
Aalborg Universitet

CBRecSys 2015. New Trends on Content-Based Recommender Systems

Proceedings of the 2nd Workshop on New Trends on Content-Based Recommender Systems
co-located with 9th ACM Conference on Recommender Systems (RecSys 2015)
Bogers, Toine; Koolen, Marijn

Publication date:
2015

Document Version
Publisher's PDF, also known as Version of record

Link to publication from Aalborg University

Citation for published version (APA):
Bogers, T., & Koolen, M. (Eds.) (2015). CBRecSys 2015. New Trends on Content-Based Recommender
Systems: Proceedings of the 2nd Workshop on New Trends on Content-Based Recommender Systems co-
located with 9th ACM Conference on Recommender Systems (RecSys 2015). CEUR-WS. CEUR Workshop
Proceedings Vol. 1448 http://ceur-ws.org/Vol-1448/

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 - Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 - You may not further distribute the material or use it for any profit-making activity or commercial gain
 - You may freely distribute the URL identifying the publication in the public portal -

Take down policy
If you believe that this document breaches copyright please contact us at vbn@aub.aau.dk providing details, and we will remove access to
the work immediately and investigate your claim.

Downloaded from vbn.aau.dk on: August 23, 2025

https://vbn.aau.dk/en/publications/02d60b71-df22-4ad2-99b4-e03d21bed160
http://ceur-ws.org/Vol-1448/

CBRecSys 2015
2nd Workshop on New Trends in Content-based Recommender Systems

September 20, 2015
RecSys 2015, Vienna, Austria

Edited by
Toine Bogers and Marijn Koolen

Workshop proceedings

Preface

While content-based recommendation has been applied successfully in many di�erent domains, it has
not seen the same level of attention as collaborative filtering techniques have. In recent years, competi-
tions like the Netflix Prize, CAMRA, and the Yahoo! Music KDD Cup 2011 have spurred on advances
in collaborative filtering and how to utilize ratings and usage data. However, there are many domains
where content and metadata play a key role, either in addition to or instead of ratings and implicit us-
age data. For some domains, such as movies the relationship between content and usage data has seen
thorough investigation already, but for many other domains, such as books, news, scientific articles,
and Web pages we do not know if and how these data sources should be combined to provided the best
recommendation performance.

The CBRecSys workshop series aims to address this by providing a dedicated venue for papers
dedicated to all aspects of content-based recommendation. The first edition in Silicon Valley in 2014
was a big success with over 60 attendees and 16 submissions.

For the second edition, CBRecSys 2015, we once again issued aCall for Papers asking for submissions
of novel research papers (both long and short) addressing recommendation in domains where textual
content is abundant (e.g., books, news, scientific articles, jobs, educational resources, Web pages, etc.)
as well as dedicated comparisons of content-based techniques with collaborative filtering in di�erent
domains. Other relevant topics included opinion mining for text/book recommendation, semantic rec-
ommendation, content-based recommendation to alleviate cold-start problems, as well as serendipity,
diversity and cross-domain recommendation.

Each submission was received by three members of the program committee consisting of experts
in the field of recommender systems and information retrieval. We selected 6 long papers and 2 short
papers from the 12 submissions for presentation at the workshop. We are also happy to have professor
FrankHopfgartner of theUniversity of Glasgow give a keynote presentation on capturing user interests
for content-based recommendation.

We thank all PC members, our keynote speaker as well as authors of accepted papers for making
CBRecSys 2015 possible. We hope you will enjoy the workshop!

Toine Bogers & Marijn Koolen

Table of Contents

Capturing User Interests for Content-based Recommendations 1
Frank Hopfgartner

Generic Knowledge-based Analysis of Social Media for Recommendations 2
Victor de Graa�, Anne van de Venis, Maurice van Keulen and Rolf de By

Extended Recommendation Framework: Generating the Text of a User Review as a 10
Personalized Summary
Mickaël Poussevin, Vincent Guigue and Patrick Gallinari

Automatic Selection of Linked Open Data features in Graph-based Recommender Systems 18
Cataldo Musto, Pierpaolo Basile, Marco De Gemmis, Pasquale Lops, Giovanni Semeraro and
Simone Rutigliano

Cross-Document Search Engine For Book Recommendation 22
Benkoussas Chahinez and Patrice Bellot

The Continuous Cold-Start Problem in E-Commerce Recommender Systems 30
Lucas Bernardi, Jaap Kamps, Julia Kiseleva and Melanie Mueller

Metadata Embeddings for User and Item Cold-start Recommendations 34
Maciej Kula

Conceptual Impact-Based Recommender System for CiteSeerX 42
Kevin Labille, Susan Gauch and Ann Smittu Joseph

Exploiting Regression Trees as User Models for Intent-Aware Multi-attribute Diversity 46
Paolo Tomeo, Tommaso Di Noia, Marco de Gemmis, Pasquale Lops, Giovanni Semeraro and
Eugenio Di Sciascio

Organization

Workshop organizers
• Toine Bogers, Aalborg University Copenhagen, Denmark

• Marijn Koolen, University of Amsterdam, the Netherlands

Program committee
• Robin Burke, DePaul University, USA

• Iván Cantador, Universidad Autónoma de Madrid, Spain

• Federica Cena, Universita’ degli Studi di Torino, Italy

• Paolo Cremonesi, Politecnico di Milano, Italy

• Marco De Gemmis, University of Bari “Aldo Moro”, Italy

• Ernesto W. De Luca, Potsdam University of Applied Sciences, Germany

• Tommaso Di Noia, Politecnico di Bari, Italy

• Peter Dolog, Aalborg University, Denmark

• Soude Fazeli, Open University

• Juan F. Huete, Universidad de Granada, Spain

• Jaap Kamps, University of Amsterdam

• Birger Larsen, Aalborg University Copenhagen, Denmark

• Babak Loni, Delft University of Technology

• Pasquale Lops, University of Bari “Aldo Moro”, Italy

• Cataldo Musto, University of Bari “Aldo Moro”

• Casper Petersen, University of Copenhagen

• Shaghayegh Sahebi, University of Pittsburgh

• Alan Said, Recorded Future, Sweden

• Giovanni Semeraro, University of Bari “Aldo Moro”, Italy

• Nafiseh Shahib, Norwegian University of Science and Technology

• Marko Tkalčič, Johannes Kepler University, Austria

• Bei Yu, Syracuse University

Capturing User Interests for Content-based
Recommendations

Frank Hopfgartner
Humanities Advanced Technology and Information Institute

University of Glasgow
Glasgow, UK

frank.hopfgartner@glasgow.ac.uk

ABSTRACT
Nowadays, most information filtering systems provide recommen-
dations by either building a model of the users’ past behavior, re-
ferred to as collaborative filtering, or by identifying items with sim-
ilar properties, referred to as content-based recommendation.

In this presentation, I will present various use cases and scenarios
where recommendations are provided based on a preceding content
analysis. The use cases will illustrate both strengths and weak-
nesses of content-based recommendation.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
CBRecSys 2015, September 20, 2015, Vienna, Austria.
Copyright 2015 by the author(s).

1

Generic knowledge-based analysis of
social media for recommendations

Victor de Graaff
Dept. of Computer Science

University of Twente
Enschede, The Netherlands

v.degraaff@utwente.nl

Anne van de Venis
Dept. of Computer Science

University of Twente
Enschede, The Netherlands
a.j.vandevenis@student.utwente.nl

Maurice van Keulen
Dept. of Computer Science

University of Twente
Enschede, The Netherlands

m.vankeulen@utwente.nl

Rolf A. de By
Fac. of Geo-Information Science

& Earth Observation (ITC)
University of Twente

Enschede, The Netherlands
r.a.deby@utwente.nl

ABSTRACT
Recommender systems have been around for decades to help
people find the best matching item in a pre-defined item
set. Knowledge-based recommender systems are used to
match users based on information that links the two, but
they often focus on a single, specific application, such as
movies to watch or music to listen to. In this paper, we
present our Interest-Based Recommender System (IBRS).
This knowledge-based recommender system provides rec-
ommendations that are generic in three dimensions: IBRS
is (1) domain-independent, (2) language-independent, and
(3) independent of the used social medium. To match user
interests with items, the first are derived from the user’s
social media profile, enriched with a deeper semantic em-
bedding obtained from the generic knowledge base DBpe-
dia. These interests are used to extract personalized rec-
ommendations from a tagged item set from any domain, in
any language. We also present the results of a validation of
IBRS by a test user group of 44 people using two item sets
from separate domains: greeting cards and holiday homes.

Keywords
Recommender systems, knowledge-based, DBpedia, social
media, domain-independent, language-independent

General Terms
Algorithms, Design, Experimentation

Categories and Subject Descriptors
H.4.2 [Information Systems Applications]: Types of
Systems—Decision support

1. INTRODUCTION
The aim of a recommender system (RS) is to help people
find the items they are most interested in. A requirement
to provide personalized recommendations is that the RS has
knowledge of the person using it. In 2013, Facebook claimed
to have 1.11 billion active users [1], and the top-100 pages
alone currently have a total of 5.87 billion facebook-likes [2].
The items that people express a preference for on social me-
dia, whether through a like of a Facebook page, a follow on
Twitter, or a tip on the renewed FourSquare, can be taken to
disclose personal traits of interest and the things they want
to be associated with. This vast amount of information is
the starting point for our Interest-Based Recommender Sys-
tem (IBRS).

But what people express their preference for on social media,
cannot always directly be related to commonly used tags or
words in descriptions in an existing item set. These items
are often example instances of broader concepts. For exam-
ple: Cristiano Ronaldo has 103 million facebook-likes at the
time of writing, whereas Soccer (66 million) and Football
(46 million) have considerably fewer facebook-likes.1 Tag
sets or descriptions, on the other hand, are more likely to
contain these broader concepts, as for example is the case
in greeting cards, sports equipment, or campsites with soc-
cer fields. In fact, one of our validation item sets contains
tagged greeting cards with practically only generic terms
such as soccer/football. To bridge this generalization gap in
a domain- and language-independent way, we use the mul-
tilingual, generic knowledge base DBpedia to automatically
detect broader concepts. We call these concepts the user’s
interests. In this paper, we validate our hypothesis that au-
tomated user interest detection can also be used to select
preferred items in an item set, independent of the item set
domain, language and used social medium. As a boundary
requirement to our solution, the cold-start problem, as for
example discussed by Bobadilla et al. [3], needs to be circum-
vented. The system we propose shall be seen as a feature
of a larger recommender system, either to bootstrap or to

1Synonyms like this one cause problems as well, and are
discussed in more detail in Section 3

2

support that system, rather than as a stand-alone system.

In addition to the recommendation approach we propose in
this paper, we also present the results of a validation thereof.
A user group of 44 people tested our RS, using item sets
from two completely different domains: greeting cards and
holiday homes. Both the recommendation selection, as well
as the explanation interface were validated by these users,
using their own social media profile.

This paper is further structured as follows: related work is
discussed in Section 2, the motivation behind this research is
discussed in Section 3, the IBRS technology is presented in
Section 4, while the validation approach and results are laid
out in Section 5, and Section 6 finally contains concluding
remarks and hints at future work.

2. RELATED WORK
The creation of a RS that makes use of social media or DB-
pedia is not a new ambition. Social media have especially
received much attention in the field of content-based recom-
mender systems. Fija lkowski and Zatoka presented an archi-
tecture of a recommender system for e-commerce based on
Facebook profiles [4]. Guy et al. proposed five recommender
types, based on social media and/or tags [5]. In their ap-
proach, they also presented the users with recommendation
explanation. The social media they focus on however, are
not of the mainstream type, but specific for the Lotus Con-
nections suite. The system of He et al., on the other hand,
uses common social media [6]. Whereas they claim to over-
come the cold-start problem, their system appears to still
suffer from the new item cold-start problem, as described
by Bobadilla et al. [3].

The creation of a RS based on DBpedia has also received
quite some attention already, especially in the field of mu-
sic [7, 8] and movie [9, 10, 11, 12, 13] recommendation. Di
Noia et al. took it a step further and also benefited from the
integration of DBpedia in the linked open data (LOD) initia-
tive. Their movie recommendations are not only based on
DBpedia knowledge, but also on Freebase and LinkedMDB.
A more generic approach to create a RS using LOD was done
by Heitmann and Hayes [14], who use also use LOD to over-
come the cold-start problem. Even though their validation
is based on a music dataset, their approach has the generic-
ity to be used for other applications as well. Our approach
for broader concept detection through DBpedia is a form
of knowledge-based query expansion. Liang et al. already
showed in [15] that document recommendation based on the
user’s interests improves as a result of query expansion, or
semantic-expansion as they call it.

What distinguishes our approach from other RS research,
is that we use both social media profiles and DBpedia data
to create a generic RS. Passant and Raimond, for exam-
ple, created a RS based on exported social media profiles
and DBpedia data in [8], but their approach is limited to
the music-specific relations in DBpedia. To the best of our
knowledge, the only other generic approach is TasteWeights
by Bostandjiev et al. [16]. They build a user profile based on
social media data, and then apply a collaborative filtering-
based approach to select recommendations. This still implies
all of the three cold-start problem categories: new item, new

user, and new community, again as described by Bobadilla et
al. [3]. As it is exactly our goal to overcome the cold-start
problem, our approach is a hybrid between content-based
and knowledge-based, according to the RS classification by
Burke and Ramezani [17]. Basile, Lops et al. would classify
our work as a top-down semantics-aware content-based RS
[18, 19].

Our work is inspired by Shi et al.’s HeteRecom [20], which is
based on the similarity calculation HeteSim [21]. Similar to
their work, our ultimate goal is to find the matching paths
between a user and the item set that carry the most weight.
In this paper however, we focus on the detection of existing
paths.

3. MOTIVATION
In this work, we aim to extract recommendations that are
generic in three dimensions: the recommendation approach
shall be independent of the item set domain, the item set lan-
guage, and the used social medium. As a fourth criterium,
it shall not suffer from any of Bobadilla’s three cold-start
problem categories. Below, we discuss the motivation for all
of these challenges:

Domain-independence
As discussed in the previous section, currently most recom-
mender systems based on knowledge bases and social media
are focused on one specific domain. Independence of the
item set domain only allows us to reuse the solution and its
future improvements for multiple applications.

Language-independence
Similar to domain-independence as a requirement for reusabil-
ity, a language-independent solution improves the RS’s po-
tential to be used in multiple applications. A sub-requirement
of of language-independence is synonym-independence. As
Zanardi and Capra pointed out in [22], synonyms are a typ-
ical RS problem, especially for tag-based RSs. The example
of people facebook-liking either the Soccer page or the Foot-
ball page from Section 1 already showed that people may
facebook-like different pages, while referring to the same
concept. Despite recent efforts by Facebook to merge pages
about the same topic from different languages into one page,
and improving the search functionality to help people find-
ing such pages while searching for their name in a different
language, still several pages exist to describe similar con-
cepts.

Social medium-independence
From the first form of genericity, domain-independence, fol-
lows another requirement. Several social media, such as
Facebook, LinkedIn, Twitter, Instagram, and Pinterest, are
widely used, and each of these has its own focus. When one
decides to create a RS for job vacancies, LinkedIn may be a
more logical social medium to base the recommendations on
than any of the other, while a RS for touristic hotspots will
most likely lead to another choice. Therefore, to create a RS
based on social media content that is domain-independent,
it shall also be independent of the underlying social medium.

3

Colosseum Colosseum Rome

Pizza

Francesco
Totti

Pizza

Francesco
Totti

Vespasian

Calzone

A.S.
Roma

Rome

Italy

Stadio
Olimpico

Italy

Stadio
Olimpico

Figure 1: The IBRS concept, illustrated using the holiday home domain. A user’s preferred items on social media are mapped
onto knowledge base resources. Broader concepts are detected by exploring the knowledge base graph, and finally mapped
onto tags in the item set database.

Cold-start problem
The cold-start problem has been widely discussed in RS
literature. Bobadilla et al. categorized it into three sub-
categories: the new item problem, the new user problem,
and the new community problem [3]. Knowledge-based RS
have been designed to overcome all of these problems, but
often require domain-specific knowledge.

Overcoming all of these four challenges at the same time
has motivated us to create IBRS: a domain-independent,
language-independent, social medium-independent, knowl-
edge-based RS.

4. CONCEPT & TECHNOLOGY
The foundation of IBRS is the idea that people are more
likely to be interested in items that have a not too distant
relation with things we know they like. Although things
people express a preference for on social media are typically
in a different domain than our item set, they may still give
hints towards a person’s interests. In IBRS, we link the
preferred items on social media to resources in the DBpedia
Resource Description Framework (RDF) graph. We use this
graph to explore related concepts, which are then matched
with a known tag set, that is used to label the item set. As
a final step, we rank the item set based on the number of
matched tags. This concept is illustrated, using the holi-
day home domain, in Figure 1. In this example, the user
facebook-liked the Colosseum, pizza, and Francesco Totti.
These facebook-likes are mapped onto DBpedia, and the
DBpedia RDF graph is explored to detect the broader con-
cepts Rome, Italy, and Stadio Olimpico. These items are
mapped onto holiday home tags, to ultimately match the
user with a specific holiday home.

The remainder of this section is structured as follows: RDF
graph exploration is discussed in Section 4.1. The data
model of the IBRS abstraction layer is presented in Sec-
tion 4.2. Section 4.3 presents a method for automated tag
generation from descriptions. In Section 4.4 the ranking
mechanism and Facebook-DBpedia mapping approach are
presented. Section 4.5, finally, presents a short introduction

of the IBRS prototype.

4.1 DBpedia graph exploration
After matching a facebook-like with a DBpedia resource, we
traverse the RDF graph in exactly two steps. Since RDF
tuples have a subject, predicate and object, RDF graphs are
directed. Therefore, there are four possible different direc-
tion combinations to travel from node A through node B to
its second neighbor C.2 In Table 1, we show the top-10 of
second neighbors when traversing the DBpedia graph start-
ing from the Eiffel Tower as node A, using all four possible
direction combinations. DBpedia pages in italics also oc-
cur as tags in at least one of our two validation sets, which
are discussed in detail in Section 5. The first approach,
A → B → C, leads to results describing France, influen-
tial French people, and several other buildings in France.
The second approach, A ← B → C, has some overlap with
the first approach, but also contains several results unre-
lated to France, such as Los Angeles and the United States.
The third approach, A ← B ← C, shows some remarkable
buildings throughout Europe, but also very unrelated lists
towards the bottom of the top-10. The fourth and final ap-
proach, A → B ← C, results in several famous French peo-
ple, especially scientists. Other starting points show similar
results: the third approach, A ← B ← C, shows promising
results for single domain recommendations, whereas the first
approach shows the best results for broader concept detec-
tion. Since our aim is to match these second neighbors with
a tag set, we use the first approach, A→ B → C.

4.2 Abstraction layer data model
To ensure IBRS genericity, an abstraction layer is used on
top of the underlying data source, such as a product database.
This abstraction layer can consist of physical tables, views,
or a mix thereof, but we will refer to its items as tables from
here on. The abstraction layer contains two entity tables:

2Depending on the directions of the relationships, and the
existence of bi-directional relationships, node A may be
equal to node C, as can also be seen in Table 1.

4

Rank A→ B → C (#) A← B → C (#) A← B ← C (#) A→ B ← C (#)
1 Paris (20) Eiffel Tower (41) Eiffel Tower (7) Paul Langevin (51)
2 France (20) France (17) Palácio de Ferro (3) Léon Foucault (48)
3 Eiffel Tower (7) Paris (15) Cologne Cathedral (2) Jean Témerson (48)
4 Manuel Valls (6) Los Angeles (4) Eiffel Bridge, Ungheni (2) Frédéric Passy (45)
5 François Hollande (6) British Library (4) Souleuvre Viaduct (2) L.A. de Bougainville* (45)
6 Unitary state (6) Bonnétable (4) Samuel Hibben (2) Cecile de Brunhoff (45)
7 French language (6) Aarhus University (4) Casa de Fierro (2) Adrien-Marie Legendre (45)
8 Anne Hidalgo (6) Garabit viaduct (4) Modern Marvels episodes* (2) Robert Perrier (45)
9 Bonnétable (4) St Paul’s Cathedral (4) Monopoly editions USA* (2) Paul Lévy (math.)* (45)

10 Garabit viaduct (4) United States (4) Garabit viaduct (2) Émile Drain (45)

Table 1: Top-10 of second neighbor nodes C through DBpedia graph exploration in multiple directions for the Eiffel Tower
resource as node A. Numbers between brackets indicate number of paths between that node and the Eiffel Tower node. Items
in italics also occur as tags in at least one of our two validation tag sets. Items marked with an asterisk are abbreviated.

abstract items and tags, and one relationship table: ab-
stract items tags, as depicted in Figure 2.

Figure 2: Abstraction layer data model

The abstract items table contains the id and object type
of the items in the item set. The object type field allows
us to use one IBRS instance for the recommendation of mul-
tiple item sets.

The tags table contains the tag’s id, name, and dbpe-
dia resource id. The name field can be used in the lan-
guage of the item set tags. Since we have one item set that
is tagged in Dutch, and one item set that is tagged in En-
glish, we added the name eng field for English tags. The
dbpedia resource id is cached in the database for better
performance.

The abstract items tags table is a regular relation table
containing the abstract item id and tag id. It also con-
tains the abstract item type for improved join executions.

4.3 Tag generation
In case an item set is not tagged, but does contain descrip-
tive texts, tags can be extracted automatically. Natural lan-
guage processing algorithms can be used for this purpose,
such as the named entity extraction and disambiguation ap-
proach by Habib et al. [23]. We used Habib’s approach with
a manually trained model to extract named entities from
holiday home descriptions. A drawback of this approach
is that descriptions are often the result of free-text input.
Phrases such as “only a 3 hour flight from Amsterdam” or
“25 kilometers from the border with France” led to correctly
extracted named entities, but semantically not the best tags
to distinguish this object from others. Therefore, we addi-
tionally removed those tags that tagged a holiday home with
another country than the one it is located in. In total, this
approach allowed us to assign 455,777 (non-unique) tags to
42,148 holiday homes, from which 106,430 tags (of which
12,151 unique) could be mapped onto a DBpedia resource.

4.4 Ranking
The IBRS ranking method consists of four steps: (1) retriev-
ing preferred items from social media, (2) matching these
items with DBpedia resources, (3) extracting abstracts from
DBpedia, (4) ranking items based on matched tags. For per-
formance reasons, several items are cached offline.

Obtaining preferred items from social media
To map social media items while remaining independent of
the social medium, we must take into account that not all
APIs are the same. Some social medium APIs allow devel-
opers to find out what a user’s friends prefer, while others
limit the developer to information about the logged in user.
Therefore, when using the Facebook Graph API, we lim-
ited ourselves to the name and category elements of each
facebook-liked page.

Matching social media items with DBpedia resources
Facebook-likes are mapped onto DBpedia resources through
their name. Those facebook-pages that mapped onto am-
biguous terms in DBpedia were filtered out. To create a
more complete mapping, we used the category element to
postfix the name of those pages pages for which the cat-
egory element was filled with “movie,” “tv show,” or “mu-
sician/band.” In these cases, we also checked if a page ex-
ists with the additional suffix “ (movie),”“ (TV series),” or
“ (band)” respectively. This leads to the following SPARQL
query:

PREFIX dbpont: <http://dbpedia.org/ontology/>
PREFIX dbpres: <http://dbpedia.org/resource/>
We use the prefixed versions here for readability

SELECT ?uri ?label
WHERE {
Find exact match with category suffix
{ ?uri dbpont:wikiPageID [].

FILTER(?uri = dbpres:The_Net_(movie)) }

Or exact match without category suffix
UNION { ?uri dbpont:wikiPageID [].

FILTER(?uri = dbpres:The_Net) }

Or the label version
UNION {?uri rdfs:label "The_Net"@en.}

5

Check if page has redirect
UNION { dbpres:The_Net_(movie)

dbpont:wikiPageRedirects ?uri}
UNION { dbpres:The_Net

dbpont:wikiPageRedirects ?uri}

?uri rdfs:label ?label.
?uri dbpont:wikiPageID ?wikiPageid.
FILTER (langMatches(lang(?label),"en")).

Filter out ambiguous terms
FILTER NOT EXISTS { ?uri
dbpont:wikiPageDisambiguates ?disambiguates } .

Filter out Wikipedia categories
MINUS {?uri rdf:type skos:Concept}
}
LIMIT 1

Using this approach on a test set of 11,674 unique Facebook
pages, obtained from the likes of 309 users, we were able
to match 2,240 (19.2%) Facebook-pages with a DBpedia re-
source.

Extracting abstracts from DBpedia
For all matched DBpedia resources, the abstracts are re-
trieved from the SPARQL endpoint provided by DBpedia
[24] using the following query:

PREFIX dbpont: <http://dbpedia.org/ontology/>
PREFIX dbpres: <http://dbpedia.org/resource/>

SELECT DISTINCT
?o3 (count(?o3) as ?count) ?abstract ?label

WHERE {
UNION concatenation of mapped FB pages
{dbpres:Vienna ?p1 ?o2} UNION
{dbpres:Recommender_system ?p1 ?o2} UNION
{dbpres:Computer_science ?p1 ?o2}

Neighboring object has Wikipage
?o2 dbpont:wikiPageID ?o2id ;

Neighboring object has neighbor
?p2 ?o3 .

Second neighbor object has Wikipage
?o3 dbpont:wikiPageID ?o3id ;

dbpont:abstract ?abstract ;
rdfs:label ?label .

English is used as an example
FILTER(langMatches(lang(?abstract), ’en’)) .
FILTER(langMatches(lang(?label), ’en’)) .

Second neighbor object must not be a category
MINUS {?o3 rdf:type skos:Concept}
}

‘Only’ the 1000 most important abstracts
ORDER BY DESC(?count)
LIMIT 1000

Ranking items based on matched tags
Each tag that (1) has a dbpedia resource id and (2) is
contained in at least one of the downloaded abstracts, is
marked as a matched tag. The item set is then ranked on the

basis of the number of matched tags. As a final step, those
items that are too close to a higher ranked item, based on
a pre-defined distance function, are removed from the rank-
ing. This last step is added to ensure diversity among the
recommended items. For the recommendation of geographic
objects, as for example in a geo-social RS like the one dis-
cussed in [25], one can think of the Euclidean distance, but
for more generic purposes the cosine similarity (as for ex-
ample discussed in [22]) of the item’s tags may be a good
starting point.

4.5 Prototype
For demonstration and validation purposes, we have created
a prototype of IBRS, using the Cake PHP platform. The
prototype can be used with either one’s own Facebook pro-
file, or by manually combining several DBpedia resources.
It can be accessed through http://ibrs.ewi.utwente.nl.

5. VALIDATION
To validate our ranking mechanism, as well as to deter-
mine the user perception of recommendations with explana-
tions, we validated IBRS in a carefully designed user study
with a test user group of 44 people. We used two prod-
uct sets from different domains to demonstrate its domain-
independence: greeting cards and holiday homes. The greet-
ing card set contains Dutch tags, while the holiday homes
did not contain any tags, but only descriptions. From the
holiday homes, we used the English descriptions to extract
(English) tags, to emphasize the potential to use IBRS in a
language-independent way.

This section is further structured as follows: Section 5.1
describes the item set details. In Section 5.2, we present
the approach taken to validate both our ranking mechanism
and the recommendation explanation interface. Section 5.3
finally, discusses the validation results.

5.1 Item set details
The first item set contains greeting cards from the Dutch
company Kaartje2Go (“Card2Go”). People search through
a collection of cards electronically, which are distributed
through regular (non-electronic) mail by Kaartje2Go in name
of the client. To facilitate the search, users can search for
tags that have been entered manually by the Kaartje2Go
employees. These tags, which are mostly in Dutch, are in-
consistent in their completeness: for example some of the
soccer cards are also tagged using the names of popular
Dutch soccer teams, but not all of them. Less popular teams
are never mentioned as tags. The top-10 of the translated
greeting card tags can be found in Table 2.

The second item set contains holiday homes from the hol-
iday home portal EuroCottage. This item set did not con-
tain tags, but a description in one, two or three languages
(Dutch, English and/or German). We followed the approach
discussed in Section 4.3 to extract mentions of geographic
places from the English holiday home descriptions. The
top-10 of resulting tags can be found in Table 3. The advan-
tage of extracting geographic places is that these also often
have Wikipedia pages, which makes them suitable for the re-
quirement that the tags need to have a dbpedia resource id.
Many pages of the holiday home descriptions were in Ger-
man, even though they were entered into the system by the

6

Tag Frequency
Birthday 7,535

Party 4,200
Love 2,521
Girl 2,268
Boy 2,084

Infant 2,056
Photograph 1,793

Marriage 1,543
Cool 1,381

Animals 1,373

Table 2: Top-10 of (translated) manual greeting card tags
with a DBpedia reference, ordered by the number of cards
with this tag

holiday home owners as English descriptions. As a result
thereof, many German words or phrases were extracted as
geographical references, since the model was trained for En-
glish descriptions. However, the impact of these terms was
practically zero, as these extracted tags were not matched
with an English DBpedia resource.3 For the validation, the
holiday homes were plotted on a map that was zoomed in
on Europe, since most holiday homes in the set are located
there. A relatively small subset of homes outside Europe
could therefore not be displayed on the map, and were re-
moved from the validation set, just as those without a coor-
dinate pair.

