the work reported
here was made as part of the “Learning to Create” project (Lrn2Cre8). The project Lrn2Cre8
acknowledges the financial support of the Future and Emerging Technologies (FET) programme
within the Seventh Framework Programme for Research of the European Commission, under FET
grant number 610859.

References

Adiloglu, K., Noll, T., and Obermayer, K. (2006). A paradigmatic approach to
extract the melodic structure of a musical piece. Journal of New Music Research,
35(3):221–236.

Anagnostopoulou, C. and Westermann, G. (1997). Classification in music: A com-
putational model for paradigmatic analysis. In Proceedings of the International
Computer Music Conference, pages 125–128, Thessaloniki, Greece.

Antoine, J.-P. (1999). Wavelet analysis: a new tool in physics. In van den Berg, J. C.,
editor, Wavelets in Physics. Cambridge University Press.

Aucouturier, J.-J. and Sandler, M. (2002). Finding repeating patterns in acoustic
musical signals: Applications for audio thumbnailing. In Audio Engineering
Society 22nd International Conference on Virtual, Synthetic, and Entertainment
Audio (AES22), Espoo, Finland.

Cambouropoulos, E. (1997). Musical rhythm: A formal model for determining local
boundaries, accents and metre in a melodic surface. In Leman, M., editor, Music,
Gestalt, and Computing, volume 1317 of Lecture Notes in Artificial Intelligence,
pages 277–293. Springer.

Cambouropoulos, E. (1998). Towards a general computational theory of musical
structure. PhD thesis, University of Edinburgh.



330 Gissel Velarde, David Meredith, and Tillman Weyde

Cambouropoulos, E. (2001). The local boundary detection model (LBDM) and its
application in the study of expressive timing. In Proceedings of the International
Computer Music Conference (ICMC’2001), Havana, Cuba.

Cambouropoulos, E. and Widmer, G. (2000). Automated motivic analysis via melodic
clustering. Journal of New Music Research, 29(4):303–317.

Collins, T. (2014). MIREX 2014 Competition: Discovery of Repeated Themes and
Sections. http://tinyurl.com/krnqzn5. Accessed on 9 April 2015.

Collins, T., Laney, R., Willis, A., and Garthwaite, P. H. (2011). Modeling pattern
importance in Chopin’s Mazurkas. Music Perception, 28(4):387–414.

Conklin, D. (2006). Melodic analysis with segment classes. Machine Learning,
65(2-3):349–360.

Conklin, D. and Anagnostopoulou, C. (2006). Segmental pattern discovery in music.
INFORMS Journal on computing, 18(3):285–293.

Dreyfus, L. (1996). Bach and the Patterns of Invention. Harvard University Press.
Eerola, T. and Toiviainen, P. (2004). MIDI Toolbox: MAT-

LAB tools for music research. Available online at
http://www.jyu.fi/hum/laitokset/musiikki/en/research/coe/materials/miditoolbox/.

Everitt, B., Landau, S., Leese, M., and Stahl, D. (2011). Cluster Analysis. Wiley
Series in Probability and Statistics. Wiley.

Farge, M. (1992). Wavelet transforms and their applications to turbulence. Annual
Review of Fluid Mechanics, 24(1):395–458.

Florek, K., Łukaszewicz, J., Perkal, J., Steinhaus, H., and Zubrzycki, S. (1951). Sur
la liaison et la division des points d’un ensemble fini. Colloquium Mathematicae,
2(3–4):282–285.

Forth, J. (2012). Cognitively-motivated geometric methods of pattern discovery and
models of similarity in music. PhD thesis, Goldsmiths College, University of
London.

Grilo, C. F. A., Machado, F., and Cardoso, F. A. B. (2001). Paradigmatic analysis
using genetic programming. In Artificial Intelligence and Simulation of Behaviour
(AISB 2001), York, UK.

Haar, A. (1910). Zur theorie der orthogonalen funktionensysteme. Mathematische
Annalen, 69(3):331–371.
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