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Complementary Cohort Strategy
for Multimodal Face Pair Matching

Yunlian Sun, Kamal Nasrollahi, Zhenan Sun, Member, IEEE and Tieniu Tan, Fellow, IEEE

Abstract—Face pair matching is the task of determining
whether two face images represent the same person. Due to
the limited expressive information embedded in the two face
images as well as various sources of facial variations, it becomes
a quite difficult problem. Towards the issue of few available
images provided to represent each face, we propose to exploit an
extra cohort set (identities in the cohort set are different from
those being compared) by a series of cohort list comparisons.
Useful cohort coefficients are then extracted from both sorted
cohort identities and sorted cohort images for complementary
information. To augment its robustness to complicated facial
variations, we further employ multiple face modalities owing
to their complementary value to each other for the face pair
matching task. The final decision is made by fusing the extracted
cohort coefficients with the direct matching score for all the
available face modalities. To investigate the capacity of each
individual modality on matching faces, the cohort behavior and
the performance achieved by using our complementary cohort
strategy, we conduct a set of experiments on two recently collected
multimodal face databases. It is shown that using different
modalities leads to different face pair matching performance. For
each modality, employing our cohort scheme significantly reduces
the equal error rate. By applying the proposed multimodal
complementary cohort strategy, we achieve the best performance
on our face pair matching task.

Index Terms—Face recognition, multimodal fusion, RGB-D,
cohort information.

I. INTRODUCTION

THE analysis of human faces has been a long standing
problem in computer vision and pattern recognition. It

has received significant attention due to its wide applications
in access control and video surveillance (for example, for
human identity recognition) [1], human-computer interaction
(for example, for emotion analysis) [2] and demography (for
example, for gender recognition, ethnicity classification and
age estimation) [3]. Among these applications, automatically
recognizing humans by analyzing their faces, i.e., face recog-
nition, has been one of the most extensively studied problems
in the scientific community. A face recognition system can be
an identification system, a verification expert, or a pair match-
ing system. In both identification and verification scenarios,
there is a pre-enrolled face database, storing the template for
representing each registered user [4]. An identification system
aims to decide which subject in the pre-enrolled database, a
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probe face image comes from, while the task of verification is
to determine whether a query face image belongs to the user
represented by its claimed template. Differing from these two
tasks, in face pair matching, there is no pre-enrolled template
database. Given two face images, the goal is to decide whether
they are from the same person (a genuine pair) or not (an
impostor pair) [5]. Notice that in this task, the only available
information is the photometric information embedded in the
two images, which makes this task extremely hard. This is the
focus of our work.

In 2008, the release of the Labeled Faces in the Wild (LFW)
face database makes face pair matching become a popular
topic in both the research and industrial community [5]. To
well handle diverse facial variations presented on the two
face images being compared, a number of powerful facial
descriptors have been devised. These facial features are either
handcrafted or learned. The patch-based LBP codes [6], the
learning-based (LE) descriptor [7] and the discriminant face
descriptor (DFD) [8] are some representative facial represen-
tations. Very recently, using a large deep neural network to
derive an elaborated facial representation has shown a great
potential. Deep learning performs well in particular when large
training sets are available. It has seen great success in various
domains including computer vision, language modeling and
speech. Two representative methods are the DeepFace [9]
and the DeepID [10]. Instead of developing useful facial
representations, another category of approaches aim to learn
an appropriate similarity measure to better drive the matching.
Logistic discriminant metric learning (LDML) [11] and cosine
similarity metric learning (CSML) [12] are among these
algorithms.

Besides the face pair matching scenario, in many identi-
fication and verification applications, due to the difficulty of
gathering face images and the cost for storing and processing
them, only very few or even single sample is provided for
each identity [13]. In such cases, we do not have enough
information to predict the variations in the test samples,
either. To address these problems, quite a few recent attempts
concentrate on exploiting an additional set of face images
to compensate for the lack of representative information [6],
[14], [15]. Generally, face images in this extra set do not
belong to the subject/subjects being compared/tested. Several
terms representing this face set in the literature include the
background database, cohort set, generic set, library, memory,
etc. In this article, we use cohort to indicate this concept, face
images in the cohort set are then called cohort samples. Thus,
we are interested in exploiting useful information from a set
of cohort face images for our face pair matching task.