Tag Frequency
Florence 760

Siena 656
Mediterranean Sea 634

Tuscany 537
Legoland 513

Venice 508
Sotkamo 448
Europe 440

Ardennes 421
Pisa 363

Table 3: Top-10 of extracted tags for holiday homes with a
DBpedia reference, ordered by the number of holiday homes
with this tag

5.2 Validation approach
Our test users were not aware of what they were testing,
except for the information that they were testing a RS. Most
test users do not have a background in computer science, and
none of them were aware of how IBRS works. We asked our
test users to validate our algorithm through a total of 30
questions, split up into three batches of 10. Once a question
had been answered, users could not return to that question.
The first two batches were intended to validate our ranking
mechanism, the third batch was intended to determine the

3Even though the approach can be applied to any language
contained in the knowledge base, the tags are still matched
with knowledge base resources in the tag language.

user perception of recommendations with explanations, as
compared to recommendations without explanations.

For the first ten questions, users were asked to compare
greeting cards using the interface of Figure 3. On one side of
the screen, an item from the top-10 greeting cards according
to IBRS was shown. On the other side, a card was shown
that was not tagged with any of the matched tags. We called
these recommendations Inverted IBRS. IBRS and Inverted
IBRS were shown on the left or right side at random.

Figure 3: Validation interface for greeting card comparison

For the second batch of ten questions, our test users were
presented with the choice between two holiday homes, in a
similar way. Again, IBRS and Inverted IBRS were shown
on the left or right side at random. For each holiday home,
its location was shown on a map, with the name of the holi-
day home and the first 1000 characters of its description, as
shown in Figure 4.

Figure 4: Validation interface for holiday home comparison

The final batch of ten questions required the test users to
rate a recommendation. Each of the holiday homes was one
of the top-10 holiday homes according to IBRS. At random,
a user was assigned to the group of users who received rec-
ommendations with an explanation, as shown in Figure 5,
or without an explanation.

7

Figure 5: Cut-out of validation interface for holiday home
recommendation rating. The lines in orange/blue contain
the matched tags.

In test runs of the validation process, we determined that
in a set-wise comparison of the two systems, users tended
to prefer the set that was spread out over the map, rather
than one that contained clusters of recommendations. Since
Inverted IBRS is extremely spread out, due to the fact that
items had no relation with the users or each other, this
caused a bias in the validation results. Therefore, we de-
cided to only compare the results item-wise. Furthermore,
we removed tags with a negative connotation, such as “die,”
or “death.”

5.3 Validation results
The first two batches of the validation were used to deter-
mine the potential of the IBRS ranking mechanism. The
results are shown in the pie charts of Figure 6. Figure 6a
shows which system was the test user’s preferred system,
based on a majority vote between the two systems. Most
users participated in the validation of both the recommen-
dation of greeting cards and holiday homes. Each batch was
counted separately. 47% of the users preferred IBRS, 22%
voted equally often for both of the systems, and 31% of the
users preferred Inverted IBRS. In the pie chart of Figure 6b,
the results are shown when the results of holiday homes
with the greeting cards are combined per user. Since this
increases the number of votes per user, ties are less common.
In this scenario, 55% of the users preferred the IBRS results,
while 34% preferred Inverted IBRS.

The final batch of the validation was used to determine the
usefulness of the proposed recommendation explanation in-
terface for holiday homes. The results of this batch are
shown in the histograms of Figure 7. Contrary to our expec-
tations, users preferred to receive recommendations without
explanations. Using the 5-point Likert scale, the users who
were presented with an interface with explanations rated
the recommendations with an average score of 3.3772, while
users without recommendation explanation rated the recom-

IBRS
(47%)

Tie
(22%)

Inverted IBRS
(31%)

(a) Split out between
greeting cards and holiday
homes (batches counted
separately)

IBRS
(55%)

Tie
(11%)

Inverted IBRS
(34%)

(b) Overall (batches com-
bined)

Figure 6: Most frequent choices per user for the first two
batches of questions

mendations with a 3.4709 on average. From this validation,
we can conclude that people that receive recommendations
based on tags that do not describe them well, are more likely
to reject a recommendation with a “strongly disagree,” when
they see the rationale behind the recommendation.

Despite satisfying results with respect to the system’s po-
tential to rank recommendations for users, we should not
forget that many aspects play a role in the decision-making
that cannot (yet) be detected from Facebook profiles. When
choosing either a greeting card, a holiday home, or anything
else, one will always look at domain-specific item character-
istics. For a greeting card, the user looks at colors, style,
and the occasion the card is sent for. Similarly, for a holi-
day home, he looks at price, number of beds, the picture of
the home, and the distance to the beach.

1 2 3 4 5
0

0.1

0.2

0.3

0.4

Rating

R
el

at
iv

e
fr

eq
u
en

cy

(a) With recommendation
explanation; average rat-
ing: 3.3772.

1 2 3 4 5
0

0.1

0.2

0.3

0.4

Rating

R
el

at
iv

e
fr

eq
u
en

cy

(b) Without recommenda-
tion explanation; average
rating: 3.4709.

Figure 7: Recommendation ratings split out by recommen-
dation presentation interface

6. CONCLUSION
In this paper, we presented the approach behind IBRS. We
discussed the concept of mapping items marked as preferred
or liked in social media onto a generic knowledge-base, and
query expansion using DBpedia. We presented the tech-
nology, including the abstraction layer, tag generation ap-
proach, and ranking mechanism. We also presented the val-
idation results of a test user group. As said, we recommend
to use the proposed and validated approach from this pa-
per as a feature of a larger recommender system. In a more
complete system, one also needs to take domain-specific fea-
tures, as well as item popularity and other collaborative fil-
tering features, into account. However, these features would
contradict with our objective to create a generic RS that
overcomes the cold-start problem, and therefore were not
taken into account in this work.

8

Currently, IBRS uses all paths in the knowledge base graph
as an indication for a useful recommendation. However,
some paths in the graph actually form a reason not to rec-
ommend that item. For example, in the holiday home do-
main, a user is less likely to book a home in his own town,
even though there may be many paths between him and
that holiday home based on his local likes. Furthermore,
some nodes are more useful than other for recommendation.
DBpedia nodes like “European Central Time” have a lot of
incoming paths, while it is unlikely that this actually forms
an interest for this user. The next step for IBRS is to fur-
ther improve the ranking mechanism by incorporating these
characteristics and explore the possibility to automatically
detect (negative) weights of paths.

7. ACKNOWLEDGEMENTS
This publication was supported by the Dutch national pro-
gram COMMIT/. We also thank Mena Habib for his sup-
port in the tag generation process.

8. REFERENCES
[1] Facebook, “Facebook | photos.”

https://www.facebook.com/facebook, 2013.

[2] S. Bakers, “Statistics of the top facebook pages.”
http://www.socialbakers.com/statistics/

facebook/pages/total/, 2013.

[3] J. Bobadilla, F. Ortega, A. Hernando, and
A. Gutiérrez, “Recommender systems survey,”
Knowledge-Based Systems, vol. 46, pp. 109–132, 2013.

[4] D. Fijalkowski and R. Zatoka, “An architecture of a
web recommender system using social network user
profiles for e-commerce,” in Computer Science and
Information Systems (FedCSIS), 2011 Federated
Conference on, pp. 287–290, IEEE, 2011.

[5] I. Guy, N. Zwerdling, I. Ronen, D. Carmel, and
E. Uziel, “Social media recommendation based on
people and tags,” in Proceedings of the 33rd
international ACM SIGIR conference on Research and
development in information retrieval, pp. 194–201,
ACM, 2010.

[6] J. He and W. W. Chu, A social network-based
recommender system (SNRS). Springer, 2010.

[7] A. Passant, “dbrec - music recommendations using
DBpedia,” in The Semantic Web–ISWC 2010,
pp. 209–224, Springer, 2010.

[8] A. Passant and Y. Raimond, “Combining social music
and semantic web for music-related recommender
systems,” in The 7th International Semantic Web
Conference, p. 19, Citeseer, 2008.

[9] R. Mirizzi, T. Di Noia, A. Ragone, V. C. Ostuni, and
E. Di Sciascio, “Movie recommendation with
DBpedia,” in IIR, pp. 101–112, Citeseer, 2012.

[10] J. Golbeck and J. Hendler, “Filmtrust: Movie
recommendations using trust in web-based social
networks,” in Proceedings of the IEEE Consumer
communications and networking conference, vol. 96,
pp. 282–286, University of Maryland, 2006.

[11] B. N. Miller, I. Albert, S. K. Lam, J. A. Konstan, and
J. Riedl, “MovieLens unplugged: experiences with an
occasionally connected recommender system,” in
Proceedings of the 8th international conference on
Intelligent user interfaces, pp. 263–266, ACM, 2003.

[12] V. C. Ostuni, T. Di Noia, R. Mirizzi, D. Romito, and
E. Di Sciascio, “Cinemappy: a context-aware mobile
app for movie recommendations boosted by DBpedia,”
SeRSy, vol. 919, pp. 37–48, 2012.

[13] P. Symeonidis, A. Nanopoulos, and Y. Manolopoulos,
“Moviexplain: a recommender system with
explanations,” in Proceedings of the third ACM
conference on Recommender systems, pp. 317–320,
ACM, 2009.

[14] B. Heitmann and C. Hayes, “Using linked data to
build open, collaborative recommender systems.,” in
AAAI spring symposium: linked data meets artificial
intelligence, pp. 76–81, 2010.

[15] T.-P. Liang, Y.-F. Yang, D.-N. Chen, and Y.-C. Ku,
“A semantic-expansion approach to personalized
knowledge recommendation,” Decision Support
Systems, vol. 45, no. 3, pp. 401–412, 2008.

[16] S. Bostandjiev, J. O’Donovan, and T. Höllerer,
“TasteWeights: a visual interactive hybrid
recommender system,” in Proceedings of the sixth
ACM conference on Recommender systems, pp. 35–42,
ACM, 2012.

[17] R. Burke, “Hybrid web recommender systems,” in The
adaptive web, pp. 377–408, Springer, 2007.

[18] P. Lops, “Semantics-aware content-based recommender
systems,” 10 2014. Keynote at Workshop on New
Trends in Content-based Recommender Systems.

[19] P. Basile, C. Musto, M. de Gemmis, P. Lops,
F. Narducci, and G. Semeraro, “Content-based
recommender systems + DBpedia knowledge =
semantics-aware recommender systems,” in Semantic
Web Evaluation Challenge, pp. 163–169, Springer,
2014.

[20] C. Shi, C. Zhou, X. Kong, P. S. Yu, G. Liu, and
B. Wang, “HeteRecom: A semantic-based
recommendation system in heterogeneous networks,”
in Proceedings of the 18th ACM SIGKDD
international conference on Knowledge discovery and
data mining, pp. 1552–1555, ACM, 2012.

[21] C. Shi, X. Kong, Y. Huang, S. Y. Philip, and B. Wu,
“HeteSim: A general framework for relevance measure
in heterogeneous networks,” IEEE Transactions on
Knowledge & Data Engineering, no. 10,
pp. 2479–2492, 2014.

[22] V. Zanardi and L. Capra, “Social ranking: uncovering
relevant content using tag-based recommender
systems,” in Proceedings of the 2008 ACM conference
on Recommender systems, pp. 51–58, ACM, 2008.

[23] M. B. Habib and M. van Keulen, “Improving toponym
disambiguation by iteratively enhancing certainty of
extraction,” in Proceedings of the 4th International
Conference on Knowledge Discovery and Information
Retrieval, KDIR 2012, Barcelona, Spain, (Spain),
pp. 399–410, SciTePress, October 2012.

[24] DBpedia, “SPARQL explorer for
http://dbpedia.org/sparql.”
http://dbpedia.org/snorql/, 2015.

[25] V. de Graaff, M. van Keulen, and R. A. de By,
“Towards geosocial recommender systems,” in 4th
Intern. Workshop on Web Intelligence & Communities
(WI&C 2012), Lyon, France, ACM, 2012.

9

Extended Recommendation Framework: Generating the
Text of a User Review as a Personalized Summary

Mickaël Poussevin
Sorbonne-Universités UPMC

LIP6 UMR 7606 CNRS
4 Place Jussieu, Paris, France
mickael.poussevin@lip6.fr

Vincent Guigue
Sorbonne-Universités UPMC

LIP6 UMR 7606 CNRS
4 Place Jussieu, Paris, France

vincent.guigue@lip6.fr

Patrick Gallinari
Sorbonne-Universités UPMC

LIP6 UMR 7606 CNRS
4 Place Jussieu, Paris, France
patrick.gallinari@lip6.fr

ABSTRACT
We propose to augment rating based recommender systems
by providing the user with additional information which
might help him in his choice or in the understanding of the
recommendation. We consider here as a new task, the gen-
eration of personalized reviews associated to items. We use
an extractive summary formulation for generating these re-
views. We also show that the two information sources, rat-
ings and items could be used both for estimating ratings and
for generating summaries, leading to improved performance
for each system compared to the use of a single source. Be-
sides these two contributions, we show how a personalized
polarity classifier can integrate the rating and textual as-
pects. Overall, the proposed system offers the user three per-
sonalized hints for a recommendation: rating, text and po-
larity. We evaluate these three components on two datasets
using appropriate measures for each task.

1. INTRODUCTION
The emergence of the participative web has enabled users

to easily give their sentiments on many different topics. This
opinionated data flow thus grows rapidly and offers oppor-
tunities for several applications like e-reputation manage-
ment or recommendation. Today many e-commerce web-
sites present each item available on their platform with a
description of its characteristics, average appreciation, rat-
ings together with individual user reviews explaining their
ratings.

Our focus here is on user - item recommendation. This is a
multifaceted task where different information sources about
users and items could be considered and different recommen-
dation information could be provided to the user. Despite
this diversity, the academic literature on recommender sys-
tems has focused only on a few specific tasks. The most
popular one is certainly the prediction of user preferences
given their past rating profile. These systems typically rely
on collaborative filtering [9] to predict missing values in a
user/item/rating matrix. In this perspective of rating pre-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Copyright 20XX ACM X-XXXXX-XX-X/XX/XX ...$15.00.

User reviews:
text and rating

U
s
e
r
s

Items

Classic recommender systems

= x

Latent profiles

?
Rating prediction

User text profiles

?

Personnalized
reviews

summary

Improving
rating predictions

Inputs

User ItemRating Text

Legend

Item text profiles

Figure 1: Our contribution is twofold: (1) improving rating
predictions using textual information, (2) generating per-
sonalized reviews summaries to push recommender systems
beyond rating predictions

diction, some authors have make use of additional informa-
tion sources available on typical e-commerce sites. [5] pro-
posed to extract topics from consumer reviews in order to
improve ratings predictions. Recently, [11] proposed to learn
a latent space common to both textual reviews and product
ratings, they showed that rating prediction was improved
by such hybrid recommender systems. Concerning the in-
formation provided to the user, some models exploit review
texts for ranking comments that users may like [1] or for
answering specific user queries [17].

We start here from the perspective of predicting user pref-
erence and argue that the exploitation of the information
present in many e-commerce sites, allows us to go beyond
simple rating prediction for presenting users with comple-
mentary information that may help him making his choice.
We consider as an example the generation of a personalized
review accompanying each item recommendation. Such a
review is a source of complementary evidence for the user
appreciation of a suggestion. Similarly as it is done for the
ratings, we exploit past information and user similarity in
order to generate these reviews. Since pure text generation
is a very challenging task [2], we adopt an extractive sum-
mary perspective: the generated text accompanying each
rating will be extracted from the reviews of selected users
who share similar tastes and appreciations with the target
user. Ratings and reviews being correlated, this aspect could
also be exploited to improve the predictions. Our rating pre-

10

dictor will make use of user textual profiles extracted from
their reviews and summary extraction in turn will use pre-
dicted ratings. Thus both types of information, predicted
ratings and generated text reviews, are offered to the user
and each prediction, rating and generated text, takes into
account the two sources of information. Additional infor-
mation could also be provided to the user. We show here
as an example, that predicted ratings and review texts can
be used to train a robust sentiment classifier which provides
the user with a personalized polarity indication about the
item. The modules of our system are evaluated on the two
main tasks, rating prediction and summary extraction, and
on the secondary task of sentiment prediction. For this,
experiments are conducted on real datasets collected from
amazon.com and ratebeer.com and models are compared to
classical baselines.

The recommender system is compared to a classic collab-
orative filtering model using the mean squared error metric.
We show that using both ratings and user textual profiles
allows us to improve the performance of a baseline recom-
mender. Gains are motivated from a more precise under-
standing of the key aspects and opinions included in the
item and user textual profiles. For evaluating summary text
generation associated to a couple (user, item), we have at
our disposal a gold standard, the very review text written
by this user on the item. Note that this is a rare situation
in summary evaluation. However contrarily to collaborative
filtering, there is no consensual baseline. We then compare
our results to a random model and to oracle optimizing the
ROUGE-n metric. They respectively provide a lower and
an upper bound of the attainable performance. The sen-
timent classifier is classically evaluated using classification
accuracy.

This article is organized as follows. The hybrid formu-
lation, the review generator and the sentiment classifier are
presented in section 2. Then, section 3 gives an extensive ex-
perimental evaluation of the framework. The overall gains
associated to hybrid models are discussed in section 4. A
review of related work is provided in section 5.

2. MODELS
In this section, after introducing the notations used through-

out the paper, we will describe successively the three mod-
ules of our system. We start by considering the prediction
of ratings [11]. Rating predictors answer the following ques-
tion: what rating will this user give to this item? We present
a simple and efficient way to introduce text profiles repre-
senting the writing style and taste of the user in a hybrid
formulation. We then show how to exploit reviews and rat-
ings in a new challenging task: what text will this user write
about this item? We propose an extractive summary formu-
lation of this task. We then proceed to describe how both
ratings and text could be used together in a personalized
sentiment classifier.

2.1 Notations
We use u (respectively i) to refer to everything relative to

a user (respectively to an item) and the rating given by user
u to the item i is denoted rui. U and I refer to anything
relative to all users and all items, such as the rating matrix
RUI . Similarly, lower case letters are used for scalars or vec-
tors and upper case letters for matrices. dui is the actual
review text written by user u for item i. It is composed of

κui sentences: dui = {suik, 1 ≤ k ≤ κui}. In this work,
we consider documents as bags of sentences. To simplify
notations, suik is replaced by sui when there is no ambigu-
ity. Thus, user appreciations are quadruplets (u, i, rui, dui).
Recommender systems use past information to compute a
rating prediction r̂ui, the corresponding prediction function
is denoted f(u, i).

For the experiments, ratings and text reviews are split
into training, validation and test sets respectively denoted
Strain, Sval and Stest and containing mtrain, mval and mtest

user appreciations (text and rating). We denote S
(u)
train, the

subset of all reviews Strain that were written by user u and

m
(u)
train the number of such reviews. Similarly, S

(i)
train and

m
(i)
train are used for the reviews on item i.

2.2 Hybrid recommender system with text pro-
files

Recommender systems classically use rating history to
predict the rating r̂ui that user u will give to item i. The
hybrid system described here makes use of both collaborative
filtering through matrix factorization and textual informa-
tion to produce a rating as described in (1):

f(u, i) = µ+ µu + µi + γu.γi + g(u, i) (1)

The first three predictors in equation (1) are biases (over-
all bias, user bias and item bias). The fourth predictor is
a classical matrix factorization term. The novelty of our
model comes from the fifth term (1) that takes into account
text profiles to refine the prediction f . Our aim for the
rating prediction is to minimize the following empirical loss
function:

argmin
µ,µu,µi,γu,γi,g

L =
1

mtrain

∑

Strain

(rui − f(u, i))2 (2)

To simplify the learning procedure, we first optimize the pa-
rameters of the different components independently as de-
scribed in the following subsections. Then we fine tune the
combination of these components by learning weighting co-
efficients so as to maximize the performance criterion (2) on
the validation set.

2.2.1 Matrix factorization
We first compute the different bias from eq. (1) as the

averaged ratings over their respective domains (overall, user
and item). For the matrix factorization term, we approxi-
mate the rating matrix RUI using two latent factors: RUI ≈
ΓUΓtI . Both ΓU and ΓI are two matrices representing collec-
tions of latent profiles, with one profile per row. We denote
γu (resp. γi) the row of ΓU (resp. ΓI) corresponding to the
latent profile of user u (resp. item i).

The profiles are learned by minimizing, on the training set,
the mean squared error between known ratings in matrix
RUI and the approximation provided by the factorization
ΓUΓTI . This minimization problem described in equation
(3), with an additional L2 constraint (4) on the factors is
solved here using non-negative matrix factorization.

Γ∗U ,Γ
∗
I = argmin

ΓU ,ΓI

‖Mtrain � (RUI − ΓUΓI)‖2F (3)

+λU‖ΓU‖2F + λI‖ΓI‖2F (4)

11

In this equation Mtrain is a mask that has the same di-
mensions as the rating matrix RUI , an entry is 1 only if the
corresponding review is in the training set and zero other-
wise and � is the element-wise product on matrices.

2.2.2 Text profiles exploitation
Let us denote πu the profile of user u and σt(πu′ , πu) a

similarity operator between user profiles. The last compo-
nent of the predictor f in (1) is a weighted average of user
ratings for item i, where weight σt(πu′ , πu) is the similarity
between the text profiles πu′ and πu of users u′ and u, the
latter being the target user. This term takes into account
the fact that two users with similar styles or using similar ex-
pressions in their appreciation of an item, should share close
ratings on this item. The prediction term for the user/item
couple (u, i) is then expressed as (5):

g(u, i) =
1

m
(i)
train

∑

S
(i)
train

ru′iσt(π
′
u, πu) (5)

Two different representations for the text profiles πu of
the users are investigated in this article: one is based on
a latent representation of the texts obtained by a neural
network autoencoder, the other relies on a robust bag of
words coding. Each one is associated to a dedicated metric
σt.

This leads to two formulations of g, and thus, to two rating
prediction models. We denote the former fA (autoencoder)
and the latter fT (bag of words). Details are provided below.

Bag of words.
A preprocessing step removes all words appearing in less

than 10 documents. Then, the 100 000 most frequent words
are kept. Although the number of features is large, the rep-
resentation is sparse and scales well. πu is simply the binary
bag of words of all texts of user u. In this high dimensional
space, the proximity in style between two users is well de-
scribed by a cosine function, a high value indicates similar
usage of words:

σt(πu′ , πu) = πu′πu/(‖πu′‖‖πu‖) (6)

Autoencoder.
The neural network autoencoder has two components: a

coding operator and a decoding operator denoted respec-
tively cod and dec. The two vectorial operators are learned
so as to enable the reconstruction of the original text after
a projection in the latent space. Namely, given a sentence
suik represented as a binary bag of words vector, we obtain
a latent profile πsuik = cod(suik) and then, we reconstruct
an approximation of the sentence using ŝuik = dec(πsuik).

The autoencoder is optimized so as to minimize the re-
construction error over the training set:

cod∗, dec∗ = argmin
cod,dec

∑

Strain

1

κui

κui∑

k=1

‖suik − dec(cod(suik))‖2

(7)
We use the settings proposed in [6]: our dictionary is ob-

tained after stopwords removal and selecting the most fre-
quent 5000 words. we did not use a larger dictionary such as
the one used for the bag of word representation since it does
not lead to improved performance and simply increases the

computational load. All sentences are represented as binary
bag of words using this dictionary. The coding dimension
has been set to 1000 after a few evaluation trials. Note that
the precise value of this latent space is not important and the
performance is similar on a large range of dimension values.
Both cod and dec use sigmoid units sig(t) = 1

1+exp(−t) :

cod(suik) = πuik = sig(Wsuik + b)

dec(πuik) = sig(WTπuik + b′)
(8)

Here, πuik is a vector, W is a 5000x1000 weight matrix
and sig() is a pointwise sigmoid operator operating on the
vector Wsuik + b.

As motivated in [11, 5], such a latent representation helps
exploiting term co-occurrences and thus introduces some se-
mantic. It provides a robust text representation. The hidden
activity of this neural network produces a continuous rep-
resentation for each sentence accounting for the presence or
absence of groups of words.
πu is obtained by coding the vector corresponding to all

text written by the user u in the past. It lies in a latent
word space where a low Euclidean distance between users
means a similar usage of words. Thus, for the similarity σt,
we use an inverse Euclidean distance in the latent space:

σt(πu′ , πu) = 1/(α+ ‖πu′ − πu‖) (9)

2.2.3 Global training criterion for ratings prediction
In order to connect all the elementary components de-

scribed above with respect to our recommendation task, we
introduce weighting parameters β in (1). Thus, the initial
optimization problem (2) becomes:

β∗ = argmin
β

1
mtrain

∑
Strain

(
rui −

(
β1µ

∗ + β2µ
∗
u + β3µ

∗
i + β4γ

∗
u.γ
∗
i + β5g(u, i)

))2 (10)

The linear combination is optimized using a validation set:
this step guaranties that all components are combined in an
optimal manner.

2.3 Text generation model
The goal here is to generate a review text for each (u,i)

recommendation. During the recommendation process, this
text is an additional information for users to consider. It
should catch their interest and in principle be close to the
one that user u could have written himself on item i. Each
text is generated as an extractive summary, where the ex-
tracted sentences su′i come from the reviews written by
other users (u′ 6= u) about item i. Sentence selection is
performed according to a criterion which combines a simi-
larity between the sentence and the textual user profile and
a similarity between the actual rating ru′i and the predic-
tion made for (u,i), r̂ui computed as described in section 2.2.
The former measure could take into account several dimen-
sions like vocabulary, sentiment expression and even style,
here it is mainly the vocabulary which is exploited. The
latter measures the proximity between user tastes. For the
text measure, we make use of the σt similarity introduced
in section 2.2. As before, we will consider two representa-
tions for texts (latent coding and raw bag of words). For the
ratings similarity, we use σr(ru′i, rui) = 1/(1 + |ru′i − rui|).

Suppose one wants to select a single sentence for the ex-
tracted summary. The sentence selection criterion will then
be a simple average of the two similarities:

12

h(su′i, ru′i, u
′, u, i) =

σt(su′i, πu) + σr(ru′i, r̂ui)

2
(11)

Note that this function may score any piece of text. In
the following, we then consider three possibilities for gener-
ating text reviews: The first one simply consists in selecting
the best sentence su′i among all the training sentences for
item i with respect to h. We call it 1S for single sentence.
The second one selects a whole review du′i among all the
reviews for i. The document is here considered as one long
sentence. This is denoted CT for complete text. The third
one is a greedy procedure that selects multiple sentences, it
is denoted XS. It is initialized with 1S, and then sentences
are selected under two criteria: relevance with respect to h
and diversity with respect to the sentences already selected.
Selection is stopped when the length of the text is greater
than the average length of the texts of the target user. Al-
gorithm 1 sums up the XS procedure for generating the text
d̂ui for the couple user u, item i.

Data: u, i, S = {(su′i, ru′i u
′}

Result: d̂ui
s∗u′i ← argmax

su′i∈S

(
h(su′i, ru′i, u

′, u, i)
)
;

d̂ui ← s∗u′i;
Remove s∗u′i from S;

while length d̂ui < averagelength(u) do

s∗u′i ← argmax
su′i∈S

(
h(su′i, ru′i, u

′, u, i)− cos(su′i, d̂ui)
)

;

d̂ui ← s∗u′i;
Remove s∗u′i from S;

end
Algorithm 1: XS greedy procedure: selection of successive
sentences to maximize both relevance and diversity. d̂ui is
the text that is generated, sentence after sentence.

2.4 Sentiment prediction model
We show here how polarity information about an item can

be estimated by exploiting both the user predicted ratings
and his textual profile. Exploiting both information sources
improves the sentiment prediction performance compared
with a usual text based sentiment classifier.

Polarity classification is the task of predicting whether a
text dui (here of a review) is positive or negative. We use as
ground truth the ratings rui and follow a standard thresh-
olding procedure [15]: reviews rated 1 or 2 are considered
as negative, while items rated 4 or 5 are positive. All texts
that are rated 3 are ignored as it is unclear whether that
are positive or negative: it strongly depends on the rating
habits of the user.

For evaluation purpose, we consider two baselines. A first
one only uses the rating prediction of our recommender sys-
tem f(u, i) as a label prediction, this value is then thresh-
olded as indicated above. A second one is a classical text
sentiment classifier. Denoting by dui the binary bag of word
representation of a document and cui the binary label associ-
ated to the rating rui, one uses a linear SVM s(dui) = dui.w.
Note that this is usually a strong baseline for the polarity
classification task. Our final classifier will combine f(u, i)
and s(dui) in order to solve the following optimization prob-

Source Subset names #Users #Items #Reviews
#Training #Validation #Test

R
at

eb
ee

r RB U50 I200 52 200 7200 900 906
RB U500 I2k 520 2000 388200 48525 48533
RB U5k I20k 5200 20000 1887608 235951 235960

A
m

az
on

A U200 I120 213 122 984 123 130
A U2k I1k 2135 1225 31528 3941 3946

A U20k I12k 21353 12253 334256 41782 41791
A U210k I120k 213536 122538 1580576 197572 197574

Table 1: Users, items & reviews counts for every datasets.
Subsets µ µu µi γu.γi fA fT
RB U50 I200 0.7476 0.7291 0.3096 0.2832 0.2772 0.2773
RB U500 I2k 0.6536 0.6074 0.3359 0.3168 0.3051 0.3051
RB U5k I20k 0.7559 0.6640 0.3912 0.3555 0.3451 0.3451
A U200 I120 1.5348 2.0523 1.6563 1.7081 1.4665 1.4745
A U2k I1k 1.5316 1.4391 1.3116 1.0927 1.0483 1.0485
A U20k I12k 1.4711 1.4241 1.2849 1.0797 1.0426 1.0426
A U210k I120k 1.5072 2.1154 1.5318 1.2915 1.1671 1.1678

Table 2: Test performance (mean squared error) for rec-
ommendation. µ, µu, µi are the overall bias, user bias and
item bias baselines. γu.γi is the plain matrix factorization
baseline. fA, fT are our hybrid recommender systems rely-
ing respectively on latent and raw text representations. The
different datasets are described in table 1.

lem:

w∗ = argmin
w

∑

Strain,rui 6=3

(
1−
(
dui.w+f(u, i)

)
cui
)

+
+λ‖w‖2

(12)
with (x)+ = x when x positive and (x)+ = 0 elsewhere. In
the experimental section, we will also compare the results
obtained with the two versions of our rating predictor: fT
and fA (cf section 2.2.2).

3. EXPERIMENTS
All three modules, ratings, text, sentiments, are evaluated

independently since there is no global evaluation framework.
These individual performances should however provide to-
gether a quantitative appreciation of the whole system.

We use two real world datasets of user reviews, collected
from amazon.com [8] and ratebeer.com [11]. Their charac-
teristics are presented in table 1.

Below, one presents first how datasets are preprocessed
in 3.1. The benefits of incorporating the text in the ratings
prediction for the recommender system are then discussed in
section 3.2. The quality of the generated reviews is evaluated
and analyzed in section 3.3 Finally, the performance of the
sentiment classifier combining text and ratings is described
in 3.4.

3.1 Data preprocessing
Reviews from different websites have different formats (rat-

ing scales, multiple ratings, . . .), they are then preprocessed
to a unified format. Ratings are scaled to a 1 to 5 integer
range. For titled reviews, the title is considered as the first
sentence of the text of the review. Each dataset is randomly
split into three parts: training, validation and test contain-
ing respectively 80%, 10% and 10% of the reviews.

As described in 2.2, two representations of the text are
considered each with a different dictionary:

• for the autoencoder, we have selected the 5000 most
frequent words, with a stopwords removal step; The

13

autoencoder input vector is then a binary vector of
dimension 5000.

• for the raw representation, we have selected the 100000
most frequent words appearing in more than 10 docu-
ments (including stopwords) and used a binary vector
representation.

For the experiments, we consider several subsets of the
databases with different numbers of users and items. Each
dataset is built by extracting, for a given number of users
and items, the most active users and the most commented
items. Dataset characteristics are given in table 1.

Subsets LL µi γu.γi fA fT LL + fA LL + fT
RB U50 I200 5.35 5.12 6.01 5.57 5.57 3.79 3.79
RB U500 I2k 7.18 10.67 9.73 8.55 8.55 6.52 6.92
RB U5k I20k 8.44 11.80 10.04 9.17 9.17 8.33 8.35
A U200 I120 10.00 15.83 22.50 20.00 20.83 10.00 10.00
A U2k I1k 7.89 15.25 12.85 12.62 12.62 7.54 7.54
A U20k I12k 6.34 13.99 12.79 12.38 12.37 6.29 6.29
A U210k I120k 6.25 14.04 14.40 13.32 13.31 6.22 6.22

Table 3: Test performance (classification error) as polarity
classifiers. LL stands for LibLinear (SVM), µi, γu.γi, fA,
fT are the recommender systems as in table 2. LL + fA
and LL + fT are two hybrid opinion classification models
combining the SVM classifier and fA and fT recommender
systems.

3.2 Recommender system evaluation
Let us first consider the evaluation of the rating predic-

tion. The metric used here is the mean squared error (MSE)
between rating predictions r̂ui and actual ratings rui. The
lower the MSE is, the better the model is able to estimate
the correspondence between user tastes and items. Results
are presented in table 2.

The models are referenced using the notations introduced
in section 2.2. The first column corresponds to a trivial
system which predicts µ the overall bias, the second predicts
the user bias µu. Both give poor performance as expected.

The third column corresponds to the item bias µi base-
line. It assumes that user taste is not relevant and that each
item has its own intrinsic quality. The improvement with
respect to µ and µu is important since MSE is halved. The
fourth column corresponds to a nonnegative matrix factor-
ization baseline, denoted γu.γi. It jointly computes latent
representations for user tastes and items characteristics. Un-
surprisingly, it is our best baseline.

It could be noted that performance tends to degrade when
the subset size increases. This is a side effect associated to
the review selection process used for building the different
datasets. Smaller datasets contain the most active users and
the most commented items. The estimation of their profiles
benefits from the high number of reviews per user (and item)
in this context.

The last two columns refer to our hybrid recommender
systems, using the two text representations introduced in
section 2.2. Both fA (autoencoder) and fT (raw text) per-
form better than a baseline collaborative filtering system
and both have similar approximation errors. The main dif-
ference between the systems comes from the complexity of
the approach: during the learning step, fT is much faster
than fA given the fact that no autoencoder optimization is
required. On top of that, fT remains faster in the inference

step: the inherent sparsity of the bag of word representation
enables fT to provide faster computations than fA. The au-
toencoder works in a smaller dimensional space but it is not
sparse.

3.3 Text generation evaluation
We move on now to the evaluation of the personalized

review text generation module. Since we are using an ex-
tractive summary procedure, we make use of a classical loss
used for summarization systems: we use a recall-oriented
ROUGE-n metrics, by comparing the generated text against
the actual text of the review produced by the user. As far as
we know, generating candidate reviews has never been dealt
with in this context and this is a novel task. The ROUGE-n
metric is the proportion of n-grams of the actual text found
in the predicted (candidate) text, we use n = {1, 2, 3}. The
higher ROUGE-n is, the better the quality of the candidate
text is. A good ROUGE-1 means that topics or vocabu-
lary are correctly caught while ROUGE-2 and ROUGE-3
are more representative of the user’s style.

A first baseline is given by using a random scoring function
h (instead of the formulation given in (11)). It provides a
lower bound of the performance. Three oracles are then
used to provide an upper bound on the performance. They
directly optimize the metrics ROUGE-n from the data on
the test set.A matrix factorization baseline is also used. It is
a special case of our model where no text information is used.
This model computes a similar score for all the sentences of
a given user and relative to an item. When one sentence
only is selected, it is taken at random among the sentences
of this user for the item. With greedy selection, the first
sentence is chosen at random and then the cosine diversity
term (algorithm 1) allows a ranking of the next candidate
sentences. Our proposed method is evaluated with the two
different user profile πu representation (auto-encoder and
raw text). The performance of these seven models on the
the two biggest datasets with respect to the three metrics
are aggregated in figure 2.

An histogram corresponds to a text selection entity (whole
review text, best single sentence, greedy sentence selection.
Groups in the histograms (respectively row block of the ta-
bles) are composed of three cells corresponding respectively
to the ROUGE-1, -2, -3 metrics. Not surprisingly, the results
for the single sentence selection procedure (1S) are always
worse than for the other two (CT: complete review and XS:
multiple sentences). This is simply because a sentence con-
tains fewer words than a full review and it can hardly share
more n-grams than the full text with the reference text. For
the ratebeer.com datasets, selecting a set of sentences clearly
offers a better performance than selecting a whole review in
all cases. Texts written to describe beers also describe the
tasting experience. Was it in a bar or at home ? Was it a
bottle or on tap ? Texts of the community share the same
structure and vocabulary to describe both the tasting and
the flavors of the beer. Most users write short and precise
sentences. This is an appropriate context for our sentence
scoring model, where the habits of users are caught by our
recommender systems. The performance slightly decreases
when the size of the dataset is increased. As before, this is
in accordance with the selection procedure of these datasets
which focuses first on the most active users and commented
items. For Amazon, the conclusion is not so clear and de-
pending on the conditions, either whole reviews or selected

14

Ran
do

m

ROUGE-
1

ROUGE-
2

ROUGE-
3
NM

F
f_
A f_

T
0.0

0.1

0.2

0.3

0.4

0.5

0.6

R
B

_U
5

k_
I2

0
k

CT

Ran
do

m

ROUGE-
1

ROUGE-
2

ROUGE-
3
NM

F
f_
A f_

T

1S

Ran
do

m

ROUGE-
1

ROUGE-
2

ROUGE-
3
NM

F
f_
A f_

T

XS

0.00

0.05

0.10

0.15

ROUGE-1 ROUGE-2 ROUGE-3

(a) RateBeer experiments

Ran
do

m

ROUGE-
1

ROUGE-
2

ROUGE-
3
NM

F
f_
A f_

T
0.0

0.1

0.2

0.3

0.4

0.5

0.6

A
_U

2
1

0
k_

I1
2

0
k

CT

Ran
do

m

ROUGE-
1

ROUGE-
2

ROUGE-
3
NM

F
f_
A f_

T

1S

Ran
do

m

ROUGE-
1

ROUGE-
2

ROUGE-
3
NM

F
f_
A f_

T

XS

0.00

0.02

0.04

0.06

0.08

0.10

ROUGE-1 ROUGE-2 ROUGE-3

(b) Amazon experiments

Figure 2: Histograms of the performances of the summarizer on the two biggest datasets. The scores of the ROUGE-1
metrics are represented in blue while the scores of the ROUGE-2 and ROUGE-3 metrics are in yellow and black. 7 models
are compared: random, 3 oracles, NMF based model, fA and fT based models. 3 frameworks are investigated: CT (review
extraction), 1S (One sentence extraction), XS (Multiple sentence extraction).

sentences get the best score. It is linked to the higher variety
in the community of users on the website: well structured
sentences like those present in RateBeer are here mixed here
with different levels of English and troll reviews.

The different models, overall, are following a clear hierar-
chy. First, stating the obvious, the random model has the
worst performance. Then, using a recommender system to
select relevant sentences helps in terms of ROUGE-n perfor-
mance. Using the text information brings most of the time
only a small score improvement. Overall our models only
offer small improvements here with respect to random or
NMF text selection. After analyzing this behavior, we be-
lieve that this is due to the shortness of the text reviews, to
their relatively standardized form (arguments are very sim-
ilar from one review to another), to the peaked vocabulary
distribution of the reviews, and to the nature of ROUGE.
The latter is a classical recall oriented summarization evalu-
ation measure, but does not distinguishes well between text
candidates in this context. This also shows that there is
room for improvement on this aspect.

Concerning the oracle several conclusions can be drawn.
For both single sentence and complete text selection, the gap
between the ROUGE measures and the proposed selection
method is important suggesting that there is still room for
improvements here too. For the greedy sentence selection,
the gap between the oracles and the hybrid recommender
systems is moderate suggesting that the procedure is here
fully efficient. However this conclusion should be moderated.
It can be observed that whereas, ROUGE is effectively an
upper bound for single sentence or whole review selection,
this is no more the case for multiple sentences selection.
Because of the complexity of selecting the best subset of
sentences according to a loss criterion (which amounts at a
combinatorial selection problem) we have been using a sub-
optimal forward selection procedure: we first select the best
ROUGE sentence, then the second best, etc. In this case
the ROUGE procedure is no more optimal.

Concerning the measures, the performance decreases rapidly
when we move from ROUGE-1 to ROUGE-2, 3. Given the
problem formulation and the context of short product re-

views, ROUGE-2,3 are clearly too constraining and the cor-
responding scores are not significant.

3.4 Sentiment classification evaluation
The performance of the different models, using the sen-

timent classification error as an evaluation metric, are pre-
sented in table 3. Because they give very poor performance,
the bias recommendation models (µ and µu) are not pre-
sented here. The item bias µi, second column, gives a base-
line, which is improved by the matrix factorization γu.γi,
third column. Our hybrid models fA, fourth column, and
fT , fifth column, have lower classification errors than all
the other recommender systems. The first column, LL is
the linear support vector machine (SVM) baseline. It has
been learnt on the training set texts, and the regularization
hyperparameter has been selected using the validation set.
Our implementation relies on liblinear (LL) [4].

Its performance is better than the recommender systems
but it should be noted that it makes use of the actual text
dui of the review, whereas the recommender systems only
use past information regarding user u and item i. Note
that even in this context, the recommender performance on
RateBeer is very close to the SVM baseline.

It is then possible to combine the two models, according
to the formulation proposed in section 2.4. The resulting
hybrid approaches, denoted LL + fA and LL + fT , exploit
both text based decision (SVM) and user profile (fA and fT).
This combined model shows good classification performance
and overcomes the LL baseline in 4 out of 7 experiments
in table 3, while performing similarly to LL in the other 3
experiments.

4. OVERALL GAINS
In order to get a global vision of the overall gain provided

by the proposed approach, we summarize here the results
obtained on the different tasks. For each task, the gain with
respect to the (task dependent) baseline is computed and
averaged (per task) over all datasets. The metric depends
on the task. Results are presented in figure 3.

For the mean squared error metric (figure 3a) the matrix

15

µ µu µi fA fT
70

60

50

40

30

20

10

0

10

Gain in % w.r.t. MSE of γu .γi

(a) Recommender systems.
Baseline=matrix factorization

γu .γi fA fT rouge-1 rouge-2 rouge-3
0

10

20

30

40

50

60

70

Gain in % w.r.t. random on rouge-n

(b) Summarizers.
Baseline=random selection procedure

µi γu .γi fA fT LL + fA LL + fT
70

60

50

40

30

20

10

0

10

Gain in % w.r.t. % Good classification of LL

(c) Opinion classifiers.
Baseline=SVM

Figure 3: Aggregated gains on the 3 tasks w.r.t. classic baselines: our hybrid recommender systems are better overall.

factorization is used as baseline. The user bias µu heavily
fails to generalize on two datasets. The item bias is closer
to the baseline (−11.43%). Our hybrid models, which uses
texts to refine user and item profiles bring a gain of 5.71%
for fA, 5.63% for fT . This demonstrates the interest of
including textual information in the recommender system.
Autoencoder and raw text approaches offer similar gains,
the latter approach being overall faster.

For the text generation, we take the random model as
baseline and results are presented in figure 3b. The gain is
computed for the three investigated framework (CT: review
selection, 1S: one sentence selection, XS: multiple sentence
selection) and per measure (ROUGE-1, 2, 3) and then av-
eraged to one overall gain. ROUGE-n oracles clearly out-
perform other models, which seems intuitive. The differ-
ent recommender systems have very close behaviors with
respective gains of 11.15% (matrix factorization), 11.89%
(auto-encoder), 11.83% (raw text). Here textual informa-
tion helps but does not clearly dominate ratings and pro-
vide only a small improvement. Remember that although
performance improvement with respect to baselines is desir-
able, the main novelty of the approach here is to propose
a personalized summary generation together with the usual
rating prediction.

For the opinion classifier, presented in figure 3c, the base-
line consists in a linear SVM. Basic recommender systems
perform poorly with respect to the baseline (LL). Surpris-
ingly, the item bias µi (−68.71%) performs slightly better
than matrix factorization γu.γi (−69.54%) in the context of
sentiment classification (no neutral reviews and binary rat-
ings). Using textual information increases the performance.
The autoencoder based model fA (−57.17%) and raw text
approach fT (−58.31%) perform similarly. As discussed in
3.4, the linear SVM uses the text of the current reviews when
the recommender systems does not. As a consequence, it is
worth combining both predictions in order to exploit text
and past profiles: the resulting models give respective gains
of 4.72% (autoencoder) and 3.89% (raw text) w.r.t the SVM
(LL).

5. RELATED WORK
Since the paper covers the topics of rating prediction, sum-

marization and sentiment classification, we briefly present
each of them.

5.1 Recommender systems
Three main families of recommendation algorithms have

been developed [3]: content-based knowledge-based, and col-

laborative filtering. Given the focus of this work on con-
sumer reviews, we considered collaborative filtering. For
merchant websites the goal is to encourage users to buy new
products and the problem is usually considered either as the
prediction of a ranked list of relevant items for each user [13]
or as the completion of missing ratings [9]. We have focused
here on the latter approach for evaluation concerns: since
we use data collected from third party sources.

5.2 Text summarization for consumer reviews
Early reference work [7] on consumer reviews has focused

on global summarization of user reviews for each item. The
motivation of this work was to extract the sentiments associ-
ated to a list of features from all the item review texts. The
summarization took the form of a rating or of an apprecia-
tion of each feature. Here, contrarily to this line of work, the
focus is on personalized item summaries for a target user.
Given the difficulty of producing a comprehensive synthetic
summary, we have turned this problem into a sentence or
text selection process.

Evaluation of summaries is challenging: how to assess the
quality of a summary when the ground truth is subjective?
In our context, the review texts are available and we used
them as the ground truth. We have used classical ROUGE-n
summary evaluation measures [10].

5.3 Sentiment classification
Different text latent representations have been proposed

in this scope: [14] proposed a generative model to represent
jointly topic and sentiments and recently, several works have
considered matrix factorization or neural network, in an at-
tempts to develop robust sentiment recognition systems [6].
[16] go further and propose to learn two types of represen-
tation: a vectorial model is learned for word representation
together with a latent transformation model, which allows
the representation of negation and quantifiers associated to
an expression.

We have investigated two kinds of representation for the
texts: bag of words and a latent representation through the
use of autoencoders as in [6]. [11] also uses a latent represen-
tation for representing reviews, although in a probabilistic
setting instead in a deterministic one like we are doing here.

5.4 Hybrid approaches
In the field of recommendation, a first hybrid model was

proposed by [5]: it is based on hand labeling of review sen-
tences (topic and polarity) to identify relevant character-
istics of the items. [11] pushes further the exploitation of

16

texts, by using a joint latent representation for ratings and
textual content with the objective of improving the rating
accuracy. These two works are focused on rating prediction
and do not consider delivering additional information to the
user. Very recently, [19] has considered adding an explana-
tion component to a recommender system. For that, they
propose to extract some keywords from the review texts,
which are supposed to explain why a user likes or dislikes
an item. This is probably the work whose spirit is closest to
ours but they do not provide a quantitative evaluation.

[7] combined opinion mining and text summarization on
product reviews with the goal of extracting the qualities and
defaults. [17] proposed a system for delivering personalized
answers to user queries on specific products. They built the
user profiles relying on topic modeling without any senti-
ment dimension. [1] proposed a personalized news recom-
mendation algorithm evaluated on the Yahoo portal using
user feedback, but it does not investigate ratings or sum-
marization issues. Overall, we propose in this article to go
beyond a generic summary of item characteristics by gener-
ating for each user a personalized summaries that is close to
what they would have written about the item themselves.

For a long time, sentiment classification has ignored the
user dimension and has focused for example on the concep-
tion of ”universal” sentiment classifiers able to deal with a
large variety of topics [15]. Considering the user has become
an issue only very recently. [18] for example exploited ex-
plicit relations in social graphs for improving opinion clas-
sifiers, but their work is only focused on this aspect. [12]
proposed to distinguish different rating behaviors and show
that modeling the review authors in a scale ranging from
connoisseur to expert offers a significant gain for an opinion
prediction task.

In our work, we have experimented the benefits of con-
sidering the text of user reviews in recommender system for
their performance as sentiment classifier. We have addition-
ally proposed, as a secondary contribution, an original model
mixing recommender systems and linear classification.

6. CONCLUSION
This article proposes an extended framework to the rec-

ommendation task. The general goal is to enrich classical
recommender systems with several dimensions. As an ex-
ample we show how to generate personalized reviews for
each recommendation using extracted summaries. This is
our main contribution. We also show how rating and text
could be used to produce efficient personalized sentiment
classifiers for each recommendation. Depending on the ap-
plication, other additional information could be brought to
the user. Besides producing additional information for the
user, the different information sources can take benefit one
from the other. We thus show how to effectively make use
of text review and rating informations for building improved
rating predictors and review summaries. As already men-
tioned, the sentiment classifiers also benefits from the two in-
formation sources. This part of the work demonstrates that
multiple information sources could be useful for improving
recommendation systems. This is particularly interesting
since several sources are effectively available now at many
online sites. Several new applications could be developed
along the lines suggested here. From a modeling point of
view, more sophisticated approaches can be developed. We
are currently working on a multitask framework where the

representations used in the different components are more
closely correlated than in the present model.

7. REFERENCES
[1] D Agarwal, BC Chen, and B Pang. Personalized

recommendation of user comments via factor models.
EMNLP’11, 2011.

[2] M Amini and N Usunier. A contextual query
expansion approach by term clustering for robust text
summarization. DUC’07, 2007.

[3] R Burke. Hybrid recommender systems: Survey and
experiments. UMUAI’02, 2002.

[4] R-E Fan, K-W Chang, C-J Hsieh, X-R Wang, and C-J
Lin. Liblinear: A library for large linear classification.
JMLR’08, 2008.

[5] G Ganu, N Elhadad, and A Marian. Beyond the Stars:
Improving Rating Predictions using Review Text
Content. WebDB’09, 2009.

[6] X Glorot, A Bordes, and Y Bengio. Domain
adaptation for large-scale sentiment classification: A
deep learning approach. In ICML’11, 2011.

[7] Minqing Hu and Bing Liu. Mining and summarizing
customer reviews. KDD ’04, page 168, 2004.

[8] N Jindal and B Liu. Opinion spam and analysis. In
WSDM, pages 219–230. ACM, 2008.

[9] Yehuda Koren, Robert Bell, and Chris Volinsky.
Matrix factorization techniques for recommender
systems. Computer, pages 42–49, 2009.

[10] Chin-Yew Lin. Rouge: A package for automatic
evaluation of summaries. In ACL Workshop: Text
Summarization Branches Out, 2004.

[11] J McAuley and J Leskovec. Hidden factors and hidden
topics: understanding rating dimensions with review
text. RecSys’13, 2013.

[12] JJ McAuley and J Leskovec. From amateurs to
connoisseurs: modeling the evolution of user expertise
through online reviews. WWW’13, 2013.

[13] Matthew R McLaughlin and Jonathan L Herlocker. A
Collaborative Filtering Algorithm and Evaluation
Metric That Accurately Model the User Experience.
In SIGIR’04, 2004.

[14] Q Mei, X Ling, M Wondra, H Su, and CX Zhai. Topic
sentiment mixture: modeling facets and opinions in
weblogs. In WWW. ACM, 2007.

[15] B Pang and L Lee. Opinion mining and sentiment
analysis. Foundations and trends in information
retrieval, 2008.

[16] R Socher, B Huval, CD Manning, and A Ng. Semantic
compositionality through recursive matrix-vector
spaces. In EMNLP’12. ACL, 2012.

[17] C Tan, E Gabrilovich, and B Pang. To each his own:
personalized content selection based on text
comprehensibility. In ICWDM’12. ACM, 2012.

[18] C Tan, L Lee, J Tang, L Jiang, M Zhou, and P Li.
User-level sentiment analysis incorporating social
networks. In KDD’11. ACM, 2011.

[19] Y Zhang, G Lai, M Zhang, Y Zhang, Y Liu, and S Ma.
Explicit factor models for explainable recommendation
based on phrase-level sentiment analysis. 2014.

17

Automatic Selection of Linked Open Data
features in Graph-based Recommender Systems

Cataldo Musto, Pierpaolo Basile, Marco de Gemmis,
Pasquale Lops, Giovanni Semeraro, Simone Rutigliano

Università degli Studi di Bari "Aldo Moro" - Italy
name.surname@uniba.it

ABSTRACT
In this paper we compare several techniques to automati-
cally feed a graph-based recommender system with features
extracted from the Linked Open Data (LOD) cloud. Specifi-
cally, we investigated whether the integration of LOD-based
features can improve the effectiveness of a graph-based rec-
ommender system and to what extent the choice of the fea-
tures selection technique can influence the behavior of the
algorithm by endogenously inducing a higher accuracy or a
higher diversity. The experimental evaluation showed a clear
correlation between the choice of the feature selection tech-
nique and the ability of the algorithm to maximize a specific
evaluation metric. Moreover, our algorithm fed with LOD-
based features was able to overcome several state-of-the-art
baselines: this confirmed the effectiveness of our approach
and suggested to further investigate this research line.

Keywords
Recommender Systems, PageRank, Graphs, Linked Open
Data, Feature Selection, Diversity

1. BACKGROUND
The Linked Open Data (LOD) cloud is a huge set of inter-

connected RDF statements covering many topical domains,
ranging from government and geographical data to struc-
tured information about media (movies, books, etc.) and
life sciences. The typical entry point to all this plethora of
data is DBpedia [1], the RDF mapping of Wikipedia, which
is commonly considered as the nucleus of the emerging Web
of Data. Thanks to the wide-spread availability of this free
machine-readable knowledge, a big effort is now spent to in-
vestigate whether and how the data gathered from the LOD
cloud can be exploited to improve intelligent and adaptive
applications, such a Recommender System (RS).

Recent attempts towards the exploitation of Linked Open
Data to build RSs are due to Passant [6], who proposed
a music recommender system based on semantic similarity

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
CBRecSys 2015, September 20, 2015, Vienna, Austria.
Copyright remains with the authors and/or original copyright holders.

calculations based on DBpedia properties. The use of DB-
pedia for similarity calculation is also the core of the work
presented by Musto et al. in [4]: in this paper user prefer-
ences in music extracted from Facebook are used as input
to find other relevant artists and to build a personalized
music playlist. Recently, the use of LOD-based data sources
has been the core of the ESWC 2014 Recommender Systems
Challenge1: in that setting, the best-performing approaches
[2] were based on ensembles of several widespread algorithms
running on diverse sets of features gathered from the LOD
cloud. However, none of the above described work tackles
nor the issue of automatically selecting the best subset of
LOD-based features, neither analyzes the impact of such se-
lection techniques on different metrics as the diversity of the
recommendations.

To this end, in this paper we propose a methodology to au-
tomatically feed a graph-based recommendation algorithm
with features extracted from the LOD cloud. We focused
our attention on graph-based approaches since they use a
uniform formalism to represent both collaborative features
(connections between users and items, expressed through
ratings) and LOD-based ones (connections between different
items, expressed through RDF statements). As graph-based
algorithm we adopted PageRank with Priors [3]. Moreover,
in this work we compared several techniques to automati-
cally select the best subset of LOD-based features, with the
aim to investigate to what extent the choice of the feature
selection technique can influence the behavior of the algo-
rithm and can endogenously lead to a higher accuracy or a
higher diversity of the recommendations.

The rest of the paper is organized as follows: the descrip-
tion of our recommendation methodology is the core of Sec-
tion 2, while the details of the experimental evaluation we
carried out along with the discussion of the results are pro-
vided in Section 3. Finally, Section 4 sketches conclusions
and future work.

2. METHODOLOGY
The main idea behind our graph-based model is to repre-

sent users and items as nodes in a graph. Formally, given
a set of users U = {u1 . . . un} and a set of items I =
{i1 . . . um}, a graph G = 〈V,E〉 is instantiated. Given that
for each user and for each item a node is created, |V | =
|U |+ |I|. Next, an edge connecting a user ui with an item ij
is created for each positive feedback expressed by that user,
so E = {(ui, ij)|likes(ui, ij) = true}.
1http://2014.eswc-conferences.org/important-dates/call-
RecSys

18

Given this basic formulation, built on the ground of sim-
ple collaborative2 data points, each item i ∈ I can be pro-
vided with a relevance score. To calculate the relevance of
each item, we used a well-known variant of the PageRank
called PageRank with Priors [3]. Differently from PageR-
ank, which assigns an evenly distributed prior probability
to each node (1

N
, where N is the number of nodes), PageR-

ank with Priors adopts a non-uniform personalization vector
assigning different weights to different nodes to get a bias
towards some nodes (specifically, the preferences of a specific
user). In our algorithm the probability was distributed by
defining a simple heuristics, set after a rough tuning: 80%
of the total weight is evenly distributed among items liked
by the users (0% assigned to items disliked by the users),
while 20% is evenly distributed among the remaining nodes.
Damping factor was set equal to 0.85, as in [5].

Given this setting, the PageRank with Priors is executed
for each user (this is mandatory, since the prior probabilities
change according to user’s feedbacks), and nodes are ranked
according to their PageRank score which is in turn calcu-
lated on the ground of the connectivity in the graph. The
output of the PageRank is a list of nodes ranked according to
PageRank scores, labeled as L. Given L, recommendations
are built by extracting from L only those nodes i1 . . . in ∈ I.

2.1 Introducing LOD-based features
As stated above, our basic formulation does not take into

account any data point different from users’ ratings. The in-
sight behind this work is to enrich the above described graph
by introducing some extra nodes and some extra edges, de-
fined on the ground of the information available in the LOD
cloud. Formally, we want to define an extended graph GLOD =
〈VLOD−ALL, ELOD−ALL〉, where VLOD−ALL = V ∪ VLOD

and ELOD−ALL = E ∪ ELOD. VLOD and ELOD represent
the extra nodes and the extra edges instantiated by analyz-
ing the data gathered from the LOD cloud, respectively.

As an example, if we consider the movie The Matrix, the
property http://dbpedia.org/property/director encod-
ing the information about the director of the movie is avail-
able in the LOD cloud. Consequently, an extra node The
Wachowski Brothers is added in VLOD and an extra edge, la-
beled with the name of the property, is instantiated in ELOD

to connect the movie with its director. Similarly, if we con-
sider the property http://dbpedia.org/property/starring,
new nodes and new edges are defined, in order to model
the relationship between The Matrix and the main actors,
as Keanu Reeves, for example. In turn, given that Keanu
Reeves acted in several movies, many new edges are added
in the graph and many new paths now connect different
movies: these paths would not have been available if the
only collaborative data points were instantiated.

It immediately emerges that, due to this novel enriched
representation, the structure of the graph tremendously changes
since many new nodes and many new edges are added to the
model: the first goal of our experimental session will be to
investigate whether graph-based RSs can benefit of the in-
troduction of novel LOD-based features.

2.2 Selecting LOD-based features
Thanks to the data points available in the LOD cloud,

many new information can be encoded in our graph. How-

2We just modeled user-items couples, as in collaborative fil-
tering algorithms

ever, as the number of extra nodes and extra edges grows,
the computational load of the PageRank with Priors grows
as well, so it necessary to identify the subset of the most
useful properties gathered from the LOD cloud and to in-
vestigate to what extent (if any) each of them improves the
accuracy of our recommendation strategy.

A very naive approach may be to manually select the most
relevant LOD-based features, according to simple heuristics
or to domain knowledge (e.g. properties as director, starring,
composer may be considered as relevant for the Movie do-
main, whereas properties as runtime or country may be not).
This basic approach has several drawbacks, since it requires
a manual effort, but it is also strictly domain-dependent.

To avoid this, we employed features selection techniques
to automatically select the most promising LOD-based fea-
tures. Formally, our idea is to take as input ELOD, the over-
all set of LOD-based properties, and to produce as output
ELOD−FST ⊆ ELOD, the set of properties a specific feature
selection technique T returned as relevant. Clearly, the ex-
ploitation of a feature selection technique T also produces
a set VLOD−FST ⊆ VLOD, containing all the LOD-based
nodes connected to the properties in ELOD−FST .

In this setting, given a FS technique T , PageRank will be
executed against the graph GLOD−T = 〈VLOD−T , ELOD−T 〉,
where VLOD−T = V ∪ VLOD−FST and ELOD−T = E ∪
ELOD−FST . In the experimental session the effectiveness of
seven different techniques for automatic selection of LOD-
based features: PageRank, Principal Component Analysis
(PCA), Support Vector Machines (SVM), Chi-Squared Test
(CHI), Information Gain (IG), Information Gain Ratio (GR)
and Mininum Redundancy Maximum Relevance (MRMR)
[7]. Clearly, a complete description of these techniques is
out of the scope of this paper. We will just limit to evaluate
their impact on the overall accuracy and the overall diversity
obtained by our algorithm.

3. EXPERIMENTAL EVALUATION
Our experiments were designed on the ground of four dif-

ferent research questions:

1. Do graph-based recommender systems benefit of the
introduction of LOD-based features?

2. Do graph-based recommender systems exploiting LOD
features benefit of the adoption of FS techniques?

3. Is there any correlation between the choice of the FS
technique and the behavior of the algorithm?

4. How does our methodology perform with respect to
state-of-the-art techniques?

Experimental design: experiments were performed by
exploiting MovieLens3 dataset, consisting of 100,000 ratings
provided by 943 users on 1,682 movies. The dataset is pos-
itively balanced (55.17% of positive ratings) and shows an
high sparsity (93.69%). Each user voted 84.83 items on av-
erage and each item was voted by 48.48 users, on average.

Experiments were performed by carrying out a 5-folds
cross validation. Given that MovieLens preferences are ex-
pressed on a 5-point discrete scale, we decided to consider as
positive ratings only those equal to 4 and 5. As recommenda-
tion algorithms we used the previously described PageRank

3http://grouplens.org/datasets/movielens/

19

with Priors, set as explained in Section 2. We compared the
effectiveness of our graph-based recommendation methodol-
ogy by considering three different graph topologies: G, mod-
eling the basics collaborative information about user ratings;
GLOD, which enrichs G by introducing LOD-based features
gathered from DBpedia, and GLOD−T which lighten the load
of PageRank with Priors by relying on the features selected
by a FS technique T . In order to enrich the graph G, each
item in the dataset was mapped to a DBpedia entry. In our
experiments 1,600 MovieLens entries (95.06% of the movies)
were successfully mapped to a DBpedia node. The items for
which a DBpedia entry was not found were only represented
by using collaborative data points. Overall, MovieLens en-
tries were described through 60 different DBpedia proper-
ties. As feature selection techniques all the approaches pre-
viously mentioned were employed, while for the parameter
K (the number of LOD-based features) three different val-
ues were compared: 10, 30 and 50. The performance of
each graph topology was evaluated in terms of F1-measure.
Moreover, we also calculated the overall running time4 of
each experiment. To answer the third research questions we
also evaluated the diversity of the recommendations, calcu-
lated by exploiting the classical Intra-List Diversity (ILD).
Statistical significance was assessed by exploiting Wilcoxon
and Friedman tests.
Discussion of the Results: in the first experiment we

evaluated the introduction of LOD-based features in graph-
based recommender systems. Results are depicted in the
first two columns of Table 1. As regards MovieLens, a sta-
tistically significant improvement (p << 0.0001, assessed
through a Wilcoxon test) was obtained for all the metrics.
As expected, the expansion of the graph caused an expo-
nential growth of the run time of the algorithm. This is due
to the fact that the expansion stage introduced many new
nodes and many new edges in the graph (see Table 1). The
growth is particularly significant since 50,000 new nodes and
78,000 new edges were added to the graph.

Next, we evaluated the impact of all the previously pre-
sented feature selection techniques in such recommendation
setting. By analyzing the results provided in Table 2, it
emerged that our graph-based recommendation strategy does
not often benefit of the application of FS techniques. Indeed,
when a very small number of properties is chosen (K=10),
none of the configurations is able to overcome the baseline.
By slightly increasing the value of parameter K (K=30),
only three out of seven techniques (PageRank, PCA and
mRMR) improve the F1-measure. Next, when more data
points are introduced (with K=50) better results are ob-
tained and the F1-measure of the baseline is always over-
came. Given that the overall number of LOD-based proper-
ties was equal to 60, it is possible to state that most of the
properties encoded in the extended graph GLOD can be con-
sidered as relevant. Clearly, this is a very domain-specific
outcome, which needs to be confirmed by more thorough
analysis on different datasets. However, it is possible to
state that the adoption of FS techniques requires a complete
analysis of the usefulness of each of the properties encoded
in the LOD. Overall, the best performing configuration was
PCA, which was the only technique always overcoming the
baseline with K = 50. A Friedman test also showed that
PCA statistically overcomes the other techniques for all the

4Experiments were run on an Intel-i7-3770 CPU3.40 gHZ,
with 32GB RAM.

metrics. Another interesting outcome which follows the use
of FS techniques is the saving of computational resources to
run PageRank with Priors on graph GLOD−PCA. As shown
in Table 1, the adoption of FS caused a huge decrease of the
run time of the algorithms equal to 33.9% for MovieLens
(from 880 to 581 minutes). This is due to the smaller num-
ber of information which are modeled in the graphs (-8.6%
nodes and -4.8% edges).

MovieLens
G GLOD GLOD+PCA

F1@5 0.5406 0.5424 0.5424(*)
F1@10 0.6068 0.6083 0.6088(*)
F1@15 0.5956 0.5963 0.5970(*)
F1@20 0.5678 0.5686 0.5689(*)

Run (min.) 72 880 581

K (LOD prop.) 0 60 50

Nodes 2,625 53,794 49,158
Edges 100,000 178,020 169,405

Table 1: Overall comparison among the baseline, the com-
plete LOD-based graph and the LOD-based graph boosted
by PCA. The configurations overcoming the baseline were
highlighted in bold. The best-performing configuration is
further highlighted with (*)

.

In Experiment 3 we shifted the attention from F1-measure
to different evaluation metrics, and we investigate whether
the adoption of a specific FS technique can endogenously
induce a higher diversity at the expense of a little F1. Re-
sults of the experiments are provided in Figure 1a. Due to
space reasons, only the results for F1@10 are provided. In
both charts we used four different symbols to identify the
different behaviors of each technique. It emerged that CHI
was the less useful technique, since it did not provide any
significant benefit to neither F1 nor diversity. Next, PageR-
ank provided a (small) improvement on F1 and it did not
significantly change the diversity of the recommendations.
It is noteworth that the larger increase in accuracy of PCA
is balanced by a decrease in terms of diversity. On the other
side, Gain Ratio obtained the overall best diversity of the
recommendation but it decreases the F1 of the algorithm.
To sum up, these results show that the choice of a particular
FS technique has a significant impact on the overall behavior
of the recommendation algorithm. As shown in the experi-
ment, some techniques have the ability of inducing a higher
diversity (or F1) at the expense of a little of F1 (or diversity,
respectively), wheres other can provide a good compromise
between both metrics. Clearly, more investigation is needed
to deeply analyze the behavior of each technique, but these
results already give some general guidelines which can drive
the choice of the FS technique which best fits the require-
ments of a specific recommendation scenario.

Finally, we compared the effectiveness of our methodol-
ogy to the current state of the art. As baselines User-to-
User CF (U2U-KNN), Item-to-Item CF (I2I-KNN), a sim-
ple popularity-based approach, a random baseline and the
Bayesian Personalized Ranking Matrix Factorization (BPRMF)
were used. We adopted the implementations available in
MyMediaLite Recommender System library5. As regards

5http://www.mymedialite.net/

20

MovieLens #feat. PR PCA SVM CHI IG GR mRMR
F1@5 10 0.5418 0.5406 0.5382 0.5414 0.5397 0.5372 0.5397
GLOD = 0.5424 30 0.5429(∗) 0.5413 0.5413 0.5419 0.5396 0.5398 0.5429(∗)

50 0.5412 0.5431(∗)(↑) 0.5421(∗) 0.5420(∗) 0.5412(∗) 0.5406(∗) 0.5421
F1@10 10 0.6069 0.6045 0.6043 0.6056 0.6039 0.6033 0.6039
GLOD = 0.6083 30 0.6084(∗) 0.6081 0.6074 0.6070 0.6055 0.6059 0.6072(∗)

50 0.6070 0.6088(∗)(↑) 0.6081(∗) 0.6079(∗) 0.6072(∗) 0.6078(∗) 0.6077
F1@15 10 0.5964 0.5948 0.5943 0.5955 0.5950 0.5938 0.5950
GLOD = 0.5963 30 0.5967(∗) 0.5967 0.5964 0.5967 0.5955 0.5960 0.5961

50 0.5955 0.5970(∗)(↑) 0.5966(∗) 0.5972(∗) 0.5962(∗) 0.5968(∗) 0.5962(∗)
F1@20 10 0.5684(∗) 0.5667 0.5666 0.5672 0.5668 0.5666 0.5668
GLOD = 0.5686 30 0.5684 0.5688 0.5679 0.5679 0.5675 0.5675 0.5679

50 0.5682 0.5689(∗)(↑) 0.5683(∗) 0.5686(∗) 0.5685(∗) 0.5687(∗) 0.5685(∗)

Table 2: Experiment 2. The configurations overcoming the baseline GLOD are emphasized in bold. Next, for each technique,
the number of features which led to the highest F1 is indicated with (∗). The overall highest F1 score for each metric is
highlighted with (∗)(↑). The column of the feature selection technique which performed the best on a specific dataset is
coloured in grey.

U2U and I2I, neighborhood size was set to 80, while BPRMF
was run by setting the factor parameter equal to 100. Re-
sults are depicted in Figure 1b. As shown in the plots, our
graph-based RS outperforms all the baselines for all the met-
rics taken into account. It is worth to note that our ap-
proach obtained a higher F1 also when compared to a well-
perfoming matrix factorization algorithm as BPRMF, thus
this definitely confirmed the effectiveness of our approach.

4. CONCLUSIONS AND FUTURE WORK
In this work we proposed a graph-based recommendation

methodology based on PageRank with Priors, and we evalu-
ated different techniques to automatically feed such a repre-
sentation with features extracted from the LOD cloud. Re-
sults showed that graph-based RSs can benefit of the in-
fusion of novel knowledge coming from the LOD cloud and
that a clear correlation between the adoption of a specific FS
technique with the overall results of the recommender exitss,
since some techniques endogenously showed the ability of in-
creasing also the diversity of the recommendations generated
by the algorithm. We also showed that our methodology was
able to overcome several state-of-the-art baselines on both
datasets. As future work, we will validate the approach by
evaluating it on different dataset, and we will investigate
the impact of LOD-based features with different learning
approaches as Random Forest or SVM.

5. REFERENCES
[1] S. Auer, C. Bizer, G. Kobilarov, J. Lehmann,

R. Cyganiak, and Z. Ives. DBpedia: A nucleus for a
Web of Open Data. Springer, 2007.

[2] P. Basile, C. Musto, M. de Gemmis, P. Lops,
F. Narducci, and G. Semeraro. Aggregation strategies
for linked open data-enabled recommender systems. In
European Semantic Web Conference, 2014.

[3] T. H. Haveliwala. Topic-Sensitive PageRank: A
Context-Sensitive Ranking Algorithm for Web Search.
IEEE Trans. Knowl. Data Eng., 15(4):784–796, 2003.

[4] C. Musto, G. Semeraro, P. Lops, M. de Gemmis, and
F. Narducci. Leveraging social media sources to
generate personalized music playlists. In EC-Web 2012,
volume 123 of LNBIP, pages 112–123. Springer, 2012.

(a) Trade-off between F1 and Diversity

(b) Comparisons to baselines

Figure 1: Results of the experiments

[5] L. Page, S. Brin, R. Motwani, and T. Winograd. The
pageRank citation ranking: bringing order to the web.
1999.

[6] A. Passant. dbrec - Music Recommendations Using
DBpedia. In International Semantic Web Conference,
Revised Papers, volume 6497 of LNCS, pages 209–224.
Springer, 2010.

[7] H. Peng, F. Long, and C. Ding. Feature selection based
on mutual information criteria of max-dependency,
max-relevance, and min-redundancy. Pattern Analysis
and Machine Intelligence, IEEE Transactions on,
27(8):1226–1238, 2005.

21

Cross-Document Search Engine For Book
Recommendation

Chahinez Benkoussas
Aix-Marseille Université, CNRS, LSIS UMR 7296

13397, Marseille. France
chahinez.benkoussas@lsis.org

Aix-Marseille Université, CNRS, CLEO OpenEdition UMS 3287, 13451
13397, Marseille. France

chahinez.benkoussas@openedition.org

Patrice Bellot
Aix-Marseille Université, CNRS, LSIS UMR 7296

13397, Marseille. France
patrice.bellot@lsis.org

Aix-Marseille Université, CNRS, CLEO OpenEdition UMS 3287, 13451
13397, Marseille. France

patrice.bellot@openedition.org

ABSTRACT
A new combination of multiple Information Retrieval ap-
proaches are proposed for book recommendation based on
complex users’ queries. We used different theoretical re-
trieval models: probabilistic as InL2 (Divergence From Ran-
domness model) and language models and tested their in-
terpolated combination. We considered the application of a
graph based algorithm in a new retrieval approach to related
document network comprised of social links. We called Di-
rected Graph of Documents (DGD) a network constructed
with documents and social information provided from each
one of them. Specifically, this work tackles the problem of
book recommendation in the context of CLEF Labs pre-
cisely Social Book Search track. We established a specific
strategy for queries searching after separating query set into
two genres “Analogue” and “Non-Analogue” after analyzing
users’ needs. Series of reranking experiments demonstrate
that combining retrieval models and exploiting linked docu-
ments for retrieving yield significant improvements in terms
of standard ranked retrieval metrics. These results extend
the applicability of link analysis algorithms to different en-
vironments.

Keywords
Document retrieval, InL2, language model, book recommen-
dation, PageRank, graph modeling, Social Book Search.

1. INTRODUCTION

CBRecSys 2015, September 20, 2015, Vienna, Austria.
Copyright remains with the authors and/or original copyright holders

There has been much work both in the industry and academia
on developing new approaches to improve the performance of
retrieval and recommendation systems over the last decade.
The aim is to help users to deal with information over-
load and provide recommendation for books, restaurants or
movies. Some vendors have incorporated recommendation
capabilities into their commerce services, such as Amazon.

Existing document retrieval approaches need to be improved
to satisfy users’ information needs. Most systems use clas-
sic information retrieval models, such as language models or
probabilistic models. Language models have been applied
with a high degree of success in information retrieval applica-
tions [29–31]. This was first introduced by Ponte and Croft
in [27]. They proposed a method to score documents, called
query likelihood in two steps: estimate a language model
for each document and then rank documents according to
the likelihood scores resulting from the estimated language
model. Markov Random Field model, proposed by Metzler
and Croft in [19] considers query term proximity in docu-
ments by estimating term dependencies in the context of lan-
guage modeling approach. Alternatively, Divergence From
Randomness model, proposed by Amati and Van Rijsber-
gen [2], measures the global informativeness of the term in
the document collection. It is based on the idea :“The more
the term occurrences diverge from random throughout the
collection, the more informative the term is” [28]. One limit
of such models is that the distance between query terms in
documents is not considered.

Users’ queries differ by their type of needs. In book recom-
mendation, we identified two genres of queries : “Analogue”
and “Non-Analogue” that we describe in the following sec-
tions. In this paper, the first proposed approach combines
probabilistic and language models to improve the retrieval
performances and show that the two models act much better

22

in the context of book recommendation.

In recent years, an important innovation in information re-
trieval is the exploitation of relationships between docu-
ments, e.g. Google’s PageRank [25]. It has been success-
ful in Web environments, where the relationships are pro-
vided by hyperlinks between documents. We present a new
approach for linking documents to construct a graph struc-
ture that is used in retrieving process. In this approach,
we exploit the PageRank algorithm for ranking documents
with respect to users’ queries. In the absence of manually-
created hyperlinks, we use social information to create a
Directed Graph of Documents (DGD) and argue that it can
be treated in the same manner as hyperlink graphs. Our
experiments will show that incorporating graph analysis al-
gorithms in document retrieval improves the performance in
term of the standard ranked retrieval metrics.

Our work focuses on search in the book recommendation do-
main, in the context of CLEF Labs Social Book Search track.
We tested our approaches on collection contains Amazon/Li-
braryThing book descriptions and set of queries, called top-
ics, extracted from the LibraryThing discussion forums.

2. RELATED WORK
This work is first related to the area of document retrieval
models, more specially language models and probabilistic
models. The unigram language models are most often used
for ad hoc Information Retrieval work but several researchers
explored the use of language modeling for capturing higher
order dependencies between terms. Bouchard and Nie in [8]
showed significant improvements in retrieval effectiveness
with a new statistical language model for the query based on
completing the query by terms in the user’s domain of inter-
est, reordering the retrieval results or expanding the query
using lexical relations extracted from the user’s domain of
interest.

Divergence From Randomness (DFR) is one of several prob-
abilistic models that we have used in our work. Abolhassani
and Fuhr have investigated several possibilities for apply-
ing Amati’s DFR model [2] for content-only search in XML
documents. [1].

There has been an increasing use of techniques based on
graphs constructed by implicit relationships between doc-
uments. Kurland and Lee performed structural reranking
based on centrality measures in graph of documents which
has been generated using relationships between documents
based on language models [14]. In [16], Lin demonstrates the
possibility to exploit document networks defined by automatically-
generated content-similarity links for document retrieval in
the absence of explicit hyperlinks. He integrates the PageR-
ank scores with standard retrieval score and shows a signifi-
cant improvement in ranked retrieval performance. His work
was focused on search in the biomedical domain, in the con-
text of PubMed search engine. Perhaps the main contrast
with our work is that links were not induced by generation
probabilities or linguistic items.

3. INEX SOCIAL BOOK SEARCH TRACK
AND TEST COLLECTION

Social Book Search (SBS) task1 aims to evaluate the value
of professional and user’s metadata for book search on the
Web. The main goal is to exploit search techniques to deal
with complex information needs and complex information
sources that include user profiles, personal catalogs, and
book descriptions.

The SBS task provides a collection of 2.8 million book de-
scription crawled by the University of Duisburg-Essen from
Amazon2 [4] and enriched with content from LibraryThing3,
which is an online service to help people catalog their books
easly. Books are stored in XML files and identified by an
ISBN. They contains information like: title information,
Dewey Decimal Classification (DDC) code (for 61% of the
books), category, Amazon product description, etc. Ama-
zon records contain also social information generated by
users like: tags, reviews, ratings (see Figure 1. For each
book, Amazon suggests a set of “Similar Products” which
represents a result of computed similarity based on content
information and user behavior (purchases, likes, reviews,
etc.) [13].

Figure 1: Example of book from the Amazon/LibraryThing
collection in XML format

SBS task provides a set of queries called topics where users
describe what they are looking for (books for a particular
genre, books of particular authors, similar books to those
that have been already read, etc.). These requests for rec-
ommendations are natural expressions of information needs
for a large collection of online book records. The topics are
crawled from LibraryThing discussion Forums.

The topic set consists of 680 topics in 2014. Each topic has
a narrative description of the information need and other
fields as illustrated in Figure 2.

1http://social-book-search.humanities.uva.nl/
2http://www.amazon.com/
3http://www.librarything.com/

23

Figure 2: Example of topic, composed with multiple fields
to describe user’s need(s)

4. RETRIEVAL MODELS
This section describes the retrieval models we used for book
recommendation and their combination.

4.1 InL2 of Divergence From Randomness
We used InL2, Inverse Document Frequency model with
Laplace after-effect and normalization 2. This model has
been used with success in different works [3,6,10,26]. InL2 is
a DFR-based model (Divergence From Randomness) based
on the Geometric distribution and Laplace law of succession.

4.2 Sequential dependence Model of Markov
Random Field

Language models are largely used in Document Retrieval
search for book recommendation [6, 7]. Metzler and Croft
proposed Markov Random Field (MRF) model [18,20] that
integrates multi-word phrases in the query. Specifically, we
used the Sequential Dependence Model (SDM), which is a
special case of MRF. In this models co-occurrence of query
terms is taken into consideration. SDM builds upon this idea
by considering combinations of query terms with proximity
constraints which are: single term features (standard uni-
gram language model features, fT), exact phrase features
(words appearing in sequence, fO) and unordered window
features (require words to be close together, but not neces-
sarily in an exact sequence order, fU).

Finally, documents are ranked according to the following
scoring function:

SDM(Q,D) = λT
∑

q∈Q
fT (q,D)+

+λO

|Q|−1∑

i=1

fO(qi, qi + 1, D)

+λU

|Q|−1∑

i=1

fU (qi, qi + 1, D)

Where feature weights are set based on the authorâĂŹs rec-
ommendation (λT = 0.85, λO = 0.1, λU = 0.05) in [7]. fT
, fO and fU are the log maximum likelihood estimates of
query terms in document D, computed over the target col-
lection using a Dirichlet smoothing. We applied this model

to the queries using Indri4 Query Language5.

4.3 Combining Search Systems
Combining the output of many search systems, in contrast to
using just a single one improves the retrieval effectiveness as
proved in [5] where Belkin combined the results of probabilis-
tic with vector space models. On the basis of this approach,
In our work, we combined the probabilistic model, InL2 with
language model SDM. This combination takes into account
both the informativeness of query terms and their depen-
dencies in the document collection. Each retrieval model
uses different weighting schemes therefore the scores should
be normalized. We used the maximum and minimum scores
according to Lee’s formula [15].

normalizedScore =
oldScore−minScore
maxScore−minScore

It has been shown in [6] that InL2 and SDM models have
different levels of retrieval effectiveness, thus it is necessary
to weight individual model scores depending on their overall
performance. We used an interpolation parameter (α) that
we varied to improve retrieval effectiveness.

5. GRAPH MODELING
In [17], the authors have exploited networks defined by automatically-
generated content-similarity links for document retrieval.
We provided document analysis to find new way to link
them. In our case, we exploited a special type of similar-
ity based on several factors. This similarity is provided by
Amazon and corresponds to “Similar Products” given gener-
ally for each book. The degree of similarity depends on social
information like: number of clicks or purchases and content-
based information like book attributes (book description,
book title, etc.). The exact formula used by Amazon to com-
bine social and content based information to compute sim-
ilarity is proprietary. The idea behind this linking method
is that documents linked with such type of similarity, the
probability that they are in the same context is higher than
if they are not connected.

To perform data modeling into DGD, we extracted the“Sim-
ilar Products” links between documents in order to con-
struct the graph structure. Once used it to enrich results
from the retrieval models, in the same spirit as pseudo-
relevance-feedback. Each node in the DGD represents doc-
ument (Amazon description of book), and has set of prop-
erties:

• ID: book’s ISBN

• content : book description that include many other
properties (title, product description, author(s), users’
tags, content of reviews, etc.)

• MeanRating : average of ratings attributed to the
book

4http://www.lemurproject.org/indri/
5http://www.lemurproject.org/lemur/
IndriQueryLanguage.php

24

• PR : book’s PageRank

Edges in the DGD are directed and correspond to Amazon
similarity, so given nodes {A,B} ∈ S , if A points to B,
B is suggested as Similar Product to A. In the Figure 3,
we show an example of DGD, network of documents. The
DGD network contains 1 645 355 nodes (89.86% of nodes are
within the collection and the rest are outside) and 6 582 258
edges.

Figure 3: Example of Directed Graph of Documents

Figure 4 shows the general architecture of our document re-
trieval system with two-level document search. In this sys-
tem, the IR Engine finds all relevant documents for user’s
query. Then, the Graph Search module selects resulting
document returned by Graph Analysis module. The Graph
Structured Data is a network constructed using Social Infor-
mation Matrix and enriched by Compute PageRank module.
The Social Information Matrix is constructed by two mod-
ules: “Ratings“ and ”Similar Products“ Extraction from the
Data Collection that contains description books in XML for-
mat. Scoring Ranking module combines scores of documents
resulting from IR Engine and Graph Analysis modules and
reranks them.

Figure 4: Architecture of document retrieval approach based
on graph of documents

In this section, the collection of documents is denoted by
C. In C, each document d has a unique ID. The set of
queries called topics is denoted by T , the setDinit ⊂ C refers
to the documents returned by the initial retrieval model.

StartingNode identifies a document from Dinit used as in-
put to the graph processing algorithms in the DGD. The
set of documents present in the graph is denoted by S. Dti

indicates the documents retrieved for topic ti ∈ T .

5.1 Our Approach
The DGD network contains useful information about doc-
uments that can be exploited for document retrieval. Our
approach is based, first on results of a traditional retrieval
engine, then on the DGD network to find new documents.
The idea is to suppose that the suggestions given by Ama-
zon can be relevant to the user queries.

Algorithm 1 takes as inputs: Dinit returned list of docu-
ments for each topic by the retrieval techniques described
in Section 3, DGD network and parameter β which is the
number of the top selected StartingNode from Dinit de-
noted by DStartingNodes. We fixed β to 100 (10% of the
returned list for each topic). The algorithm returns a list
of recommendations for each topic denoted by “Dfinal”. It
processes topic by topic, and extracts the list of all neighbors
for each StartingNode. It performs mutual Shortest Paths
computation between all selected StartingNode in DGD.
The two lists (neighbors and nodes in computed Shortest
Paths) are concatenated after that all duplicated nodes are
deleted. The set of documents in returned list is denoted by
Dgraph. A second concatenation is performed between initial
list of documents and Dgraph (all duplications are deleted) in
new final list of retrieved documents, Dfinal reranked using
different reranking schemes.

Algorithm 1 Retrieving based on DGD feedback

1: Dinit ← Retrieving Documents for each ti ∈ T
2: for each Dti ∈ Dinit do
3: DStartingNodes ← first β documents ∈ Dti

4: for each StartingNode in DStartingNodes do
5: Dgraph ← Dgraph

+ neighbors(StartingNode,DGD)
6: DSPnodes ← all D ∈

ShortestPath(StartingNode, DStartingNodes, DGD)
7: Dgraph ← Dgraph + DSPnodes

8: Delete all duplications from Dgraph

9: Dfinal ← Dfinal + (Dti +Dgraph)

10: Delete all duplications from Dfinal

11: Rerank Dfinal

Figure 5 shows an illustration of the document retrieval ap-
proach based on DGD feedback.

6. EXPERIMENTS AND RESULTS
In this section, we describe the experimental setup we used
for our experiments. Furthermore, we present the different
reranking schemes used in previously defined approaches.
We discuss the results we achieved by using the InL2 re-
trieval model, its combination to the SDM model, and re-
trieval system proposed in our approach that uses the DGD
network.

6.1 Experiments setup

25

Figure 5: Book retrieval approach based on DGD feedback. Numbers on the arrows refer to the instructions in the Algorithm
1

For our experiments, we used different tools that implement
retrieval models and handle the graph processing. First,
we used Terrier (TERabyte RetrIEveR)6 Information Re-
trieval framework developed at the University of Glasgow
[21–23]. Terrier is a modular platform for rapid develop-
ment of large-scale IR applications. It provides indexing
and retrieval functionalities. It is based on DFR framework
and we used it to deploy InL2 model described in section
4.1. Further information about Terrier can be found at
http://ir.dcs.gla.ac.uk/terrier.

A preprocessing step was performed to convert INEX SBS
corpus into the Trec Collection Format7, by considering that
the content of all tags in each XML file is important for in-
dexing; therefore the whole XML file was transformed on
one document identified by its ISBN. Thus, we just need
two tags instead of all tags in XML, the ISBN and the whole
content (named text).

Secondly, Indri8, Lemur Toolkit for Language Modeling and
Information Retrieval was used to carry out a language
model (SDM) described in section 4.2. Indri is a framework
that provides state-of-the-art text search methods and a rich
structured query language for big collections (up to 50 mil-
lion documents). It is a part of the Lemur project and devel-
oped by researchers from UMass and Carnegie Mellon Uni-
versity. We used Porter stemmer and performed Bayesian
smoothing with Dirichlet priors (Dirichlet prior µ = 1500).

In section 5.1, we have described our approach based on
DGD which includes graph processing. We used NetworkX9

tool of Python to perform shortest path computing, neigh-

6http://terrier.org/
7http://lab.hypotheses.org/1129
8http://www.lemurproject.org/indri/
9https://networkx.github.io/

borhood extraction and PageRank calculation.

To evaluate the results of retrieval systems, several measure-
ments have been used for SBS task: Discounted Cumulative
Gain (nDCG), the most popular measure in IR [11], Mean
Average Precision (MAP) which calculates the mean of av-
erage precisions over a set of queries, and other measures:
Recip Rank and Precision at the rank 10 (P@10).

6.2 Reranking Schemes
Two approaches were proposed. The first one (see section
4.3) merges the results of two different information retrieval
models which are the Language Model (SDM) and DFR
model (InL2). For topic ti, the models give 1000 documents
and each retrieved document has an associated score. The
linear combination method uses the following formula to cal-
culate final score for each retrieved document d by SDM and
InL2 models:

Sfinal(d, ti) = α ∗ SInL2(d, ti) + (1− α) ∗ SSDM (d, ti)

Where SInL2(d, ti) and SSDM (d, ti) are normalized scores.
α is the interpolation parameter set up at 0.8 after several
tests on the 2014 topics.

The second approach (described in 5.1) uses the DGD con-
structed from the “Similar Products” information. The doc-
ument set returned by the retrieval model are fused to the
documents in neighbors set and Shortest Path results. We
tested many reranking methods that combine the retrieval
model scores and other scores based on social information.
For each document in the resulting list, we calculated the
following scores:

• PageRank, computed using NetworkX tool. It is
a well-known algorithm that exploits link structure

26

to score the importance of nodes in a graph. Usu-
ally, it was been used for hyperlink graphs such as the
Web [24]. The values of PageRank are given by the
following formula.

PR(A) = (1− d) + d(PR(T1)/C(T1)

+...+ PR(Tn)/C(Tn))

Where document A has documents T1...Tn which point
to it (i.e., Similar products). The parameter d is a
damping factor set between 0 and 1 (0.85 in our case).
C(A) is defined as the number of links going out of
page A.

• Likeliness, computed from information generated by
users (reviews and ratings). It is based on the idea that
more the book has a lot of reviews and good ratings,
the more interesting it is (it may not be a good or
popular book but a book that has a high impact).

Likeliness(D) = log(#reviews(D))×
∑

r∈RD
r

#reviews(D)

Where #reviews(D) is the number of reviews attributed
to D, RD is the set of reviews of D.

The computed scores were normalized using this formula:
normalizedscore = oldscore/maxscore. After that, to com-
bine the results of retrieval systems and each of normal-
ized scores, an intuitive solution is to weight the retrieval
model scores with the previously described scores (normal-
ized PageRank and Likeliness). However, this would favor
documents with high PageRank and Likeliness scores even
though their content is much less related to the topics.

6.3 Results
We used two topic sets provided by INEX SBS task in 2014
(680 topics). The systems retrieve 1000 documents per topic.
We assessed the narrative field of each topic and provided au-
tomatic classification of the topic set into 2 genres. Analogue
topics (261) in which users give the already read books (gen-
erally, titles and authors) to have similar books. In the sec-
ond genre “Non-Analogue” (356 topics), users describe their
needs by defining the thematic, interested field, event, etc.
without citing other books. Notify that, 63 topics are ig-
nored because of their ambiguity.

In order to evaluate our IR methodologies described in sec-
tions 4.3, 5 we performed retrieving for each topic genre indi-
vidually. The experimental results, which describe the per-
formance of the different retrieval systems on Amazon/Li-
braryThing document collection, are shown in Table 1.

As illustrated in Table 1, the system that combines proba-
bilistic model InL2 and the Language Model SDM (InL2 SDM)
achieves a significant improvement for each topic set compar-
ing to InL2 model (Baseline) but the improvement is highest
for Non-Analogue topic set where the content of queries are
more explicit than the other topic set. This improvement is
mainly due to the increase of the number of relevant docu-
ments that are retrieved by both systems.

The results of run InL2 DDG PR using the Analogue topic
set confirm that exploiting structured documents and per-

forming reranking with PageRank improves significantly per-
formances but in contrast, it lowers the baseline perfor-
mances when using the Non-Analogue topic set. This can
be explained by the fact that Analogue topics contain ex-
amples of books (Figure 6) which require the use of graph
to extract the similar connected books.

Figure 6: Examples of narratives in Analogue topics

Using Likeliness scores (in InL2 DGD MnRtg) to rerank re-
trieved documents decreases significantly the baseline effi-
ciency for the two topic sets. This means that ratings given
by users don’t provide any improvement for the reranking
performances.

Figure 7: Histograms that demonstrate and compare the
number of improved, deteriorated and same results’ topics
using the proposed approaches for MAP measure. (Baseline:
InL2)

Figure 7 compares the number of improved, deteriorated
and same results’ topics between the baseline (InL2) and the
proposed retrieval systems in term of MAP measure. The
proposed systems based on DGD graph provide the highest
number of improved topics compared with the combination
of IR systems. More precisely, using PageRank to rerank
document produces better results in term of improved top-
ics. This results prove the positive impact of linked structure
on document retrieval systems for book recommendation.

The depicted results confirm that we are starting with com-
petitive baseline, suggesting that improvements contribute

27

Table 1: Experimental results. The runs are ranked according to nDCG@10. (∗) denotes significance according to Wilcoxon
test [9]. In all cases, all of our tests produced two-sided p-value, α = 0.05.

Analogue topics Non-Analogue topics
Run nDCG@10 Recip Rank MAP P@10 nDCG@10 Recip Rank MAP P@10
InL2 0.1099 0.267 0.072 0.078 0.138 0.207 0.117 0.0579
InL2 SDM 0.1115 (+1%∗) 0.271 (+1%∗) 0.073 (+0.6%) 0.079 (+1%∗) 0.147(+6%∗) 0.222(+7%∗) 0.124(+5%∗) 0.0630(+8%∗)
InL2 DGD PR 0.1111 (+1%∗) 0.277 (+3%∗) 0.068 (−5%∗) 0.082 (+12%) 0.127(−7%∗) 0.206(−0.6%∗) 0.102(−12%∗) 0.0570(−1%∗)
InL2 DGD LK 0.1043 (−5%) 0.275 (+2%) 0.064(−11%∗) 0.082(+5%) 0.130(−5%) 0.214(+3%∗) 0.100(−14%∗) 0.0676(+16%)

by combining output retrieval systems and social link anal-
ysis are indeed meaningful.

7. HUMANITIES AND SOCIAL SCIENCES
COLLECTION: GRAPH MODELING AND
RECOMMENDATION

We tested the proposed approach of recommendation based
on linked documents on Revues.org10 collection. Revues.org
is one of the four platforms of OpenEdition11 portal dedi-
cated to electronic resources in the humanities and social
sciences (books, journals, research blogs, and academic an-
nouncements). Revues.org was founded in 1999 and today
it hosts over 400 online journals, i.e. 149000 articles, pro-
ceedings ans editorials.

We built a network of documents from ASp12 journal. It
publishes research articles, publication listings and reviews
related to the field of English for Specific Purposes (ESP) for
both teaching and research. The network contains 500 doc-
uments and 833 relationships which represent bibliographic
citations. Each relationship is constructed using BILBO
[12], the reference parsing software. BILBO is constructed
with annotated corpora from Digital Humanities articles
from OpenEdition Revues.org platform. It automatic an-
notates bibliographic references in the bibliography section
of each document and obtains the corresponding DOI (Digi-
tal Object Identifier) via CrossRef13 API if such an identifier
exists.

Each node in the citation network have a set of properties
(ID which is its URL, type, it can be article, editorial, re-
view of book, etc., and readers’ clicks number that we called
popularity). The recommender system applied on this net-
work takes as input user query, generally a small set of short
keywords, and performs retrieval step using Solr14 search
engine. The system extend the returned results with doc-
uments in the citation network by using graph algorithms
(neighborhood search and shortest path algorithm) as de-
scribed in section5.1. After that, we rerank documents ac-
cording to the popularity property of each document.

We tested the system manually for a small set of user queries,
and found that for most queries, the results were satisfying.

8. CONCLUSION AND FUTURE WORK
In this paper, we proposed and evaluated approaches of doc-
ument retrieval in the context of book recommendation. We
used the test collection of CLEF Labs Social Book Search

10http://www.revues.org/
11http://www.openedition.org
12http://www.openedition.org/6457
13http://www.crossref.org/
14http://lucene.apache.org/solr/

track and the proposed topics in 2014 divided into two classes
Analogue and “Non-Analogue”.

We presented the first approach that combines the outputs
of probabilistic model (InL2) and Language Model (SDM)
using a linear interpolation after normalizing scores of each
retrieval system. We have shown a significant improvement
of baseline results using this combination.

A novel approach was proposed, based on Directed Graph
of Documents (DGD) constructed from social relationships.
It exploits link structure to enrich the returned document
list by traditional retrieval model (InL2). We performed a
reranking method using PageRank and Likeliness of each
retrieved document.

In the future, we would like to construct an evaluation cor-
pora from Revues.org collection and develop an evaluation
process similar to that of INEX SBS task. Another inter-
esting extension of our work would be using the learning
to rank techniques to automatically adjust the settings of
re-ranking parameters.

9. ACKNOWLEDGMENT
This work was supported by the French program Investisse-
ments d’Avenir FSN and the French Région PACA under
the projects InterTextes and Agoraweb.

10. REFERENCES
[1] M. Abolhassani and N. Fuhr. Applying the divergence

from randomness approach for content-only search in
XML documents. pages 409–419, 2004.

[2] G. Amati and C. J. Van Rijsbergen. Probabilistic
models of information retrieval based on measuring
the divergence from randomness. ACM Trans. Inf.
Syst., 20(4):357–389, Oct. 2002.

[3] G. Amati and C. J. van Rijsbergen. Probabilistic
models of information retrieval based on measuring
the divergence from randomness. ACM Trans. Inf.
Syst., 20(4):357–389, October 2002.

[4] T. Beckers, N. Fuhr, N. Pharo, R. Nordlie, and K. N.
Fachry. Overview and results of the INEX 2009
interactive track. In Research and Advanced
Technology for Digital Libraries, 14th European
Conference, ECDL 2010, Glasgow, UK, September
6-10, 2010. Proceedings, pages 409–412, 2010.

[5] N. J. Belkin, P. B. Kantor, E. A. Fox, and J. A. Shaw.
Combining the evidence of multiple query
representations for information retrieval. Inf. Process.
Manage., 31(3):431–448, 1995.

[6] C. Benkoussas, H. Hamdan, S. Albitar, A. Ollagnier,
and P. Bellot. Collaborative filtering for book
recommandation. In Working Notes for CLEF 2014

28

Conference, Sheffield, UK, September 15-18, 2014.,
pages 501–507, 2014.

[7] L. Bonnefoy, R. Deveaud, and P. Bellot. Do social
information help book search? In P. Forner,
J. Karlgren, and C. Womser-Hacker, editors, CLEF
(Online Working Notes/Labs/Workshop), 2012.

[8] H. Bouchard and J.-Y. Nie. ModÃĺles de langue

appliquÃl’s Ãă la recherche d’information contextuelle.
In CORIA, pages 213–224. UniversitÃl’ de Lyon, 2006.

[9] W. B. Croft. Organizing and searching large files of
document descriptions. PhD thesis, Cambridge
University, 1978.

[10] R. GuillÃl’n. Gir with language modeling and dfr
using terrier. In C. Peters, T. Deselaers, N. Ferro,
J. Gonzalo, G. Jones, M. Kurimo, T. Mandl,
A. PeÃśas, and V. Petras, editors, Evaluating Systems
for Multilingual and Multimodal Information Access,
volume 5706 of Lecture Notes in Computer Science,
pages 822–829. Springer Berlin Heidelberg, 2009.

[11] K. Järvelin and J. Kekäläinen. Ir evaluation methods
for retrieving highly relevant documents. In
E. Yannakoudakis, N. Belkin, P. Ingwersen, and M.-K.
Leong, editors, Proceedings of the 23rd Annual
International ACM SIGIR Conference on Research
and Development in Information Retrieval (SIGIR
2000), pages 41–48, New York, NY, USA, 2000. ACM.

[12] Y.-M. Kim, P. Bellot, E. Faath, and M. Dacos.
Automatic annotation of bibliographical references in
digital humanities books, articles and blogs. In
G. Kazai, C. Eickhoff, and P. Brusilovsky, editors,
BooksOnline, pages 41–48. ACM, 2011.

[13] M. Koolen, T. Bogers, J. Kamps, G. Kazai, and
M. Preminger. Overview of the INEX 2014 social book
search track. In Working Notes for CLEF 2014
Conference, Sheffield, UK, September 15-18, 2014.,
pages 462–479, 2014.

[14] O. Kurland and L. Lee. PageRank without hyperlinks:
Structural re-ranking using links induced by language
models. In Proceedings of SIGIR, pages 306–313, 2005.

[15] J. H. Lee. Combining multiple evidence from different
properties of weighting schemes. In Proceedings of the
18th Annual International ACM SIGIR Conference on
Research and Development in Information Retrieval,
SIGIR ’95, pages 180–188, New York, NY, USA, 1995.
ACM.

[16] J. Lin. Pagerank without hyperlinks: Reranking with
pubmed related article networks for biomedical text
retrieval. BMC Bioinformatics, 9(1), 2008.

[17] J. Lin. Pagerank without hyperlinks: Reranking with
pubmed related article networks for biomedical text
retrieval. BMC Bioinformatics, 9(1), 2008.

[18] D. Metzler and W. B. Croft. Combining the language
model and inference network approaches to retrieval.
Inf. Process. Manage., 40(5):735–750, 2004.

[19] D. Metzler and W. B. Croft. A markov random field
model for term dependencies. In Proceedings of the
28th Annual International ACM SIGIR Conference on
Research and Development in Information Retrieval,
SIGIR ’05, pages 472–479, New York, NY, USA, 2005.
ACM.

[20] D. Metzler and W. B. Croft. A markov random field

model for term dependencies. In R. A. Baeza-Yates,
N. Ziviani, G. Marchionini, A. Moffat, and J. Tait,
editors, SIGIR, pages 472–479. ACM, 2005.

[21] I. Ounis, G. Amati, V. Plachouras, B. He,
C. Macdonald, and C. Lioma. Terrier: A High
Performance and Scalable Information Retrieval
Platform. In Proceedings of ACM SIGIR’06 Workshop
on Open Source Information Retrieval (OSIR 2006),
2006.

[22] I. Ounis, G. Amati, P. V., B. He, C. Macdonald, and
Johnson. Terrier Information Retrieval Platform. In
Proceedings of the 27th European Conference on IR
Research (ECIR 2005), volume 3408 of Lecture Notes
in Computer Science, pages 517–519. Springer, 2005.

[23] I. Ounis, C. Lioma, C. Macdonald, and V. Plachouras.
Research directions in terrier: a search engine for
advanced retrieval on the web. Novatica/UPGRADE
Special Issue on Web Information Access, 2007.

[24] L. Page, S. Brin, R. Motwani, and T. Winograd. The
pagerank citation ranking: Bringing order to the web.
In Proceedings of the 7th International World Wide
Web Conference, pages 161–172, Brisbane, Australia,
1998.

[25] L. Page, S. Brin, R. Motwani, and T. Winograd. The
pagerank citation ranking: Bringing order to the web.
Technical Report 1999-66, Stanford InfoLab,
November 1999. Previous number =
SIDL-WP-1999-0120.

[26] V. Plachouras, B. He, and I. Ounis. University of
glasgow at trec 2004: Experiments in web, robust, and
terabyte tracks with terrier. In E. M. Voorhees and
L. P. Buckland, editors, TREC, volume Special
Publication 500-261. National Institute of Standards
and Technology (NIST), 2004.

[27] J. M. Ponte and W. B. Croft. A language modeling
approach to information retrieval. In Proc. SIGIR,
1998.

[28] S. E. Robertson, C. J. van Rijsbergen, and M. F.
Porter. Probabilistic models of indexing and searching.
In SIGIR, pages 35–56, 1980.

[29] F. Song and W. Croft. A general language model for
information retrieval. In Proceedings of the SIGIR
Conference on Information Retrieval, 1999.

[30] T. Tao, X. Wang, Q. Mei, and C. Zhai. Language
model information retrieval with document expansion.
In R. C. Moore, J. A. Bilmes, J. Chu-Carroll, and
M. Sanderson, editors, HLT-NAACL. The Association
for Computational Linguistics, 2006.

[31] C. Zhai. Statistical Language Models for Information
Retrieval. Synthesis Lectures on Human Language
Technologies. Morgan and Claypool Publishers, 2008.

29

The Continuous Cold Start Problem
in e-Commerce Recommender Systems

Lucas Bernardi1, Jaap Kamps2, Julia Kiseleva3, Melanie J.I. Mueller1
1Booking.com, Amsterdam, Netherlands. Email: {lucas.bernardi, melanie.mueller}@booking.com

2University of Amsterdam, Amsterdam, Netherlands. Email: kamps@uva.nl
3Eindhoven University of Technology, Eindhoven, Netherlands. Email: j.kiseleva@tue.nl

ABSTRACT
Many e-commerce websites use recommender systems to rec-
ommend items to users. When a user or item is new, the
system may fail because not enough information is available
on this user or item. Various solutions to this ‘cold-start
problem’ have been proposed in the literature. However,
many real-life e-commerce applications suffer from an aggra-
vated, recurring version of cold-start even for known users or
items, since many users visit the website rarely, change their
interests over time, or exhibit different personas. This paper
exposes the Continuous Cold Start (CoCoS) problem and its
consequences for content- and context-based recommenda-
tion from the viewpoint of typical e-commerce applications,
illustrated with examples from a major travel recommenda-
tion website, Booking.com.

General Terms
CoCoS: continuous cold start

Keywords
Recommender systems, continous cold-start problem, indus-
trial applications

1. INTRODUCTION
Many e-commerce websites are built around serving per-

sonalized recommendations to users. Amazon.com recom-
mends books, Booking.com recommends accommodations,
Netflix recommends movies, Reddit recommends news sto-
ries, etc. Two examples of recommendations of accomoda-
tions and destinations at Booking.com are shown in Fig-
ure 1. This widescale adoption of recommender systems on-
line, and the challenges faced by industrial applications, have
been a driving force in the development of recommender
systems. The research area has been expanding since the
first papers on collaborative filtering in the 1990s [12, 16].
Many different recommendation approaches have been de-
veloped since then, in particular content-based and hybrid

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
CBRecSys 2015, September 20, 2015, Vienna, Austria.
Copyright remains with the authors and/or original copyright holders.

approaches have supplemented the original collaborative fil-
tering techniques [1].

In the most basic formulation, the task of a recommender
system is to predict ratings for items that have not been
seen by the user. Using these predicted ratings, the system
decides which new items to recommend to the user. Recom-
mender systems base the prediction of unknown ratings on
past or current information about the users and items, such
as past user ratings, user profiles, item descriptions etc. If
this information is not available for new users or items, the
recommender system runs into the so-called cold-start prob-
lem: It does not know what to recommend until the new,
‘cold’, user or item has ‘warmed-up’, i.e. until enough in-
formation has been generated to produce recommendations.
For example, which accomodations should be recommended
to someone who visits Booking.com for the first time? If
the recommender system is based on which accomodations
users have clicked on in the past, the first recommendations
can only be made after the user has clicked on a couple of
accomodations on the website.

Several approaches have been proposed and successfully
applied to deal with the cold-start problem, such as utiliz-
ing baselines for cold users [8], combining collaborative fil-
tering with content-based recommenders in hybrid systems
[14], eliciting ratings from new users [11], or, more recently,
exploiting the social network of users [6, 15]. In particu-
lar, content-based approaches have been very successful in
dealing with cold-start problems in collaborative filtering
[3, 4, 13, 14].

These approaches deal explicitly with cold users or items,
and provide a ‘fix’ until enough information has been gath-
ered to apply the core recommender system. Thus, rather
than providing unified recommendations for cold and warm
users, they temporarily bridge the period during which the
user or item is ‘cold’ until it is ‘warm’. This can be very
successful in situations in which there are no warm users
[3], or in situations when the warm-up period is short and
warmed-up users or items stay warm.

However, in many practical e-commerce applications, users
or items remain cold for a long time, and can even ‘cool
down’ again, leading to a continuous cold-start (CoCoS). In
the example of Booking.com, many users visit and book in-
frequently since they go on holiday only once or twice a year,
leading to a prolonged cold-start and extreme sparsity of col-
laborative filtering matrices, see Fig. 2 (top). In addition,
even warm long-term users can cool down as they change
their needs over time, e.g. going from booking youth hos-
tels for road trips to resorts for family vacations. Such cool-

30

Customers who viewed Hotel Sacher Wien also viewed: Destinations related to Vienna:

Figure 1: Examples of recommender systems on Booking.com. User-to-user collaborative filtering (left):
recommend accomodations viewed by similar users to a user who just looked at ‘Hotel Sacher Wien’. Item-
to-item content-based recommendations (right): recommend destinations similar to a particular destination,
Vienna.

downs can happen more frequently and rapidly for users who
book accommodations for different travel purposes, e.g. for
leisure holidays and business trips as shown in Fig. 2 (bot-
tom). These continuous cold-start problems are rarely ad-
dressed in the literature despite their relevance in industrial
applications. Classical approaches to the cold-start problem
fail in the case of CoCoS, since they assume that users warm
up in a reasonable time and stay warm after that.

In the remainder of the paper, we will elaborate on how
CoCoS appears in e-commerce websites (Sec. 2), outline
some approaches to the CoCoS problem (Sec. 3), and end
with a discussion about possible future directions (Sec. 4).

2. CONTINUOUS COLD-START
Cold-start problems can in principle arise on both the user

side and the items side.

2.1 User Continuous Cold-Start
We first focus on the user side of CoCoS, which can arise

in the following cases:

Classical cold-start / sparsity: new or rare users

Volatility: user interest changes over time

Personas: user has different interests at different, possibly
close-by points in time

Identity: failure to match data from the same user

All cases arise commonly in e-commerce websites. New users
arrive frequently (classical cold-start), or may appear new
when they don’t log in or use a different device (failed iden-
tity match). Some websites are prone to very low levels
of user activity when items are purchased only rarely, such
as travel, cars etc., leading to sparsity problems for recom-
mender systems. Most users change their interests over time
(volatility), e.g. movie preferences evolve, or travel needs
change. On even shorter timescales, users have different
personas. Depending on their mood or their social context,
they might be interested in watching different movies. De-
pending on the weather or their travel purpose, they may
want to book different types of trips, see Figure 2 for exam-
ples from Booking.com.

These issues arise for collaborative filtering as well as
content-based or hybrid approaches, since both user ratings
or activities as well user profiles might be missing, become
outdated over time, or not be relevant to the current user
persona.

2.2 Item Continuous Cold-Start
In a symmetric way, these CoCoS problems also arise for

items:

Classical cold-start / sparsity: new or rare items

Volatility: item properties or value changes over time

Personas: item appeals to different types of users

Identity: failure to match data from the same item

New items appear frequently in e-commerce catalogues, as
shown in Figure 3 for accommodations at Booking.com. Some
items are interesting only to niche audiences, or sold only
rarely, for example books or movies on specialized topics.
Items can be volatile if their properties change over time,
such as s phone that becomes outdated once a newer model
is released, or a hotel that undergoes a renovation. In the
context of news or conversions, item volatility is also known
as topic drift [9]. Figure 3 on the right shows fluctuations of
the review score of a hotel at Booking.com. Some items have
different ‘personas’ in that they target several user groups,
such as a hotel that caters to business as well as leisure
travellers. When several sellers can add items to an e-com-
merce catalogue, or when several catalogues are combined,
correctly matching items can be problematic (identity prob-
lem).

3. ADDRESSING COLD-START
Many approaches have been proposed to deal with the

classical cold-start problem of new or rare users or items
[11]. However, they mostly fail to address the more difficult
CoCoS.

The most popular strategy to address the classic cold-start
problem is the hybrid approach where collaborative filtering
and content-based models are combined, see [14] as an exam-
ple. If one of the two method fails due to a new user or item,
the other method is used to ‘fill-in’. The most basic assump-
tion is that similar users will like similar items. Similarity
of users is measured by their purchase history when warm,
and by their user profile when cold. Conversely, similarities
between items is computed by the set of users that pur-
chased them when warm, and by their content when cold.
In CoCoS, users change their interests, so both collabora-
tive filtering and user-profile-based approaches can fail, since
looking at the past and similarities can be misleading. Items
also suffer from volatility, although to a lesser degree, which
makes the standard hybrid approach also problematic for

31

1 51 101 151 201 251 301 351
Day

A
ct

iv
ity

 L
ev

el

1 11 21 31 41 51 61 71 81 91
Day

A
ct

iv
ty

 L
ev

el

Leisure
booking

Business
booking

Figure 2: Continuously cold users at Booking.com. Activity levels of two randomly chosen users of Book-
ing.com over time. The top user exhibits only rare activity throughout a year, and the bottom user has two
different personas, making a leisure and a business booking, without much activity inbetween.

1 51 101 151 201 251 301 351
8.2

8.3

8.4

8.5

8.6

8.7

8.8

8.9

9

9.1

Day

A
vg

. U
se

r
R

at
in

g

Jun Jul Ago Sep Oct Nov Dec
250000

270000

290000

310000

330000

350000

370000

390000

410000

Available Properties
at Booking.com

(2013)

Month

Figure 3: Continuously cold items at Booking.com. Thousands of new accommodations are added to Book-
ing.com every month (left). The user ratings of a hotel can change continuously (right).

items. Hybrid approaches also ignore the issue of multiple
personas.

Although, to our knowledge, the continuous cold-start
problem as defined in this work has not been directly ad-
dressed in the literature, several approaches are promising.

Tang et al. [19] propose a context-aware recommender
system, implemented as a contextual multi-armed bandits
problem. Although the authors report extensive offline eval-
uation (log based and simulation based) with acceptable
CTR, no comparison is made from a cold-start problem
standpoint.

Sun et al. [18] explicitly attack the user volatility prob-
lem. They propose a dynamic extension of matrix factoriza-
tion where the user latent space is modeled by a state space
model fitted by a Kalman filter. Generative data present-
ing user preference transitions is used for evaluation. Im-
provements of RMSE when compared to timeSVD [10] are
reported. Consistent results are reported in [5], after offline

evaluation using real data.
Tavakol and Brefeld [20] propose a topic driven recom-

mender system. At the user session level, the user intent
is modeled as a topic distribution over all the possible item
attributes. As the user interacts with the system, the user
intent is predicted and recommendations are computed using
the corresponding topic distribution. The topic prediction
is solved by factored Markov decision processes. Evaluation
on an e-commerce data set shows improvements when com-
pared to collaborative filtering methods in terms of average
rank.

4. DISCUSSION
In this manuscript, we have described how CoCoS, the

continuous cold-start problem, is a common issue for e-com-
merce applications. Industrial recommender systems do not
only have to deal with ‘cold’ (new or rare) users and items,
but also with known users or items that repeatedly ‘cool

32

down’. Reasons for the recurring cool-downs include the
volatility in user interests or item values, different personas
depending on user context or item target audience, or iden-
tification problems due to logged-out users or items from
different catalogues. Despite the practical relevance of Co-
CoS, common literature approaches do not deal well with
this issue.

We consider several directions as particularly promising
to deal with CoCoS. Traditional approaches to solve cold-
start problems try to employ collaborative filtering based on
pseudo or inferred clicks. Recommendations based on so-
cial networks are an interesting new development that can
supplement missing information based on the social graph.
For example, recommendations based on Facebook likes are
proposed in [15]. Beyond the difficulty to get access to social
data, the application to user volatility or multiple personas
remains challenging. Online user intent prediction can be
used to estimate a user’s current profile on the fly. When
a user visits the website, his browsing behavior is used to
estimate his intent after a few clicks, which are then used
to compute recommendations accordingly. However, this
still delays recommendations until enough clicks have oc-
curred, which can be problematic if quick recommendations
are needed. For example, in last-minute bookings, users
may be pressed to book an accommodation quickly, leading
to very short sessions.

More promising approaches employ content based or con-
textual recommendation. Content based recommendations
can be very effective based on very little signal: just an
initial query or single interaction can be exploited to find
an initial item or set of items and exploit relations between
items to make effective recommendations. In particular
context aware recommendations are one of the most promis-
ing strategies when it comes to solving CoCoS. In this setup,
recommendations are computed based on the current con-
text of the current visitor and the behaviour of other users
in similar contexts [see 2, 7, 17] for examples. Context is
defined as a set of features such as location, time, weather,
device, etc. Often this data is readily available in most com-
mercial implementations of recommender systems. This ap-
proach naturally addresses sparsity by clustering users into
contexts. Since context is determined in a per-action ba-
sis, user volatility and multiple personas can be addressed
robustly. On the other hand, context aware recommenders
cannot address the item side of the problem and they might
also suffer from cold-start problems in the case of a cold
context that has never seen before by the system.

References
[1] G. Adomavicius and A. Tuzhilin. Toward the next gen-

eration of recommender systems: a survey of the state-
of-the-art and possible extensions. IEEE Transactions
on Knowledge and Data Engineering, 17:734–749, 2005.

[2] G. Adomavicius and A. Tuzhilin. Context-aware recom-
mender systems. In Recommender Systems Handbook,
pages 217–253, 2011.

[3] M. Aharon, N. Aizenberg, E. Bortnikov, R. Lempel,
R. Adadi, T. Benyamini, L. Levin, R. Roth, and O. Ser-
faty. OFF-set: One-pass factorization of feature sets for
online recommendation in persistent cold start settings.
In Proceedings of the 7th ACM Conference on Recom-
mender Systems, pages 375–378, 2013.

[4] S. Bykau, F. Koutrika, and Y. Velegrakis. Coping with
the persistent cold-start problem. In Personalized Ac-

cess, Profile Management, and Context Awareness in
Databases, 2013.

[5] F. C. T. Chua, R. J. Oentaryo, and E.-P. Lim. Modeling
temporal adoptions using dynamic matrix factorization.
In IEEE 13th International Conference on Data Mining
(ICDM), pages 91–100, 2013.

[6] I. Guy, N. Zwerdling, D. Carmel, I. Ronen, E. Uziel,
S. Yogev, and S. Ofek-Koifman. Personalized recom-
mendation of social software items based on social rela-
tions. In Proceedings of the Third ACM Conference on
Recommender Systems, pages 53–60, 2009.

[7] A. Hawalah and M. Fasli. Utilizing contextual onto-
logical user profiles for personalized recommendations.
Expert Syst. Appl. (ESWA), 41:4777–4797, 2014.

[8] D. Kluver and J. A. Konstan. Evaluating recommender
behavior for new users. In Proceedings of the 8th ACM
Conference on Recommender Systems, pages 121–128,
2014.

[9] D. Knights, M. Mozer, and N. Nicolov. Detecting topic
drift with compound topic models. In Proceedings of the
Third International ICWSM Conference, pages 242–
245, 2009.

[10] Y. Koren. Collaborative filtering with temporal dynam-
ics. Communications of the ACM, 53:89–97, 2010.

[11] A. M. Rashid, I. Albert, D. Cosley, S. K. Lam, S. M.
McNee, J. A. Konstan, and J. Riedl. Getting to know
you: Learning new user preferences in recommender
systems. In Proceedings of the 7th International Con-
ference on Intelligent User Interfaces, pages 127–134,
2002.

[12] P. Resnick, N. Iacovou, M. Suchak, P. Bergstrom, and
J. Riedl. Grouplens: An open architecture for collabo-
rative filtering of netnews. In Proceedings of the 1994
ACM Conference on Computer Supported Cooperative
Work, pages 175–186, 1994.

[13] M. Saveski and A. Mantrach. Item cold-start rec-
ommendations: Learning local collective embeddings.
In Proceedings of the 8th ACM Conference on Recom-
mender Systems, pages 89–96, 2014.

[14] A. I. Schein, A. Popescul, L. H. Ungar, and D. M. Pen-
nock. Methods and metrics for cold-start recommenda-
tions. In Proceedings of the 25th annual international
ACM SIGIR conference on Research and development
in information retrieval, pages 253–260, 2002.

[15] S. Sedhain, S. Sanner, D. Braziunas, L. Xie, and
J. Christensen. Social collaborative filtering for cold-
start recommendations. In Proceedings of the 8th ACM
Conference on Recommender systems, pages 345–348,
2014.

[16] U. Shardanand and P. Maes. Social information filter-
ing: Algorithms for automating ’word of mouth’. In
Proceedings of the SIGCHI Conference on Human Fac-
tors in Computing Systems, pages 210–217, 1995.

[17] Y. Shi, A. Karatzoglou, L. Baltrunas, M. Larson, and
A. Hanjalic. Cars2: Learning context-aware representa-
tions for context-aware recommendations. In Proceeding
of CIKM, pages 291–300, 2014.

[18] J. Z. Sun, K. R. Varshney, and K. Subbian. Dynamic
matrix factorization: A state space approach. In IEEE
International Conference on Acoustics, Speech and Sig-
nal Processing (ICASSP), pages 1897–1900, 2012.

[19] L. Tang, Y. Jiang, L. Li, and T. Li. Ensemble contex-
tual bandits for personalized recommendation. In Pro-
ceedings of the 8th ACM Conference on Recommender
Systems, pages 73–80, 2014.

[20] M. Tavakol and U. Brefeld. Factored mdps for detect-
ing topics of user sessions. In Proceedings of the 8th
ACM Conference on Recommender Systems, pages 33–
40, 2014.

33

Metadata Embeddings for User and Item Cold-start
Recommendations

Maciej Kula
Lyst

maciej.kula@lyst.com

ABSTRACT
I present a hybrid matrix factorisation model representing
users and items as linear combinations of their content fea-
tures’ latent factors. The model outperforms both collabo-
rative and content-based models in cold-start or sparse in-
teraction data scenarios (using both user and item meta-
data), and performs at least as well as a pure collaborative
matrix factorisation model where interaction data is abun-
dant. Additionally, feature embeddings produced by the
model encode semantic information in a way reminiscent of
word embedding approaches, making them useful for a range
of related tasks such as tag recommendations.

Categories and Subject Descriptors
H.3.3 [Information Storage and Retrieval]: Information
Search and Retrieval—Information Filtering

Keywords
Recommender Systems, Cold-start, Matrix Factorization

1. INTRODUCTION
Building recommender systems that perform well in cold-

start scenarios (where little data is available on new users
and items) remains a challenge. The standard matrix fac-
torisation (MF) model performs poorly in that setting: it is
difficult to effectively estimate user and item latent factors
when collaborative interaction data is sparse.

Content-based (CB) methods address this by representing
items through their metadata [10]. As these are known in
advance, recommendations can be computed even for new
items for which no collaborative data has been gathered.
Unfortunately, no transfer learning occurs in CB models:
models for each user are estimated in isolation and do not
benefit from data on other users. Consequently, CB models
perform worse than MF models where collaborative infor-
mation is available and require a large amount of data on
each user, rendering them unsuitable for user cold-start [1].

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
CBRecSys 2015, September 20, 2015, Vienna, Austria.
Copyright remains with the authors and/or original copyright holders.

At Lyst, solving these problems is crucial. We are a fash-
ion company aiming to provide our users with a convenient
and engaging way to browse—and shop—for fashion online.
To that end we maintain a very large product catalogue:
at the time of writing, we aggregate over 8 million fashion
items from across the web, adding tens of thousands of new
products every day.

Three factors conspire to make recommendations chal-
lenging for us. Firstly, our system contains a very large
number of items. This makes our data very sparse. Sec-
ondly, we deal in fashion: often, the most relevant items
are those from newly released collections, allowing us only
a short window to gather data and provide effective recom-
mendations. Finally, a large proportion of our users are first-
time visitors: we would like to present them with compelling
recommendations even with little data. This combination of
user and item cold-start makes both pure collaborative and
content-based methods unsuitable for us.

To solve this problem, I use a hybrid content-collaborative
model, called LightFM due to its resemblance to factorisa-
tion machines (see Section 3). In LightFM, like in a col-
laborative filtering model, users and items are represented
as latent vectors (embeddings). However, just as in a CB
model, these are entirely defined by functions (in this case,
linear combinations) of embeddings of the content features
that describe each product or user. For example, if the movie
‘Wizard of Oz’ is described by the following features: ‘mu-
sical fantasy’, ‘Judy Garland’, and ‘Wizard of Oz’, then its
latent representation will be given by the sum of these fea-
tures’ latent representations.

In doing so, LightFM unites the advantages of content-
based and collaborative recommenders. In this paper, I
formalise the model and present empirical results on two
datasets, showing that:

1. In both cold-start and low density scenarios, LightFM
performs at least as well as pure content-based models,
substantially outperforming them when either (1) col-
laborative information is available in the training set
or (2) user features are included in the model.

2. When collaborative data is abundant (warm-start, dense
user-item matrix), LightFM performs at least as well
as the MF model.

3. Embeddings produced by LightFM encode important
semantic information about features, and can be used
for related recommendation tasks such as tag recom-
mendations.

34

This has several benefits for real-world recommender sys-
tems. Because LightFM works well on both dense and sparse
data, it obviates the need for building and maintaining mul-
tiple specialised machine learning models for each setting.
Additionally, as it can use both user and item metadata, it
has the quality of being applicable in both item and user
cold-start scenarios.

To allow others to reproduce the results in this paper, I
have released a Python implementation of LightFM1, and
made the source code for this paper and all the experiments
available on Github2.

2. LIGHTFM

2.1 Motivation
The structure of the LightFM model is motivated by two

considerations.

1. The model must be able to learn user and item repre-
sentations from interaction data: if items described as
‘ball gown and ‘pencil skirt’ are consistently all liked
by users, the model must learn that ball gowns are
similar to pencil skirts.

2. The model must be able to compute recommendations
for new items and users.

I fulfil the first requirement by using the latent representa-
tion approach. If ball gowns and pencil skirts are both liked
by the same users, their embeddings will be close together;
if ball gowns and biker jackets are never liked by the same
users, their embeddings will be far apart.

Such representations allow transfer learning to occur. If
the representations for ball gowns and pencil skirts are simi-
lar, we can confidently recommend ball gowns to a new user
who has so far only interacted with pencil skirts.

This is over and above what pure CB models using di-
mensionality reduction techniques (such as latent semantic
indexing, LSI) can achieve, as these only encode information
given by feature co-occurrence rather than user actions. For
example, suppose that all users who look at items described
as aviators also look at items described as wayfarers, but
the two features never describe the same item. In this case,
the LSI vector for wayfarers will not be similar to the one
for aviators even though collaborative information suggests
it should be.

I fulfil the second requirement by representing items and
users as linear combinations of their content features. Be-
cause content features are known the moment a user or item
enters the system, this allows recommendations to be made
straight away. The resulting structure is also easy to un-
derstand. The representation for denim jacket is simply a
sum of the representation of denim and the representation
of jacket; the representation for a female user from the US
is a sum of the representations of US and female users.

2.2 The Model
To describe the model formally, let U be the set of users,

I be the set of items, FU be the set of user features, and F I

the set of item features. Each user interacts with a number
of items, either in a favourable way (a positive interaction),

1https://github.com/lyst/lightfm/
2https://github.com/lyst/lightfm-paper/

or in an unfavourable way (a negative interaction). The set
of all user-item interaction pairs (u, i) ∈ U × I is the union
of both positive S+ and negative interactions S−.

Users and items are fully described by their features. Each
user u is described by a set of features fu ⊂ FU . The same
holds for each item i whose features are given by fi ⊂ F I .
The features are known in advance and represent user and
item metadata.

The model is parameterised in terms of d-dimensional user
and item feature embeddings eU

f and eI
f for each feature f .

Each feature is also described by a scalar bias term (bUf for

user and bIf for item features).
The latent representation of user u is given by the sum of

its features’ latent vectors:

qu =
∑

j∈fu
eU
j

The same holds for item i:

pi =
∑

j∈fi

eI
j

The bias term for user u is given by the sum of the features’
biases:

bu =
∑

j∈fu
bUj

The same holds for item i:

bi =
∑

j∈fi

bIj

The model’s prediction for user u and item i is then given
by the dot product of user and item representations, ad-
justed by user and item feature biases:

r̂ui = f (qu · pi + bu + bi) (1)

There is a number of functions suitable for f(·). An identity
function would work well for predicting ratings; in this pa-
per, I am interested in predicting binary data, and so after
Rendle et al. [16] I choose the sigmoid function

f(x) =
1

1 + exp(−x)
.

The optimisation objective for the model consists in max-
imising the likelihood of the data conditional on the param-
eters. The likelihood is given by

L
(
eU , eI , bU , bI

)
=

∏

(u,i)∈S+

r̂ui ×
∏

(u,i)∈S−
(1− r̂ui) (2)

I train the model using asynchronous stochastic gradient
descent [14]. I use four training threads for experiments
performed in this paper. The per-parameter learning rate
schedule is given by Adagrad [6].

2.3 Relationship to Other Models
The relationship between LightFM and the collaborative

MF model is governed by the structure of the user and item
feature sets. If the feature sets consist solely of indicator
variables for each user and item, LightFM reduces to the
standard MF model. If the feature sets also contain meta-
data features shared by more than one item or user, LightFM
extends the MF model by letting the feature latent factors
explain part of the structure of user interactions.

This is important on three counts.

35

1. In most applications there will be fewer metadata fea-
tures than there are users or items, either because
an ontology with a fixed type/category structure is
used, or because a fixed-size dictionary of most com-
mon terms is maintained when using raw textual fea-
tures. This means that fewer parameters need to be es-
timated from limited training data, reducing the risk of
overfitting and improving generalisation performance.

2. Latent vectors for indicator variables cannot be esti-
mated for new, cold-start users or items. Representing
these as combinations of metadata features that can
be estimated from the training set makes it possible to
make cold-start predictions.

3. If only indicator features are present, LightFM should
perform on par with the standard MF model.

When only metadata features and no indicator variables
are present, the model in general does not reduce to a pure
content-based system. LightFM estimates feature embed-
dings by factorising the collaborative interaction matrix; this
is unlike content-based systems which (when dimensionality
reduction is used) factorise pure content co-occurrence ma-
trices.

One special case where LightFM does reduce to a pure
CB model is where each user is described by an indicator
variable and has interacted only with one item. In that
setting, the user vector is equivalent to a document vector in
the LSI formulation, and only features which occur together
in product descriptions will have similar embeddings.

The fact that LightFM contains both the pure CB model
at the sparse data end of the spectrum and the MF model at
the dense end suggests that it should adapt well to datasets
of varying sparsity. In fact, empirical results show that it
performs at least as well as the appropriate specialised model
in each scenario.

3. RELATED WORK
There are a number of related hybrid models attempting

to solve the cold-start problem by jointly modelling content
and collaborative data.

Soboroff et al. [21] represent users as linear combinations
of the feature vectors of items they have interacted with.
They then perform LSI on the resulting item-feature ma-
trix to obtain latent user profiles. Representations of new
items are obtained by projecting them onto the latent fea-
ture space. The advantage of the model, relative to pure
CB approaches, consists in using collaborative information
encoded in the user-feature matrix. However, it models user
preferences as being defined over individual features them-
selves instead of over items (sets of features). This is unlike
LightFM, where a feature’s effect in predicting an interac-
tion is always taken in the context of all other features char-
acterising a given user-item pair.

Saveski et al. [18] perform joint factorisation of the user-
item and item-feature matrices by using the same item latent
feature matrix in both decompositions; the parameters are
optimised by minimising a weighted sum of both matrices’
reproduction loss functions. A weight hyperparameter gov-
erns the relative importance of accuracy in decomposing the
collaborative and content matrices. A similar approach is
used by McAuley et al. [11] for jointly modelling ratings
and product reviews. Here, LightFM has the advantage of

simplicity as its single optimisation objective is to factorise
the user-item matrix.

Shmueli et al. [20] represent items as linear combinations
of their features’ latent factors to recommend news articles;
like LightFM, they use a single-objective approach and min-
imise the user-item matrix reproduction loss. They show
their approach to be successful in a modified cold-start set-
ting, where both metadata and data on other users who have
commented on a given article is available. However, their ap-
proach does not extend to modelling user features and does
not provide evidence on model performance in warm-start
scenario.

LightFM fits into the hybrid model tradition by jointly
factorising the user-item, item-feature, and user-feature ma-
trices. From a theory standpoint, it can be construed as a
special case of Factorisation Machines [15].

FMs provide an efficient method of estimating variable in-
teraction terms in linear models under sparsity. Each vari-
able is represented by a k-dimensional latent factor; the in-
teraction between variable i and j is then given by the dot
product of their latent factors. This has the advantage of
reducing the number of parameters to be estimated.

LightFM further restricts the interaction structure by only
estimating the interactions between user and item features.
This aids the interpretability of resulting feature embed-
dings.

4. DATASETS
I evaluate LightFM’s performance on two datasets. The

datasets span the range of dense interaction data, where
MF models can be expected to perform well (MovieLens),
and sparse data, where CB models tend to perform better
(CrossValidated). Both datasets are freely available.

4.1 MovieLens
The first experiment uses the well-known MovieLens 10M

dataset3, combined with the Tag Genome tag set [22].
The dataset consists of approximately 10 million movie

ratings, submitted by 71, 567 users on 10, 681 movies. All
movies are described by their genres and a list of tags from
the Tag Genome. Each movie-tag pair is accompanied by a
relevance score (between 0 and 1), denoting how accurately
a given tag describes the movie.

To binarise the problem, I treat all ratings below 4.0 (out
of a 1 to 5 scale) as negative; all ratings equal to or above 4.0
are positive. I also filter out all ratings that fall below the
0.8 relevance threshold to retain only highly relevant tags.

The final dataset contains 69, 878 users, 10, 681 items,
9, 996, 948 interactions, and 1030 unique tags.

4.2 CrossValidated
The second dataset consists of questions and answers posted

on CrossValidated4, a part of the larger network of Stack-
Exchange collaborative Q&A sites that focuses on statistics
and machine learning. The dataset5 consists of 5953 users,
44, 200 questions, and 188, 865 answers and comments. Each
question is accompanied by one or more of 1032 unique tags
(such as ‘regression’ or ‘hypothesis-testing’). Additionally,

3http://grouplens.org/datasets/movielens/
4http://stats.stackexchange.com
5https://archive.org/details/stackexchange

36

user metadata is available in the form of ‘About Me’ sections
on users’ profiles.

The recommendation goal is to match users with questions
they can answer. A user answering a question is taken as
an implicit positive signal; all questions that a user has not
answered are treated as implicit negative signals. For the
training and test sets, I construct 3 negative training pairs
for each positive user-question pair by randomly sampling
from all questions that a given user has not answered.

To keep the model simple, I focus on a user’s willingness
to answer a question rather than their ability, and forego
modelling user expertise [17].

5. EXPERIMENTAL SETUP
For each dataset, I perform two experiments. The first

simulates a warm-start setting: 20% of all interaction pairs
are randomly assigned to the test set, but all items and
users are represented in the training set. The second is an
item cold-start scenario: all interactions pertaining to 20%
of items are removed from the training set and added to
the test set. This approximates a setting where the recom-
mender is required to make recommendations from a pool of
items for which no collaborative information has been gath-
ered, and only content metadata (tags) are available.

I measure model accuracy using the mean receiver operat-
ing characteristics area under the curve (ROC AUC) metric.
For an individual user, AUC corresponds to the probability
that a randomly chosen positive item will be ranked higher
than a randomly chosen negative item. A high AUC score
is equivalent to low rank-inversion probability, where the
recommender mistakenly ranks an unattractive item higher
than an attractive item. I compute this metric for all users
in the test set and average it for the final score.

I compute the AUC metric by repeatedly randomly split-
ting the dataset into a 80% training set and a 20% test set.
The final score is given averaging across 10 repetitions.

I test the following models:

1. MF: a conventional matrix factorisation model with
user and item biases and a sigmoid link function [8].

2. LSI-LR: a content-based model. To estimate it, I
first derive latent topics from the item-feature matrix
through latent semantic indexing and represent items
as linear combinations of latent topics. I then fit a
separate logistic regression (LR) model for each user
in the topic mixture space. Unlike the LightFM model,
which uses collaborative data to produce its latent rep-
resentation, LSI-LR is purely based on factorising the
content matrix. It should therefore be helpful in high-
lighting the benefit of using collaborative information
for constructing feature embeddings.

3. LSI-UP: a hybrid model that represents user profiles
(UP) as linear combinations of items’ content vectors,
then applies LSI to the resulting matrix to obtain la-
tent user and item representations ([21], see Section
3). I estimate this model by first constructing a user-
feature matrix: each row represents a user and is given
by the sum of content feature vectors representing the
items that user positively interacted with. I then ap-
ply truncated SVD to the normalised matrix to obtain
user and feature latent vectors; item latent vectors are

Table 1: Results

CrossValidated MovieLens

Warm Cold Warm Cold

LSI-LR 0.662 0.660 0.686 0.690
LSI-UP 0.636 0.637 0.687 0.681
MF 0.541 0.508 0.762 0.500
LightFM (tags) 0.675 0.675 0.744 0.707
LightFM (tags + ids) 0.682 0.674 0.763 0.716
LightFM (tags + about) 0.695 0.696

obtained through projecting them onto the latent fea-
ture space. The recommendations score for a user-item
pair is then the inner product of their latent represen-
tations.

4. LightFM (tags): the LightFM model using only tag
features.

5. LightFM (tags + ids): the LightFM model using
both tag and item indicator features.

6. LightFM (tags + about): the LightFM model using
both item and user features. User features are avail-
able only for the CrossValidated dataset. I construct
them by converting the ‘About Me’ sections of users’
profiles to a bag-of-words representation. I first strip
them of all HTML tags and non-alphabetical charac-
ters, then convert the resulting string to lowercase and
tokenise on spaces.

In both LightFM (tags) and LightFM (tags + ids) users are
described only by indicator features.

I train the LightFM models using stochastic gradient de-
scent with an initial learning rate of 0.05. The latent dimen-
sionality of the models is set to 64 for all models and exper-
iments. This setting is intended to reflect the balance be-
tween model accuracy and the computational cost of larger
vectors in production systems (additional results on model
sensitivity to this parameter are presented in Section 6.2).
I regularise the model through an early-stopping criterion:
the training is stopped when the model’s performance on
the test set stops improving.

6. EXPERIMENTAL RESULTS

6.1 Recommendation accuracy
Experimental results are summarised in Table 1. LightFM

performs very well, outperforming or matching the specialised
model for each scenario.

In the warm-start, low-sparsity case (warm-start Movie-
Lens), LightFM outperforms MF slightly when using both
tag and item indicator features. This suggest that using
metadata features may be valuable even when abundant in-
teraction data is present.

Notably, LightFM (tags) almost matches MF performance
despite using only metadata features. The LSI-LR and LSI-
UP models using the same information fare much worse.
This demonstrates that (1) it is crucial to use collaborative
information when estimating content feature embeddings,
and (2) LightFM can capture that information much more
accurately than other hybrid models such as LSI-UP.

37

In the warm-start, high-sparsity case (warm-start Cross-
Validated), MF performs very poorly. Because user interac-
tion data is sparse (the CrossValidated user-item matrix is
99.95% sparse vs only 99% for the MovieLens dataset), MF is
unable to learn good latent representations. Content-based
models such as LSI-LR perform much better.

LightFM variants provide the best performance. LightFM
(tags + about) is by far the best model, showing the added
advantage of LightFM’s ability to integrate user metadata
embeddings into the recommendation model. This is likely
due to improved prediction performance for users with little
data in the training set.

Results for the cold-start cases are broadly similar. On
the CrossValidated dataset, all variants of LightFM outper-
form other models; LightFM (tags + about) again provides
the best performance. Interestingly, LightFM (tags + indi-
cators) outperforms LightFM (tags) slightly on the Movie-
Lens dataset, even though no embeddings can be estimated
for movies in the test set. This suggests that using both
metadata and per-movie features allows the model to esti-
mate better embeddings for both, much like the use of user
and item bias terms allows better latent factors to be com-
puted. Unsurprisingly, MF performs no better than random
in the cold-start case.

In all scenarios the LSI-UP model performs no better than
the LSI-LR model, despite its attempt to incorporate col-
laborative data. On the CrossValidated dataset it performs
strictly worse. This might be because its latent representa-
tions are estimated on less data than in LSI-LR: as there are
fewer users than items in the dataset, there are fewer rows
in the user-feature matrix than in the item-feature matrix.

The results confirm that LightFM encompasses both the
MF and the LSI-LR model as special cases, performing bet-
ter than the LSI-LR model in the sparse-data scenario and
better than the MF model in the dense-data case. This
means not only that a single model can be maintained in
either settings, but also that the model will continue to
perform well even when the sparsity structure of that data
changes.

Good performance of LightFM (tags) in both datasets
is predicated on the availability of high-quality metadata.
Nevertheless, it is often possible to obtain good quality meta-
data from item descriptions (genres, actor lists and so on),
expert or community tagging (Pandora [23], StackOverflow),
or computer vision systems where image or audio data is
available (we use image-based convolutional neural networks
for product tagging). In fact, the feature embeddings pro-
duced by LightFM can themselves be used to assist the tag-
ging process by suggesting related tags.

6.2 Parameter Sensitivity
Figure 1 plots the accuracy of LightFM, LSI-LR, and LSI-

UP against values of the latent dimensionality hyperparam-
eter d in the cold-start scenario (averaged over 30 runs of
each algorithm). As d increases, each model is capable of
modelling more complex structures and achieves better per-
formance.

Interestingly, LightFM performs very well even with a
small number of dimensions. In both datasets LightFM
consistently outperforms other models, achieving high per-
formance with as few as 16 dimensions. On CrossValidated
data, it achieves the same performance as the LSI-LR model
for much smaller d: it matches the accuracy of the 512-

Table 2: Tag similarity

Query tag Similar tags

‘regression’ ‘least squares’, ‘multiple regression’, ‘re-
gression coefficients’, ‘multicollinearity’

‘MCMC’ ‘BUGS’, ‘Metropolis-Hastings’, ‘Beta-
Binomial’, ‘Gibbs’, ‘Bayesian’

‘survival’ ‘epidemiology’, ‘Cox model’, ‘Kaplan-
Meier’, ‘hazard’

‘art house’ ‘pretentious’, ‘boring’, ‘graphic novel’,
‘pointless’, ‘weird’

‘dystopia’ ‘post-apocalyptic’, ‘futuristic’, ‘artificial in-
telligence’

‘bond’ ‘007’, ‘secret service’, ‘nuclear bomb’, ‘spy-
ing’, ‘assassin’

dimensional LSI-LR model even when using fewer than 32
dimensions.

This is an important win for large-scale recommender sys-
tems, where the choice of d is governed by a trade-off be-
tween vector size and recommendation accuracy. Since smaller
vectors occupy less memory and use fewer computations dur-
ing query time, better representational power at small d al-
lows the system to achieve the same model performance at
a smaller computational cost.

6.3 Tag embeddings
Feature embeddings generated by the LightFM model cap-

ture important information about the semantic relationships
between different features. Table 2 gives some examples by
listing groups of tags similar (in the cosine similarity sense)
to a given query tag.

In this respect, LightFM is similar to recent word em-
bedding approaches like word2vec and GloVe [12, 13]. This
is perhaps unsurprising, given that word embedding tech-
niques are closely related to forms of matrix factorisation
[9]. Nevertheless, LightFM and word embeddings differ in
one important respect: whilst word2vec and GloVe embed-
dings are driven by textual corpus co-incidence statistics,
LightFM is based on user interaction data.

LightFM embeddings are useful for a number of recom-
mendation tasks.

1. Tag recommendation. Various applications use col-
laborative tagging as a way of generating richer meta-
data for use in search and recommender system [2, 7].
A tag recommender can enhance this process by either
automatically applying matching tags, or generating
suggested tags lists for approval by users. LightFM-
produced tag embeddings will work well for this task
without the need to build a separate specialised model
for tag recommendations.

2. Genre or category recommendation. Many do-
mains are characterised by an ontology of genres or
categories which play an important role in the presen-
tation of recommendations. For example, the Netflix
interface is organised in genre rows; for Lyst, fashion
designers, categories and subcategories are fundamen-
tal. The degree of similarity between the embeddings
of genres or categories provides a ready basis for genre
or category recommendations that respect the seman-
tic structure of the ontology.

38

Figure 1: Latent dimension sensitivity

4 8 16 32 64 128 256 512

d

0.58

0.60

0.62

0.64

0.66

0.68

0.70
R

O
C

A
U

C

LSI-LR
LSI-UP
LightFM (tags)
LightFM (tags + ids)
LightFM (tags + about)

(a) CrossValidated

4 8 16 32 64 128 256 512

d

0.67

0.68

0.69

0.70

0.71

0.72

0.73

R
O

C
A

U
C

(b) MovieLens

3. Recommendation justification. Rich information
encoded in feature embeddings can help provide expla-
nations for recommendations made by the system. For
example, we might recommend a ball gown to a user
who likes pencil skirts, and justify it by the two fea-
tures’ similarity as revealed by the distance between
their latent factors.

7. USAGE IN PRODUCTION SYSTEMS
The LightFM approach is motivated by our experience

at Lyst. We have deployed LightFM in production, and
successfully use it for a number of recommendation tasks. In
this section, I describe some of the engineering and algorithm
choices that make this possible.

7.1 Model training and fold-in
Thousands of new items and users appear on Lyst every

day. To cope with this, we train our LightFM model in
an online manner, continually updating the representations
of existing features and creating fresh representations for
features that we have never observed before.

We store model state, including feature embeddings and
accumulated squared gradient information in a database.
When new data on user interaction arrives, we restore the
model state and resume training, folding in any newly ob-
served features. Since our implementation uses per-parameter
diminishing learning rates (Adagrad), any updates of es-
tablished features will be incremental as the model adapts to
new data. For new features, a high learning rate is used to
allow useful embeddings to be learned as quickly as possible.

No re-training is necessary for folding in new products:
their representation can be immediately computed as the
sum of the representations of their features.

7.2 Feature engineering
Each of our products is described by a set of textual fea-

tures as well as structured metadata such as its type (dress,
shoes and so on) or designer. These are accompanied by
additional features coming from two sources.

Firstly, we employ a team of experienced fashion modera-
tors, helping us to derive more fine-grained features such as
clothing categories and subcategories (peplum dress, halter-
neck and so on).

Secondly, we use machine learning systems for automatic
feature detection. The most important of these is a set
of deep convolutional neural networks deriving feature tags
from product image data.

7.3 Approximate nearest neighbour searches
The biggest application of LightFM-derived item repre-

sentations are related product recommendations: given a
product, we would like to recommend other highly relevant
products. To do this efficiently across 8 million products, we
use a combination of approximate (for on-demand recom-
mendations) and exact (for near-line computation) nearest
neighbour search.

For approximate nearest neighbour (ANN) queries, we use
Random Projection (RP) trees [4, 5]. RP trees are a vari-
ant of random-projection [3] based locality sensitive hashing
(LSH).

In LSH, k-bit hash codes for each point x are generated
by drawing random hyperplanes v, and then setting the k-th
bit of the hash code to 1 if x · v ≥ 0 and 0 otherwise. The
approximate nearest neighbours of x are then other points
that share the same hash code (or whose hash codes are
within some small Hamming distance of each other).

While extremely fast, LSH has the undesirable property
of sometimes producing very highly unbalanced distribution
of points across all hash codes: if points are densely con-
centrated, many codes of the tree will apply to no products

39

while some will describe a very large number of points. This
is unacceptable when building a production system, as it
will lead to many queries being very slow.

RP trees provide much better guarantees about the size
of leaf nodes: at each internal node, points are split based
on the median distance to the chosen random hyperplane.
This guarantees that at every split approximately half the
points will be allocated to each leaf, making the distribution
of points (and query performance) much more predictable.

8. CONCLUSIONS AND FUTURE WORK
In this paper, I have presented an effective hybrid recom-

mender model dubbed LightFM. I have shown the following:

1. LightFM performs at least as well as a specialised
model across a wide range of collaborative data spar-
sity scenarios. It outperforms existing content-based
and hybrid models in cold-start scenarios where col-
laborative data is abundant or where user metadata is
available.

2. It produces high-quality content feature embeddings
that capture important semantic information about
the problem domain, and can be used for related tasks
such as tag recommendations.

Both properties make LightFM an attractive model, appli-
cable both in cold- and warm-start settings. Nevertheless,
I see two promising directions in extending the current ap-
proach.

Firstly, the model can be easily extended to use more so-
phisticated training methodologies. For example, an optimi-
sation scheme using Weighted Approximate-Rank Pairwise
loss [24] or directly optimising mean reciprocal rank could
be used [19].

Secondly, there is no easy way of incorporating visual or
audio features in the present formulation of LightFM. At
Lyst, we use a two-step process to address this: we first
use convolutional neural networks (CNNs) on image data
to generate binary tags for all products, and then use the
tags for generating recommendations. We conjecture that
substantial improvements could be realised if the CNNs were
trained with recommendation loss directly.

9. REFERENCES
[1] G. Adomavicius and A. Tuzhilin. Toward the next

generation of recommender systems: A survey of the
state-of-the-art and possible extensions. Knowledge
and Data Engineering, IEEE Transactions on,
17(6):734–749, 2005.

[2] M. Bastian, M. Hayes, W. Vaughan, S. Shah,
P. Skomoroch, H. Kim, S. Uryasev, and C. Lloyd.
Linkedin skills: large-scale topic extraction and
inference. In Proceedings of the 8th ACM Conference
on Recommender systems, pages 1–8. ACM, 2014.

[3] S. Dasgupta. Experiments with random projection. In
Proceedings of the Sixteenth conference on Uncertainty
in artificial intelligence, pages 143–151. Morgan
Kaufmann Publishers Inc., 2000.

[4] S. Dasgupta and Y. Freund. Random projection trees
and low dimensional manifolds. In Proceedings of the
fortieth annual ACM symposium on Theory of
computing, pages 537–546. ACM, 2008.

[5] S. Dasgupta and K. Sinha. Randomized partition trees
for exact nearest neighbor search. arXiv preprint
arXiv:1302.1948, 2013.

[6] J. Duchi, E. Hazan, and Y. Singer. Adaptive
subgradient methods for online learning and stochastic
optimization. The Journal of Machine Learning
Research, 12:2121–2159, 2011.

[7] R. Jäschke, L. Marinho, A. Hotho,
L. Schmidt-Thieme, and G. Stumme. Tag
recommendations in folksonomies. In Knowledge
Discovery in Databases: PKDD 2007, pages 506–514.
Springer, 2007.

[8] Y. Koren, R. Bell, and C. Volinsky. Matrix
factorization techniques for recommender systems.
Computer, (8):30–37, 2009.

[9] O. Levy and Y. Goldberg. Neural word embedding as
implicit matrix factorization. In Advances in Neural
Information Processing Systems, pages 2177–2185,
2014.

[10] P. Lops, M. De Gemmis, and G. Semeraro.
Content-based recommender systems: State of the art
and trends. In Recommender systems handbook, pages
73–105. Springer, 2011.

[11] J. McAuley and J. Leskovec. Hidden factors and
hidden topics: understanding rating dimensions with
review text. In Proceedings of the 7th ACM conference
on Recommender systems, pages 165–172. ACM, 2013.

[12] T. Mikolov, K. Chen, G. Corrado, and J. Dean.
Efficient estimation of word representations in vector
space. arXiv preprint arXiv:1301.3781, 2013.

[13] J. Pennington, R. Socher, and C. D. Manning. Glove:
Global vectors for word representation. Proceedings of
the Empiricial Methods in Natural Language
Processing (EMNLP 2014), 12, 2014.

[14] B. Recht, C. Re, S. Wright, and F. Niu. Hogwild: A
lock-free approach to parallelizing stochastic gradient
descent. In Advances in Neural Information Processing
Systems, pages 693–701, 2011.

[15] S. Rendle. Factorization machines. In Data Mining
(ICDM), 2010 IEEE 10th International Conference
on, pages 995–1000. IEEE, 2010.

[16] S. Rendle, C. Freudenthaler, Z. Gantner, and
L. Schmidt-Thieme. BPR: Bayesian personalized
ranking from implicit feedback. In Proceedings of the
Twenty-Fifth Conference on Uncertainty in Artificial
Intelligence, pages 452–461. AUAI Press, 2009.

[17] J. San Pedro and A. Karatzoglou. Question
recommendation for collaborative question answering
systems with RankSLDA. In Proceedings of the 8th
ACM Conference on Recommender systems, pages
193–200. ACM, 2014.

[18] M. Saveski and A. Mantrach. Item cold-start
recommendations: learning local collective
embeddings. In Proceedings of the 8th ACM
Conference on Recommender systems, pages 89–96.
ACM, 2014.

[19] Y. Shi, A. Karatzoglou, L. Baltrunas, M. Larson,
N. Oliver, and A. Hanjalic. CLiMF: learning to
maximize reciprocal rank with collaborative
less-is-more filtering. In Proceedings of the 6th ACM
onference on Recommender systems, pages 139–146.
ACM, 2012.

40

[20] E. Shmueli, A. Kagian, Y. Koren, and R. Lempel.
Care to Comment?: Recommendations for
commenting on news stories. In Proceedings of the 21st
international conference on World Wide Web, pages
429–438. ACM, 2012.

[21] I. Soboroff and C. Nicholas. Combining content and
collaboration in text filtering. In Proceedings of the
IJCAI, volume 99, pages 86–91, 1999.

[22] J. Vig, S. Sen, and J. Riedl. The tag genome:
Encoding community knowledge to support novel
interaction. ACM Transactions on Interactive
Intelligent Systems (TiiS), 2, 2012.

[23] T. Westergren. The music genome project. Online:
http://pandora. com/mgp, 2007.

[24] J. Weston, S. Bengio, and N. Usunier. WSABIE:
Scaling up to large vocabulary image annotation. In
IJCAI, volume 11, pages 2764–2770, 2011.

41

Conceptual Impact-Based Recommender System for
CiteSeerx

Kevin Labille
Department of Computer
Science and Computer

Engineering
University of Arkansas

Fayetteville, AR 72701, USA
kclabill@uark.edu

Susan Gauch
Department of Computer
Science and Computer

Engineering
University of Arkansas

Fayetteville, AR 72701, USA
sgauch@uark.edu

Ann Smittu Joseph
Department of Computer
Science and Computer

Engineering
University of Arkansas

Fayetteville, AR 72701, USA
ann@email.uark.edu

ABSTRACT
CiteSeerx is a digital library for scientific publications writ-
ten by Computer Science researchers. Users are able to re-
trieve relevant documents from the database by searching by
author name and/or keyword queries. Users may also receive
recommendations of papers they might want to read pro-
vided by an existing conceptual recommender system. This
system recommends documents based on an automatically-
constructed user profile. Unlike traditional content-based
recommender systems, the documents and the user profile
are represented as concepts vectors rather than keyword
vectors and papers are recommended based on conceptual
matches rather than keyword matches between the profile
and the documents. Although the current system provides
recommendations that are on-topic, they are not necessarily
high quality papers. In this work, we introduce the Concep-
tual Impact-Based Recommender (CIBR), a hybrid recom-
mender system that extends the existing conceptual recom-
mender system in CiteSeerx by including an explicit quality
factor as part of the recommendation criteria. To measure
quality, our system considers the impact factor of each pa-
per’s authors as measured by the authors’ h-index. Exper-
iments to evaluate the effectiveness of our hybrid system
show that the CIBR system recommends more relevant pa-
pers as compared to the conceptual recommender system.

Categories and Subject Descriptors
Information Systems [Information retrieval]: Retrieval
tasks and goals:Recommender systems

General Terms
Performance, Reliability, Design, Experimentation

Keywords
Recommender System, h-index, Content-based Recommender
System, CiteSeerx, Information Retrieval

CBRecSys 2015, September 20, 2015, Vienna, Austria.
Copyright remains with the authors and/or original copyright holders

1. INTRODUCTION
In recent years, recommender systems have become ubiq-
uitous, recommending movies, restaurants, and books etc.
The recommendations ease information overload for users
by pro-actively suggesting relevant items to the users, mov-
ing the burden of discovery from the user to the system.
The number and type of applications that use recommender
systems keeps growing [1]; one practical application that is
of interest to researchers in any domain is the ability of rec-
ommender systems to suggest relevant scientific literature.
These systems can expedite scientific innovation by helping
researchers keep abreast of new publications in their fields
and also help new researchers learn about the most impor-
tant literature in an area new to them. Digital libraries can
employ recommender systems that suggest papers to their
users based on each user’s research interests. However, an
effective recommender system should not only consider the
subject of a paper, it should also take into account the pa-
per’s quality when making recommendations. To this end,
we present a recommender system that recommends scien-
tific papers based on user preferences as well as paper qual-
ity as measured by the authors’ impact factors to provide
recommendations of high-quality papers that are relevant
to the user’s research area. To help CiteSeerx users locate
scientific papers related to their work, a citation-based rec-
ommender system was developed by Chandrasekaran et al.
in 2008 [4] . Although citations are effective at identifying
papers that have relevant content and are also high quality,
this approach is only effective in recommending papers with
many citations. These unfortunately tend to be older papers
that have been published long enough ago to generate many
citations. Especially in a fast-moving domain like computer
science, researchers need to know about recent contribu-
tions to their field, yet recent papers have few citations.
To solve this problem, a content-based recommender sys-
tem for CiteSeerx was developed by Pudhiyaveetil et al.[8].
This conceptual recommender system automatically builds
conceptual profiles for users based on their interactions with
the system. It also builds conceptual profiles for each docu-
ment and recommends papers based on conceptual matches
between document and user profiles. Even though the rec-
ommendations were shown to be more relevant than those
produced by a keyword-based recommender system, they are
not always high quality papers that the researcher wanted
to read. Our objective is to improve upon the conceptual
recommender system by providing better quality recommen-

42

dations to the users. To do so, we developed a recommender
system that recommends papers based on the paper authors’
impact factors. We combined the impact-factor based rec-
ommendations with the concept-based recommendations in
varying proportions to create a hybrid recommender sys-
tem. We evaluated the effectiveness of the conceptual rec-
ommender system, the impact-factor recommender system,
and the hybrid recommender system and found that the hy-
brid recommender system provides the most accurate recom-
mendations. The rest of this paper is organized as follows:
In section 2 we review related work. Section 3 describes the
Conceptual Impact-Based Recommender (CBIR) system in
detail. In section 4, we present our experimental evaluation
to analyze the effectiveness of our recommender system. Fi-
nally, we present our conclusions and discuss future work in
section 5.

2. RELATED WORK
The design of a recommender system can vary based on the
nature of user feedback or the availability of data. There are
three main approaches: collaborative filtering, content based
recommender systems, and recommender systems that are a
hybrid of the two [1]. The first approach generates recom-
mendations based on similarities between the users’ behavior
or/and preferences. In contrast, content-based approaches
recommend items to the users based on similarities between
the attributes of the items themselves [10]. Collaborative
approaches are typically used when semantic features can-
not easily be extracted from the items, so indirect evidence
based on user’s likes or ratings must be compared. To be
effective, collaborative filtering requires a large active user
community to avoid the well-known ”cold-start” problem in
which there are many more items to be recommended than
there are users with likes or ratings upon which recommen-
dations can be based. On the other hand, pure content-
based recommender systems do not consider external infor-
mation that might be available from the users, e.g., popular-
ity. For these reasons, many recommender systems employ a
hybrid approach combines both of the previously-described
approaches.
Content-based recommender systems match the users’ pref-
erences to each items’ features to recommend new objects
[10]. Many share the approach of building a user profile from
a set of features extracted from previously liked items. This
user profile is then compared to the features of all items in
the collection and the most similar items are recommended
to the user [12]. This type of recommender system can be
used in domain for which semantically relevant features can
be extracted and it is particularly well-suited for domains
that include textual items as scientific literature or domains
with annotations such as movies or music [12]. Kompan et
al. used this approach to recommend news articles on a web
site [9]. In this domain, the volume of articles and the dy-
namic nature of news make collaborative filtering infeasible
so they implemented a content-based recommender system
based on cosine similarity that suggested articles that best
matched an implicitly constructed user model [9].
Our work is a hybrid approach that enhances a content-
based recommender system with a quality measure to rec-
ommend scientific literature. According to Beel et al., rec-
ommender systems for research papers are flourishing with
more than 80 approaches existing today that have been dis-
cussed in over 170 articles and patents [2]. Such recom-

mender systems are useful for researchers to be up to date
in their research area. Many content-based recommender
systems represent the user interests and the documents as
weighted keyword vectors. One example is [13] in which
tf ∗ idf weights are calculated for keywords and the cosine
similarity measure is used to determine the relevancy of a
paper to a user’s profile. An approach similar to ours is used
in [5]. In their work, each paper’s features are represented
as concepts created by automatically extracting keyphrases.
User profiles are constructed from the concepts in previ-
ously viewed papers and the recommender system matches
the user profile concepts to each papers’ concepts to suggest
new papers in a scientific library. In [8], a conceptual rec-
ommender system was presented that recommends research
papers for CiteSeerx users. Unlike the previous work, the
concepts for each paper are assigned by automatically clas-
sifying papers into a set of concepts defined by a pre-existing
ontology. A conceptual user profile is implicitly built as users
view papers in the collection and this user profile is used to
recommend conceptually similar papers.
The content-based recommender systems can recommend
literature that is similar in topic to the user’s profile, but
it does not necessarily recommend high-quality papers. Al-
though there is no perfect way to measure the quality of
articles, the Impact Factor (IF) introduced in 1955 is still
considered the best way to evaluate a paper’s scientific merit
[6]. There are several types of IFs, including the widely used
h-index that evaluates a researcher’s impact [7]. It has been
recently used is several fields such as health services research
[3], business and management [11] or even academic psychia-
try [14] . Although the work in [5], [8], and [13] are similar to
ours, our recommender system expands upon their work by
incorporating a quality factor as measured by the authors’
h-indexes.

3. APPROACH

Figure 1: Architecture of the CIBR

The architecture of the Conceptual Impact-Based Recom-
mender System (CIBR) is shown in Figure 1. The Profile
Subsystem classifies all documents in the CiteSeerx database
into the 369 predefined categories in the ACM Computing
Classification System (CCS). Documents manually tagged
with ACM categories by their authors are used as the train-
ing set for a k-nearest neighbor classifier. As users interact
with the system, the documents that they examine are in-
put to the Profile Subsystem. The categories associated with
each examined document are combined to create a weighted

43

conceptual user profile. This user profile is used by both
the Conceptual Recommender and the Impact-Based Rec-
ommender described in the following sections. The outputs
of these two Recommenders are combined to produce the
recommendations from the CBIR.

3.1 Concept-Based Recommender System

Figure 2: Conceptual Recommender System Archi-
tecture

As a user views documents in CiteSeerx, the Profile Subsys-
tem builds a conceptual user profile for them by accumulat-
ing the concept weights associated with the documents that
the user examines. The Conceptual Recommender System
then recommends documents to the user based on the sim-
ilarity between each document’s conceptual profile and the
user’s conceptual profile [8]. The weight of the conceptual
match between document i and user j is calculated using
the cosine similarity function over all M=369 concepts in
the ACM taxonomy:

ConceptualWeightij =
∑M

K=1 (cwtik ∗ cwtjk)

Where
cwtik = weight of concept k in document profile i and
cwtjk = weight of concept k in user profile j as explained
and detailed in [8].

3.2 Impact-Based Recommender System

Figure 3: Impact-based Recommender System Ar-
chitecture

The Impact Factor Generator precalculates an impact fac-
tor for each document in the collection as measured by its
authors’ h-indices. As described by Hirsch, an author has
an h-index of m based on his/her N published articles if m
articles have at least m citations each, and the other N-m
articles have no more than m citations each [7]. The impact
factor for a document is calculated by finding the h-index
value of each of the authors of the document and then select-
ing the highest h-index value. Thus, document i’s h-index
is equal that of its most impactful author:

ImpactWeighti = max
l∈Ail

(hindexil) (1)

Where
Ail = list of the authors l of document i
Since the impact factor is independent of users, the Impact-
Based recommendations would be the same for all users,
i.e., the most impactful documents in the entire collection.
We do, however, use the user profile to filter out docu-
ments from categories in which the user has shown no previ-
ous input. Thus, Impact-Based Recommender returns high-
impact documents from categories of some interest to the

user. We tried other approaches to calculate the impact
factor among which we consider the sum of each authors’
h-indices. This particular method is limited since the high-
est weighted papers would usually be the ones with many
authors.

3.3 Conceptual Impact-Based Recommender
System

The Conceptual Impact-Based Recommender System (CIBR)
combines the Conceptual Weights and the Impact Weights
to produce its recommendations. The two sub-component
weights are normalized to fall between 0 to 1 using linear
scaling and then combined based on a tunable parameter,
α. The weight of the conceptual impact match between doc-
ument i and user j, γij , is calculated using:

γij = α ∗ C′ij + (1− α) ∗ I ′i (2)

Where

C′ij = normalized ConceptualWeightij =

ConceptualWeightij−minj(ConceptualWeight)

maxj(ConceptualWeight)−minj(ConceptualWeight)

I ′i = normalized ImpactWeighti =
ImpactWeighti−minj(ImpactWeight)

maxj(ImpactWeight)−minj(ImpactWeight)

α = controls the relative contributions of two sub-weights

By varying α from 0 to 1, we can adjust the relative con-
tributions of two underlying recommender systems. When
α = 0, the CBIR is a pure impact-based recommender sys-
tem whilst when α = 1, the CBIR is a purely Conceptual
recommender system.

4. EXPERIMENTAL EVALUATION
4.1 Subjects and Dataset
We conducted several experiments to measure the effective-
ness of our hybrid recommender system. Experiments were
done with 30 subjects, undergraduate and graduate com-
puter science and computer engineering students from the
university of Arkansas. We use the 2190179 documents in
our snapshot of the CiteSeerx, a digital library and a search
engine for computer and information sciences literature. Be-
cause previous experiments have shown that profiles become
stable after viewing 20 papers, users we asked to search for
and view at least that many papers related to their own re-
search area. Based on those documents, user profiles were
automatically constructed for each user

4.2 Evaluation Method
The goal of this experiment was first to determine what com-
bination the conceptual match and the paper quality is most
effective in our hybrid recommender system. The relative
combinations of the two is given by the equation in Section
3. By changing the value of α we are able to control the rel-
ative contributions of the two recommender systems with α
= 0.0 being a pure impact-based recommender system and
α = 1.0 being a pure conceptual recommender system and
α = 0.5 using even contributions from both. We varied the
value of α from 0.0 to 1.0 with an increment of 0.1 for each
of the subjects in the experiment and for each value of α
we collected the top ten recommended documents. For each

44

Figure 4: Mean Average Weighted Precision for ev-
ery α

user, we presented them with the set of all documents rec-
ommended by any of the versions of the system (removing
duplicates) in random order. They provided explicit rele-
vance feedback by rating the papers as very relevant (2),
relevant (1), or irrelevant (0). We then used the Mean Av-
erage Weighted Precision (MAWP) of each user for each
α as a metric. The MAWP is essentially the Mean Aver-
age Precision modified to handle weights from 0..2 rather
than just Boolean relevance judgments. The mean of every
MAWP for each α is calculated and summarized in Figure
4. As shown on Figure 4, an α of 0.9 gives the best results,
0.6355, meaning that a 90% contribution from the concep-
tual recommender system and a 10% contribution from the
impact-based recommender performed the best. For the sec-
ond part of our analysis, we compared the effectiveness of
the three recommender systems head-to-head. The hybrid
recommender system with α = 0.9 outperformed the concep-
tual recommender system’s MWAP of 0.6083 (α = 1.0) by
4.5% relative (or 2.72% absolute) and the impact-based rec-
ommender system’s MWAP of 0.2867 (α = 0.0) by 121.67%
relative or 34.88% absolute. Both of these results are statis-
tically significant (p < 0.05), based on the paired two-tailed
student t-test.

5. CONCLUSION AND FUTURE WORK
In this paper, a hybrid recommender system was introduced
that recommends high quality papers to CiteSeerx users.
The new recommender combines a conceptual recommender
system along with an impact-factor-based recommender sys-
tem. The former incorporates the user’s preferences repre-
sented as a concept vector whilst the latter incorporates pa-
per quality using the authors’ impact factors as measured
by their h-indexes. User experiments were conducted to
compare the concept-based recommender system and the
impact-based recommender system with our hybrid system.
The results confirm that our hybrid recommender gener-
ates relevant documents as compared to the conceptual or
the impact-factor-based recommender. Future work could
consider using social networks of co-authors or differential
weighting of the papers. Another direction would be to in-
vestigate the effectiveness of our hybrid recommender sys-
tem by considering the g-index that gives a stronger weight
to highly-cited papers as compared to the h-index. Alter-
natively, we could use the e-index that complements the h-
index by distinguishing authors having the same h-index but
different numbers of citations.

6. ACKNOWLEDGMENTS
This research was supported in part by the National Science
Foundation grant number 0958123 : Collaborative Research:
CI-ADDO-EN: Semantic CiteSeerx

7. REFERENCES
[1] G. Adomavicius and A. Tuzhilin. Toward the next

generation of recommender systems: A survey of the
state-of-the-art and possible extensions. Knowledge
and Data Engineering, IEEE Transactions on,
17(6):734–749, 2005.

[2] J. Beel, S. Langer, M. Genzmehr, B. Gipp,
C. Breitinger, and A. Nürnberger. Research paper
recommender system evaluation: A quantitative
literature survey. In Proceedings of the International
Workshop on Reproducibility and Replication in
Recommender Systems Evaluation, pages 15–22. ACM,
2013.

[3] Y. Birks, C. Fairhurst, K. Bloor, M. Campbell,
W. Baird, and D. Torgerson. Use of the h-index to
measure the quality of the output of health services
researchers. Journal of health services research &
policy, 19(2):102–109, 2014.

[4] K. Chandrasekaran, S. Gauch, P. Lakkaraju, and H. P.
Luong. Concept-based document recommendations for
citeseer authors. In Adaptive Hypermedia and Adaptive
Web-Based Systems, pages 83–92. Springer, 2008.

[5] D. De Nart and C. Tasso. A personalized
concept-driven recommender system for scientific
libraries. Procedia Computer Science, 38:84–91, 2014.

[6] E. Garfield. Journal impact factor: a brief review.
Canadian Medical Association Journal,
161(8):979–980, 1999.

[7] J. E. Hirsch. An index to quantify an individual’s
scientific research output. Proceedings of the National
academy of Sciences of the United States of America,
102(46):16569–16572, 2005.

[8] A. Kodakateri Pudhiyaveetil, S. Gauch, H. Luong, and
J. Eno. Conceptual recommender system for citeseerx.
In Proceedings of the third ACM conference on
Recommender systems, pages 241–244. ACM, 2009.

[9] M. Kompan and M. Bieliková. Content-based news
recommendation. In E-commerce and web technologies,
pages 61–72. Springer, 2010.

[10] P. Lops, M. De Gemmis, and G. Semeraro.
Content-based recommender systems: State of the art
and trends. In Recommender systems handbook, pages
73–105. Springer, 2011.

[11] J. Mingers, F. Macri, and D. Petrovici. Using the
h-index to measure the quality of journals in the field
of business and management. Information Processing
& Management, 48(2):234–241, 2012.

[12] M. J. Pazzani and D. Billsus. Content-based
recommendation systems. In The adaptive web, pages
325–341. Springer, 2007.

[13] S. Philip and A. O. John. Application of content-based
approach in research paper recommendation system
for a digital library. International Journal of Advanced
Computer Science & Applications, 5(10), 2014.

[14] S. Selek and A. Saleh. Use of h index and g index for
american academic psychiatry. Scientometrics,
99(2):541–548, 2014.

45

Exploiting Regression Trees as User Models for
Intent-Aware Multi-attribute Diversity

Paolo Tomeo1, Tommaso Di Noia1, Marco de Gemmis2, Pasquale Lops2,
Giovanni Semeraro2, Eugenio Di Sciascio1

1 Polytechnic University of Bari – Via Orabona, 4 – 70125 Bari, Italy
2 University of Bari Aldo Moro – Via Orabona, 4 – 70125 Bari, Italy

1{firstname.lastname}@poliba.it 2{firstname.lastname}@uniba.it

ABSTRACT
Diversity in a recommendation list has been recognized as
one of the key factors to increase user’s satisfaction when
interacting with a recommender system. Analogously to the
modelling and exploitation of query intent in Information
Retrieval adopted to improve diversity in search results, in
this paper we focus on eliciting and using the profile of a
user which is in turn exploited to represent her intents. The
model is based on regression trees and is used to improve
personalized diversification of the recommendation list in a
multi-attribute setting. We tested the proposed approach
and showed its effectiveness in two different domains, i.e.
books and movies.

Categories and Subject Descriptors
H.3.3 [Information Systems]: Information Search and Re-
trieval

Keywords
Personalized diversity; Intent-aware diversification; Regres-
sion Trees

1. INTRODUCTION
In the recent years, diversification has gained more and

more importance in the field of recommender systems. En-
gines able to get excellent results in terms of accuracy of
results have been proved to be not effective when we con-
sider other factors related to the quality of user experience
[10]. As a matter of fact, when interacting with a system
exposing a recommendation service, the user perceives as
good suggestions those showing also an appropriate degree
of diversity, novelty or serendipity, just to cite a few. The
attitude of populating the recommendation list with sim-
ilar items could exacerbate the over-specialization problem
that content-based recommender systems tend to suffer from
[9], even though it appears also in collaborative-filtering ap-
proaches. Improving diversity is generally a good choice to

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Copyright 20XX ACM X-XXXXX-XX-X/XX/XX ...$15.00.

foster the user satisfaction as it increases the odds of finding
relevant recommendations [1].

Here our focus is on both the individual (or intra-list) di-
versity, namely the degree of dissimilarity among all items
in the list provided to a user, and the aggregate diversity
[3], namely the number and distribution of distinct items
recommended across all users. The item-to-item dissimi-
larity can be evaluated by using content-based attributes
(e.g. genre in movie and music domains, product category
in e-commerce) [18] or statistical information (e.g. number
of co-ratings) [23]. Usually, approaches to the diversifica-
tion take into account only one single attribute while, in the
approach we present here, multiple attributes are selected
to describe the items. The rationale behind this choice is
that we believe there are numerous and heterogeneous item
dimensions conditioning user’s interests and choices. More-
over, depending on the user these dimensions may interact
with each other thus contributing to the creation of her in-
tents. The question is how to tackle multiple attributes to
address the diversification problem.

In this paper we use regression trees as user modeling tech-
nique to infer the individual interests, useful to provide an
intent-aware diversification. Compared to approaches where
item attributes are treated independently one to each other,
regression trees make possible to represent user tastes as a
combination of interrelated characteristics. For instance, a
user could have a preference for horror movies of the 80s
irrespective of the director, or for horror movies of the 90s
directed by a a specific director. In a regression tree, con-
ditional probability lets to build such inference rules about
user’s preferences. We conducted experiments on the movie
and on the book domains to empirically evaluate our ap-
proach. The performance was measured in terms of accuracy
and both individual and aggregate diversity.

The main contributions of this paper are:

• a novel intent-aware diversification approach able to
combine multiple attributes. It bases on the use of
regression trees (and rules) to infer and encode the
model of users’ interests;

• a novel method to combine different diversification ap-
proaches;

• an experimental evaluation which shows the perfor-
mance of the proposed approaches with respect to both
accuracy and diversity measures.

The paper is organized as follows. Section 2 describes the
greedy approach to diversification problem, the xQuAD al-
gorithm and some evaluation metrics. We then continue in

46

Section 3 by showing how to face the multi-attribute diver-
sification and how to leverage regression trees in the diversi-
fication process with xQuAD to provide more personalized
recommendations. Section 4 describes the experimental con-
figuration and the datasets used for the experiments while
Section 5 presents and describes the experimental results,
showing the competitive performance of the proposed ap-
proach. In Section 6 we review the related work at the best
of our knowledge. Conclusions close the paper.

2. DIVERSITY IN RECOMMENDATIONS
The recommendation step can be followed by a re-ranking

phase finalized to improve other qualities besides accuracy
[3]. Some of re-ranking approaches proposed so far are
based on greedy algorithms designed to handle the balance
between accuracy and diversity in a recommendations list
[26]. Their scheme of work is explained through Algorithm
1, where P = 〈1, ..., n〉 is the recommendation list for user u
generated using the predicted ratings and the output is the
re-ranked list S of recommendations, such that S ⊂ P and
whose length is N ≤ n.

Data: The original recommendation list P, N ≤ n
Result: The re-ranked recommendation list S

S = 〈〉;1
while |S | ≤ N do2

i∗= argmax
i∈P\S

fobj(i,S);
3

S = S ◦ i∗;4
P = P \ {i∗}5

end6
return S.7

Algorithm 1: The greedy strategy

At each iteration, the algorithm selects the item maximiz-
ing the objective function fobj (line 3) – which in turn can
be defined to deal with the trade-off between accuracy and
diversity – and then adds it to the re-ranked list (line 4).

For our purpose, we focus on the intent-aware approach
xQuAD (eXplicit Query Aspect Diversification), with the
aim to diversify the user intents. It was proposed for search
diversification in information retrieval by Santos et al. [15],
as a probabilistic framework to explicitly model an ambigu-
ous query as a set of sub-queries that will cover the poten-
tial aspects of the initial query. Then it was adapted for
recommendation diversification by Vargas and Castells [20],
replacing query and relative aspects with user and items
categories, respectively. Hereafter we refer to generic item
features - such as categories - as features, considering the
features as possible instances of a generic attribute.

More formally, xQuAD greedily selects diverse recommen-
dations maximizing the following objective function:

fobj(i,S, u) = λ r∗(u, i) + (1− λ)div(i,S, u) (1)

with r∗(u, i) being the score predicted by the baseline recom-
mender; the λ parameter allowing to manage the accuracy-
diversity balance, where higher values give more weight to
accuracy, while lower values give more weight to diversity.
The last component in Equation 1 promotes the diversity,
providing a measure of novelty with respect to the items
already selected in S. As for the function div(i,S, u), the
original formulation in [20] is:

divorig(i,S, u) =
∑

f

p(i|f)p(f |u)
∏

s∈S
(1− p(s|f)) (2)

where p(i|f) represents the likelihood of item i being chosen
given the feature f while p(f|u) represents the user interest
in the feature.

A number of measures have been proposed to evaluate the
diversity in a recommendation list. Smyth and McClave [17]
proposed the ILD (Intra-List Diversity), that computes the
average distance between each couple of items in the list L:

ILD(L) =
1

|L| (|L| − 1)

∑

i,j∈L,i 6=j

(1− sim(i, j)) (3)

The sim function is a configurable and application-dependent
component which can use content-based item features or sta-
tistical information (e.g. number of co-ratings) to compute
the similarity between items. We used also the metric α-
nDCG, that is the redundancy-aware variant of Normalized
Discounted Cumulative Gain proposed in [5]. We adopt the
adapted version for recommendation proposed in [16]:

α-nDCG(L, u) =
1

α-iDCG

|L|∑

r=1

∑
f∈F (Lr)

(1− α)cov(L,f,r−1)

log2(1 + r)

(4)
where cov(L, f, r − 1) is the number of items ranked up to
position r − 1 containing the feature f . F (Lr) represents
the set of features of the r-th item. The α parameter is used
to balance the emphasis between relevance and diversity. α-
iDCG denotes the value of α-nDCG for the best “ideally”
diversified list. Considering that the computation of the
ideal value is NP-complete [5], we adopt a greedy approach:
at each step we select solely the item with the highest value,
regardless of the next steps.

3. INTENT-AWARE MULTI-ATTRIBUTE
DIVERSITY

In this section we show how we address the intent-aware
diversity problem when dealing with multi-attribute item
descriptions. The presentation relies on content-based at-
tributes (e.g. genres, years, etc. in the movies domain),
but the proposed approach can be used independently of
the attributes types. Therefore, one could also use statisti-
cal information as item attributes, e.g., popularity or rating
variance. As explained in the previous section, we refer to
features as possible instances of a generic attribute. We
tried different reformulations of the div function in xQuAD
(Equation 2) to deal with multi-attribute values. After an
empirical evaluation, we chose the best divma (for multi-
attribute) in terms of accuracy-diversity balance:

divma(i,S, u) =
∑

A∈A

∑
f∈dom(A) p(i|f)p(f |u)(1− avgj∈S p(j|f))

∑
f∈dom(A) p(f |u)

(5)
where:

• A is the set of attributes;

• for each attribute A ∈ A and each feature in the at-
tribute domain f ∈ dom(A), p(i|f) represents the im-
portance of f for the item i. It is computed as a binary
function that returns 1 if the item contains f , 0 other-
wise;

• p(f |u) represents the importance of the feature f for
the user u and is computed as the relative frequency
of the feature f on the rated items from the user u.

47

Here after we will refer to xQuAD using Equation 5 as basic
xQuAD.

Besides dealing with multi-attribute descriptions, the idea
behind our approach is to infer and model the user profile
by means of a regression tree, a predictive model where the
user interest represents the target variable, which can take
continuous values. Once a regression tree is produced for a
user u, then it is converted into a set of rules RT (u). Each
rule maps the presence/absence of a categorical feature or a
constraint on a numerical one to a value v in a continuous
interval. This latter indicates the predicted interest of the
user on the items satisfying the rule. In our implementation
we used the interval [1, 5] since the value of the target vari-
able has been calculated as the rating mean of the training
instances classified by the inferred rule. Please note that the
choice of a specific value interval for the target variable does
not affect the overall approach. Each rule m has then the
form

body(m) 7→ interest = v

with body(m) = {c1, . . . , cn}. An example of a set of rules
produced for a user is shown in Figure 1.

1. {horror ∈ dom(genres), western /∈ dom(genres),
DarioArgento ∈ dom(directors)} 7→ interest = 4.2

2. {horror /∈ dom(genres), thriller ∈ dom(genres)}
7→ interest = 2.1

3. {year > 1990, horror /∈ dom(genres),
drama ∈ dom(genres), Aronofsky ∈ dom(directors)}
7→ interest = 4.0

4. {year < 1990, drama ∈ dom(genres),
AlPacino ∈ dom(actors)} 7→ interest = 3.9

5. {horror /∈ dom(genres)} 7→ interest = 3.2

Figure 1: Example of a set of rules generated via
the regression tree

Eventually, under the assumption that they represent spe-
cific user interests, the computed rules are used in the re-
ranking phase as item features to improve the intent-aware
recommendation diversity.

We propose also a div function for xQuAD so that each
item is evaluated according to the rules it satisfies.

divrules(i,S, u) =
∑

m∈M(u,i)

p(m|u)(1− avgj∈S p(j|m)) (6)

HereM(u, i) represents the set of rules for the user umatched
by the item i while p(m|u) represents the importance of the
rule m for u and is computed as:

p(m|u) =
interestm
|M(u, i)| (7)

In Equation 7, interestm is the normalized predicted out-
come of the regression tree for the rule m. Finally, the last
component in Equation 6 indicates the complement of the
coverage of the rule among the already selected recommen-
dations. We propose two different versions of this adapted
xQuAD.

• RT. p(j|m) is a binary function that returns 1 if the
item j matches the rule, 0 otherwise.

• DivRT. p(j|m) is the average similarity between m
and each rule covered by item j. More formally:

p(j|m) = avgm′∈M(u,j) sim(m,m′) (8)

The rationale behind this formulation is that some
rules may be similar with each other thus not bring-
ing any actual diversification if considered separately.
The computation of sim(m,m′) takes into account the
overlapping between the rules m and m′ as follows:

sim(m,m′) =

∑
ci∈body(m) overlap(m,m

′, ci)

max(|body(m)|, |body(m′)|)
For instance, considering the attributes represented in
Figure 1, we have for actor, genre and director:

overlap(m,m′, ci) =





1, ci ∈ body(m) ∧ ci ∈ body(m′)

0, otherwise

For the numerical attribute year we may adopt a dif-
ferent formulation for the function overlap(m,m′, ci).
Here we compute, if any, the overlap between the in-
terval in body(m) and the one in body(m′) normalized
with respect to maximum interval’s length. As an ex-
ample, if year > 1990 is in body(m) and year < 2010
is in body(m′) we may define the overlapping function

as overlap(m,m′, ci) = |1990−2010|
max(dom(year))−min(dom(year))

.

The functions introduced above have been used in the
experimental setting in order to compute the function
overlap(m,m′, ci) (see Section 4).

RT and DivRT can be used instead of the basic xQuAD as
diversification algorithms in the re-ranking phase. Alterna-
tively, basic xQuAD and RT or DivRT can be pipelined to
benefit from the strengths of them both. For instance, one
could use xQuAD to select 50 diversified recommendations
and then RT to select 20 recommendations from those 50,
or vice versa. Hereafter, we use the syntax X-after-Y, e.g.
xQuAD-after-RT, to indicate that algorithm X is executed
on the results of Y.

4. EXPERIMENTS
We carried out a number of experiments to evaluate the

performance of the methods presented in the Section 3 on
two well known datasets: MovieLens1M and LibraryThing.
MovieLens 1M1 dataset contains 1 million ratings from

6,040 users on 3,952 movies. The original dataset contains
information about genres and year of release, and was en-
riched with further attribute information such as actors and
directors extracted from DBpedia2. More details about this
DBpedia enriched version of the dataset are available in [11].
Because not all movies have a corresponding resource in DB-
pedia, the final dataset contains 998,963 ratings from 6,040
users on 3,883 items. We built training and test sets by
employing a 60%-40% temporal split for each user.

Moreover, we used the LibraryThing3 dataset, which con-
tains more than 2 million ratings from 7,279 users on 37,232
books. As in the dataset there are many duplicated ratings,

1Available at http://grouplens.org/datasets/movielens
2http://dbpedia.org
3Available at http://www.macle.nl/tud/LT

48

when a user has rated more than once the same item, we se-
lected her last rating. The unique ratings are 749,401. Also
in this case, we enriched the dataset by mapping the books
with BaseKB4, the RDF version of Freebase5 and then ex-
tracting three attributes: genre, author and subjects. The
subjects in Freebase represent the topic of the book, for in-
stance Pilot experiment, Education, Culture of Italy, Martin
Luther King and so on. The dump of the mapping is avail-
able online6. The final dataset contains 565,310 ratings from
7,278 users on 27,358 books. We built training and test sets
by employing a 80%-20% hold-out split. The different ratio
used for LibraryThing respect to Movielens (60%-40%) de-
pends on its higher sparsity: holding 80% to build the user
profile ensures a sufficient number of ratings to train the
system.

Movielens LibraryThing
Number of users 6,040 7,278
Number of items 3,883 27,358
Number of ratings 998,963 565,310
Data sparsity 95.7% 99.7%
Avg users per item 275.57 20.66
Avg items per user 165.39 77.68

Table 1: Statistics about the two datasets

Since the number of distinct values was too large for year,
actors and director attributes in MovieLens and for all the
attributes in LibraryThing, we convert years in the corre-
sponding decades and performed a K-means clustering for
other attributes on the basis of DBpedia categories7 for
MovieLens and Freebase categories8 for LibraryThing. Ta-
ble 2 and 3 report the number of attribute values and clus-
ters. The number of clusters was decided according to the
calculation of the within-cluster sum of squares (withinss
measure from the R Stats Package, version 2.15.3), that is
picking the value of K corresponding to an evident break in
the distribution of the withinss measure against the number
of clusters extracted.

Num. Values Num. Clusters
Genres 19 -
Decades 10 -
Actors 14736 20
Directors 3194 20

Table 2: Statistics about MovieLens attributes

Num. Values Num. Clusters
Genres 270 30
Authors 12868 22
Subjects 2911 20

Table 3: Statistics about LibraryThing attributes

4http://basekb.com
5https://www.freebase.com
6URL removed to guarantee anonymous submission.
7http://purl.org/dc/terms/subject
8http://www.w3.org/1999/02/22-rdf-syntax-ns#type

4.1 Experimental Configuration
For both datasets, we used the Bayesian Personalized Rank-

ing Matrix Factorization algorithm (BPRMF) available in
MyMediaLite9 as baseline (using the default parameters).
We performed experiments using other recommendation al-
gorithms, but we do not report results here since they are
very similar to those obtained by BPRMF.

We selected the top-200 recommendations for each user to
generate the initial list P used for performing the re-ranking
as shown in Algorithm 1.

Accuracy is measured in terms of Precision, Recall and
nDCG, but we only report nDCG values since the trend of
the other two metrics is very similar. Individual diversity
is measured using ILD and α-nDCG (see Section 2) with
α = 0.5 to equally balance diversity and accuracy, while
aggregate diversity is measured using both the catalog cov-
erage – computed as the percentage of items recommended
at least to one user – and the entropy – computed as in
[3] to analyse the distribution of recommendations among
all users. These two last metrics need to be considered to-
gether, since the coverage gives a indication about the ability
of a recommender to cover the items catalog and the entropy
shows the ability to equally spread out the recommendations
across all the items. Hence, only an improvement of both
those metrics indicates a real increasing of aggregate diver-
sity, that in turn denotes a better personalization of the
recommendations [3].

As similarity measure for computing the ILD metric (Equa-
tion 3) we used the Jaccard index. Considering that there
are more attributes for each item, we computed the average
of the Jaccard index value for each attribute shared between
two items. α-nDCG is computed as the average of the Equa-
tion 4 for each attribute.

As presented in Section 3, we propose two novel diver-
sification approaches: RT and DivRT. We also propose a
method to combine in sequence different algorithms by means
of a two phase re-ranking procedure, with the aim of ben-
efiting from the strengths of both. Therefore we evalu-
ated other two approaches: xQuAD-after-RT and RT-after-
xQuAD, applying the second re-ranking phase on the set
of 50 recommendations provided from the first phase. We
have also evaluated the combination with xQuAD and Di-
vRT, but the results are very similar using RT, so they will
not be shown. To evaluate the performances, we compare
the top-10 recommendation list generating from all the ap-
proaches with basic xQuAD, by varying the λ parameter
from 0 to 0.95 with step fixed to 0.05 in Equation 1 (higher
values of λ give more weight to accuracy, lower values to
diversity).

The rules are produced using M5Rules10 algorithm avail-
able in Weka based on the M5 algorithm proposed by Quin-
lan [12] and improved by Wang and Witten [22]. M5Rules
generates a list of rules for regression problems using a
separate-and-conquer learning strategy. Iteratively it builds
a model tree using M5 and converts the best leaf into a rule.
We decided to use unpruned rules in order to have more
rules matchable with the items.

9http://mymedialite.net/
10http://weka.sourceforge.net/doc.dev/weka/
classifiers/rules/M5Rules.html

49

5. RESULTS DISCUSSION
Results of the experiments on MovieLens and Library-

Thing are reported in Figure 2 and 3, respectively.
MovieLens. xQuAD obtains the best results in terms

of ILD (Figure 2(a)) and α-nDCG (Figure 2(b)), though
the xQuAD-after-RT results are very close and, with higher
λ values (namely giving more importance to the accuracy
factor), the differences between them are not significant.
This outcome is due to the fact that the diversity metrics
are attribute-based and xQuAD operates directly diversi-
fying the attributes values, while the proposed rule-based
approaches do not take into account all the attributes val-
ues. This also explains why the pure rule-based approaches
(RT and DivRT) obtain the worst diversity results, while
the combined algorithms (xQuAD-after-RT and RT-after-
xQuAD) obtain better results. It is noteworthy that these
last two configurations have no substantial difference with
ILD, but, in terms of α-nDCG, xQuAD-after-RT consider-
ably overcomes RT-after-xQuAD. This demonstrates that
the pipeline of xQuAD and the rule-based approach ob-
tains good diversity. Considering coverage (Figure 2(c))
and entropy (Figure 2(d)) to evaluate the aggregate diver-
sity, the results show that using the rules the recommen-
dations are much more personalized. It is interesting to
note the compromise provided by xQuAD-after-RT, that
obtains equidistant results between xQuAD and the rule-
based algorithms, unlike RT-after-xQuAD that slightly over-
comes xQuAD. With respect to the baseline, no configura-
tion is able to give more accurate recommendations (nDCG
= 0.14); all are able to increase the individual diversity
(ILD = 0.34 and α-nDCG = 0.27). With nDCG and the
individual diversity, the differences are always statistically
significant (p < 0.001), except using the pure ruled-based
approaches with λ > 0.65. The situation is more complex
in terms of aggregate diversity, since the coverage grows
very little on the baseline (coverage = 0.29) and the entropy
slightly decreases (entropy = 0.78) with higher λ values. Ac-
cording to a comprehensive analysis on MovieLens, the pure
rule-based approaches may give personalized and diversified
recommendations, also with small accuracy loss. However,
when individual diversity is more important than aggregate
diversity, combining xQuAD with a previous rule-based re-
ranking gives a good compromise between individual and
aggregate diversity.

LibraryThing. At first glance, the LibraryThing results
appear similar to those on MovieLens. Although they are
generally consistent, there are interesting differences. Also
in this case, xQuAD obtains the best diversity values, with
ILD (Figure 3(a)) and α-nDCG (Figure 3(b)). However,
both the combined approaches obtain really interesting re-
sults, very close to xQuAD, except for the lower λ val-
ues (namely giving more importance to the diversification
factor). Unlike what happens on MovieLens, in this case
RT-after-xQuAD obtains good results also in terms of α-
nDCG. The pure rule-based approaches still obtain worse
results. Considering coverage (Figure 3(c)) and entropy
(Figure 3(d)) to evaluate the aggregate diversity, the results
show that using the rules the recommendations are much
more personalized than using only xQuAD. The combined
approaches are able to improve the aggregate diversity with
respect to xQuAD, albeit they are still distant from the pure
rule-based approaches, especially in terms of coverage. With
respect to the baseline, all configurations give a little more

accurate recommendations, with λ > 0.65, but the differ-
ences are not statistically significant. In terms of individual
diversity, all of them are able to overcome the baseline (ILD
= 0.4 and α-nDCG = 0.285) except when using the pure
rule-based approaches in terms of ILD. However they are
able to improve α-nDCG. For the latter two metrics, the
differences are always statistically significant (p < 0.001).
In terms of aggregate diversity, xQuAD does not improve
the baseline result (coverage = 0.15 and α-nDCG = 0.77),
while using the rules leads to better results. According to
a comprehensive analysis on LibraryThing, the pure rule-
based approaches may give more personalized recommenda-
tions with a better diversity, especially using RT, with also
a small accuracy loss. Similarly to the analysis on Movie-
Lens, the results on LibraryThing suggest that diversifying
with only the rules is a good choice when aggregate diver-
sity is more important than individual diversity, conversely
xQuAD remains the best choice to improve the individual
diversity and combined with the rule-based diversification
improves also the aggregate diversity.

The final conclusions of this analysis are that using a re-
gression tree to infer rules representing user interests on
multi-attribute values in the diversification process with
xQuAD leads to more personalized recommendations but
with a less diversified list and that combining attribute-
based and rule-based diversifications in two phase re-ranking
is a good way for taking the advantages of both. The bet-
ter degree of personalization may depend on the fact that
the rules are different among the users since they represents
their individual interests. The lower individual diversity val-
ues with ILD and α-nDCG are due to the nature of these
metrics which are based directly on the attributes values
while the pure rule-based approaches do not take into ac-
count all the attributes values.

6. RELATED WORK
There is a noteworthy effort by the research community in

addressing the challenge of recommendation diversity. That
interest arises from the necessity of avoiding monotony in
recommendations and controlling the balance between accu-
racy and diversity, since increasing diversity inevitably puts
accuracy at risk [25]. However, a user study in the movie
domain [7] demonstrates that user satisfaction is positively
dependent on diversity and there may not be the intrinsic
trade-off when considering user perception instead of tradi-
tional accuracy metrics.

Typically, the proposed approaches aim to replace items
in an already computed recommendation list, by minimizing
the similarity among all items. Some approaches exploit a
re-ranking phase with a greedy selection (see Section 2), for
instance [18], or with other techniques such us the Swap al-
gorithm [23], which starts with a list of K scoring items and
swaps the item which contributes the least to the diversity
of the entire set with the next highest scoring item among
the remaining items, by controlling the drop of the overall
relevance by a pre-defined upper bound.

Other types of approaches try to directly generate diver-
sified recommendation lists. For instance, [2] proposes a
probabilistic neighborhood selection in collaborative filter-
ing for selecting diverse neighbors, while in [16], an adaptive
diversification approach is based on Latent Factor Portfolio
model for capturing the user interests range and the uncer-
tainty of the user preferences by employing the variance of

50

(a) (b)

(c) (d)

Figure 2: Accuracy-diversity curves on MovieLens at Top-10 obtained by varying the λ parameter from 0 to
0.95 (step 0.05). The statistical significance is measured based on the results from individual users, according
the Wilcoxon signed-rank significance test. For nDCG and ILD 2(a), all the differences are statistically
significant with (p < 0.01), except for those between RT and DivRT. For α-nDCG 2(b), the trend is the
same, except for the differences between xQuAD and xQuAD-after-RT with λ > 0.7.

the learned user latent factors. In [13] it is proposed a hybrid
method based on evolutionary search following the Strength
Pareto approach for finding appropriate weights for the con-
stituent algorithms with the final aim of improving accuracy,
diversity and novelty balance. [24] considers the problem to
improve diversity while maintaining adequate accuracy as
a binary optimization problem and proposes an approach
based on solving a trust region relaxation. The advantages
of this approach is that it seeks to find the best sub-set of
items over all possible sub-sets, while the greedy selections
finds sub-optimal solutions.

Multi-attribute diversity has been substantially non-treated
in the literature of recommender systems. A recent work [6]
proposes an adaptive approach able to customize the degree
of recommendation diversity of the top-N list taking into
account the inclination to diversity of the user over differ-
ent content-based item attributes. Specifically, entropy is
employed as a measure of diversity degree within user pref-
erences and used in conjunction with user profile dimension
for calibrating the degree of diversification.

Furthermore, increasing attention has been paid to the

intent-aware diversification, namely the process of increas-
ing the diversity taking into account the user interests. Some
approaches are based on adapted algorithms proposed for
the same purpose in the Information Retrieval field, such as
IA-Select [4] and xQuAD [15]. An approach for extraction
of sub-profiles reflecting the user interests has been proposed
in [20]. There a combination of sub-profile recommendations
is generated, with the aim of maximizing the number of user
tastes represented and simultaneously avoiding redundancy
in the top-N recommendations. A more recent approach
[19], based on a binomial greedy re-ranking algorithm, com-
bines global item genre distribution statistics and personal-
ized user interests to satisfy coverage and non-redundancy
of genres in the final list.

The aggregate diversity, also known as sales diversity, is
considered another important factor in recommendation for
both business and user perspective: the user may receive
less obvious and more personalized recommendations, com-
ply with the target to help users discover new content [21]
and the business may increase the sales [8]. [3] proposes the
concept of aggregated diversity as the ability of a system to

51

(a) (b)

(c) (d)

Figure 3: Accuracy-diversity curves on LibraryThing at Top-10 obtained by varying the λ parameter from
0 to 0.95 (step 0.05). The statistical significance is measured based on the results from individual users,
according the Wilcoxon signed-rank significance test. For nDCG, the differences between RT and DivRT are
non significant with λ ∈ [0.2, 0.5]. For ILD 3(a), all the differences are statistically significant with (p<0.001),
except for those between RT and DivRT. For α-nDCG 3(b), all the differences are statistically significant
(p<0.001).

recommend across all users as many different items as pos-
sible and proposes efficient and parametrizable re-ranking
techniques for improving aggregate diversity with controlled
accuracy loss. Those techniques are simply based on sta-
tistical informations such us items average ratings, average
predicted rating values, and so on. [21] explores the impact
on aggregate diversity and novelty inverting the recommen-
dation task, namely ranking users for items. Specifically, two
approaches have been proposed: one based on an inverted
neighborhood formation and the other on a probabilistic for-
mulation for recommending users to items. [14] proposed a
k-furthest neighbors collaborative filtering algorithm to mit-
igate the popularity bias and increase diversity, considering
also other factors in user-centric evaluation, such as novelty,
serendipity, obviousness and usefulness.

7. CONCLUSIONS AND FUTURE WORK
This paper addresses the problem of intent-aware diversi-

fication in recommender systems in multi-attribute settings.
The proposed approach bases on xQuAD [20], a relevant

intent-aware diversification algorithm, and leverages regres-
sion trees as user modeling technique. In their rule-based
equivalent representation, they are exploited to foster the
diversification of recommendation results both in terms of
individual diversity and in terms of aggregate one.

The experimental evaluation on two datasets in the movie
and book domains demonstrates that considering the rules
generated from the different attributes available in an item
description provides diversified and personalized recommen-
dations, with a small loss of accuracy. The analysis of the re-
sults suggests that a pure rule-based diversification is a good
choice when the aggregate diversity is more needed than in-
dividual diversity. Conversely, basic xQuAD remains the
best choice to improve the individual diversity while its com-
bination with the rule-based diversification improves also the
aggregate diversity.

For future work, we would like to evaluate the impact of
our approach also on the recommendation novelty. A way
to improve the novelty could be the expansion of the rules
by exploiting collaborative information.

52

Acknowledgements. The authors acknowledge partial sup-
port of PON02 00563 3470993 VINCENTE, PON04a2 E RES
NOVAE, PON02 00563 3446857 KHIRA e PON01 03113 ER-
MES.

8. REFERENCES
[1] P. Adamopoulos and A. Tuzhilin. On unexpectedness

in recommender systems: Or how to expect the
unexpected. In in Proc of RecSys ’11 Intl. Workshop
on Novelty and Diversity in Recommender Systems,
2011.

[2] P. Adamopoulos and A. Tuzhilin. On
over-specialization and concentration bias of
recommendations: Probabilistic neighborhood
selection in collaborative filtering systems. In
Proceedings of the 8th ACM Conference on
Recommender Systems, RecSys ’14, pages 153–160.
ACM, 2014.

[3] G. Adomavicius and Y. Kwon. Improving aggregate
recommendation diversity using ranking-based
techniques. IEEE Trans. Knowl. Data Eng.,
24(5):896–911, 2012.

[4] P. Castells, S. Vargas, and J. Wang. Novelty and
Diversity Metrics for Recommender Systems: Choice,
Discovery and Relevance. In International Workshop
on Diversity in Document Retrieval (DDR 2011) at
the 33rd European Conference on Information
Retrieval (ECIR 2011), April 2011.

[5] C. L.A. Clarke, M. Kolla, G. V. Cormack,
O. Vechtomova, A. Ashkan, S. Büttcher, and
I. MacKinnon. Novelty and diversity in information
retrieval evaluation. In Proceedings of the 31st Annual
International ACM SIGIR Conference on Research
and Development in Information Retrieval, SIGIR ’08,
pages 659–666. ACM, 2008.

[6] T. Di Noia, V. C. Ostuni, J. Rosati, P. Tomeo, and
E. Di Sciascio. An analysis of users’ propensity toward
diversity in recommendations. In ACM RecSys ’14,
RecSys ’14, pages 285–288. ACM, 2014.

[7] M. D. Ekstrand, F. M. Harper, M. C. Willemsen, and
J. A. Konstan. User perception of differences in
recommender algorithms. In Proceedings of the 8th
ACM Conference on Recommender Systems, RecSys
’14, pages 161–168. ACM, 2014.

[8] D. Fleder and K. Hosanagar. Blockbuster culture’s
next rise or fall: The impact of recommender systems
on sales diversity. Management science, 55(5):697–712,
2009.

[9] N. Hurley and M. Zhang. Novelty and diversity in
top-n recommendation – analysis and evaluation.
ACM TOIT, 10(4):14:1–14:30, 2011.

[10] S. M. McNee, J. Riedl, and J. A. Konstan. Being
accurate is not enough: How accuracy metrics have
hurt recommender systems. In CHI ’06 Extended
Abstracts on Human Factors in Computing Systems,
CHI EA ’06, pages 1097–1101, 2006.

[11] V. C. Ostuni, T. Di Noia, E. Di Sciascio, and
R. Mirizzi. Top-n recommendations from implicit
feedback leveraging linked open data. In ACM RecSys
’13, pages 85–92, 2013.

[12] R. J. Quinlan. Learning with continuous classes. In 5th
Australian Joint Conference on Artificial Intelligence,

pages 343–348, Singapore, 1992. World Scientific.

[13] M. T. Ribeiro, A. Lacerda, A. Veloso, and N. Ziviani.
Pareto-efficient hybridization for multi-objective
recommender systems. In RecSys ’12, pages 19–26.
ACM, 2012.

[14] A. Said, B. Fields, B. J. Jain, and S. Albayrak.
User-centric evaluation of a k-furthest neighbor
collaborative filtering recommender algorithm. In
Proceedings of the 2013 Conference on Computer
Supported Cooperative Work, CSCW ’13, pages
1399–1408. ACM, 2013.

[15] R. L.T. Santos, C. Macdonald, and I. Ounis.
Exploiting query reformulations for web search result
diversification. In WWW ’10, pages 881–890. ACM,
2010.

[16] Y. Shi, X. Zhao, J. Wang, M. Larson, and A. Hanjalic.
Adaptive diversification of recommendation results via
latent factor portfolio. In ACM SIGIR ’12, pages
175–184, 2012.

[17] B. Smyth and P. McClave. Similarity vs. diversity. In
Proceedings of the 4th International Conference on
Case-Based Reasoning: Case-Based Reasoning
Research and Development, ICCBR ’01, pages
347–361. Springer-Verlag, 2001.

[18] S. Vargas, L. Baltrunas, A. Karatzoglou, and
P. Castells. Coverage, redundancy and size-awareness
in genre diversity for recommender systems. In RecSys
’14, pages 209–216, 2014.

[19] S. Vargas, L. Baltrunas, A. Karatzoglou, and
P. Castells. Coverage, redundancy and size-awareness
in genre diversity for recommender systems. In RecSys
’14, pages 209–216. ACM, 2014.

[20] S. Vargas and P. Castells. Exploiting the diversity of
user preferences for recommendation. In OAIR ’13,
pages 129–136, 2013.

[21] S. Vargas and P. Castells. Improving sales diversity by
recommending users to items. In Eighth ACM
Conference on Recommender Systems, RecSys ’14,
Foster City, Silicon Valley, CA, USA - October 06 -
10, 2014, pages 145–152, 2014.

[22] Y. Wang and I. H. Witten. Induction of model trees
for predicting continuous classes. In Poster papers of
the 9th European Conference on Machine Learning.
Springer, 1997.

[23] C. Yu, L. Lakshmanan, and S. Amer-Yahia. It takes
variety to make a world: Diversification in
recommender systems. In EDBT ’09, pages 368–378,
2009.

[24] M. Zhang and N. Hurley. Avoiding monotony:
Improving the diversity of recommendation lists. In
ACM RecSys ’08, pages 123–130, 2008.

[25] T. Zhou, Z. Kuscsik, J.G. Liu, M. Medo, J.R.
Wakeling, and Y.C. Zhang. Solving the apparent
diversity-accuracy dilemma of recommender systems.
Proceedings of the National Academy of Sciences,
107:4511–4515, 2010.

[26] C. Ziegler, S. M. McNee, J. A. Konstan, and
G. Lausen. Improving recommendation lists through
topic diversification. In WWW ’05, pages 22–32, 2005.

53