Parallel to the development of facial feature extraction
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and face matching [16], different face modalities (depth,
thermal, etc) have also been exploited to handle complicated
facial variations [17], [18]. Generally, different face modalities
behave differently when facing different imaging condition-
s/degradations, for example, depth images can handle changes
caused by different poses to some extent, but susceptible to
expression variations. For thermal images, they are sensitive
to the temperature changes of the surrounding environment.
Thus, a reasonable way to utilize these modalities is to fuse
them for the reduction of diverse corrupting factors, which
usually affect different modalities in different degrees. As for
our face pair matching task, fusion of different modalities
certainly offers an alternative to provide supplementary in-
formation for the lack of information. Therefore in this work,
we focus on multimodal face pair matching. Specifically, we
propose a modality-specific Cohort List Comparison (CLC)
scheme to perform this task. To the best of our knowledge
this work proposes the first multimodal cohort based face pair
matching system. More specifically, the main contributions of
this work are:

1) Modality-Specific Cohort List Comparison. To perform
multimodal face pair matching using cohort, we propose to
independently perform a series of cohort list comparisons for
each individual modality, including both Cohort Identity List
Comparisons (CILC) and Cohort Sample List Comparisons
(CSLC). By using both approaches, we expect cohort coeffi-
cients extracted by one approach to be complementary to those
extracted by the other approach, for our face pair matching
task.

2) Application to Multimodal Face Pair Matching. A series
of 1-modal, 2-modal and 3-modal face pair matching experi-
ments are conducted on two recently collected multimodal face
databases to discover the potential of each individual modality
on matching faces, the cohort behavior and the performance
of fusing different modalities.

3) Analysis of Cohort List Comparison. We further provide
an analysis of our CLC including its differences from several
existing cohort investigation approaches and the complemen-
tarity of CILC to CSLC for our face pair matching task.

The rest of the paper is organized as follows: Section II
gives some existing work on face recognition using cohort
information and different modalities. Our proposed multi-
modal complementary cohort strategy is detailed in Section III.
Section IV goes on to test our algorithm on two recently
collected multimodal face databases. Section V is devoted
to the discussion of several issues involved in the proposed
approach. Finally, we conclude the whole work and further
give some interesting future work in Section VI.

II. RELATED WORK

In this section, we provide a short literature review on face
recognition using cohort information and different modalities.

A. Face Recognition Using Cohort Information

Cohort samples, whose identity is different from those
of samples being compared, are early used to improve the

recognition performance of a biometric system. It was ini-
tially proposed for speaker recognition [19], [20], and then
successfully applied to fingerprint verification [21], [22], [23],
face verification [24], sparse representation based face identifi-
cation [25], multi-biometrics [27] and unconstrained face pair
matching [26], [14]. The interested reader is referred to [14]
for further information on using cohort to improve a biometric
system. Here, we present only several existing cohort/cohort
similar techniques related to face recognition.

For comparing two faces under significantly different set-
tings, Schroff. et al proposed to describe an input face image
by an ordered list of identities from a Library [15]. In the
ordered list, identities are ranked according to their similarity
to the input face image. The similarity between two face im-
ages is then computed as the similarity of their corresponding
ordered lists. For the same purpose, Yin et al. proposed to “as-
sociate” a test face with alike identities from an extra generic
identity data set [28]. With the associated faces, the likelihood
whether two input faces are from the same person or not can
then be discriminatively “predicted”. To apply the traditional
sparse representation-based classifier [29] to under-sampled
face identification, an auxiliary intra-class variant dictionary
was employed in [30] to represent possible variations between
training and test images. The dictionary atoms, representing
intra-class sample differences, were computed from a set
of generic faces. To address the same problem, in [31], a
sparse variation dictionary was learned from a generic set to
improve the test sample representation by a single training
sample per person. Liao et al. [32] proposed an alignment-free
sparse representation approach for partial face recognition. The
gallery descriptors used in this approach were extracted from
a set of background faces together with one of the two input
faces. To handle unconstrained face pair matching, Tistarelli
et al. developed a picture-specific cohort score normalization
approach [14], by extracting discriminative cohort coefficients
from a pool of sorted cohort samples using polynomial regres-
sion. Wolf. et al. learned a discriminative model exclusive to
the two face images being compared from a set of background
samples [6]. In another work, an additional identity data set
was employed for building a set of either attribute or simile
classifiers [33]. Li et al. trained a Gaussian Mixture Model
(GMM) on the spatial-appearance features by employing an
independent training set [34], each Gaussian component was
then used to build correspondence of a pair of features to
be matched between two face images. A similar GMM with
diagonal covariances was trained on dense patch features in
[35] to compute the fisher vector representation of a particular
face image. A training set, which does not include samples of
the identity/identities being compared, was employed.

B. Face Recognition Using Different Modalities

In the literature, some significant attempts have been devot-
ed to explore the usefulness of different face modalities. 3D
face recognition is among these techniques [17]. With a 3D
model, face images with different poses can be aligned owing
to the well captured facial geometry information. Furthermore,
the 3D face shape is illumination invariant. This technique
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Fig. 1. Several face images of RGB, depth and thermal modalities from the
database of [43].

does offer a more suitable description of facial features than
2D models, increasing the robustness to viewpoint and lighting
variations. However, the low acquisition efficiency and high
cost of 3D scanners limit its use in practical applications.
With progress in sensor technology, low cost sensors have been
developed capable of capturing less accurate 3D information in
the form of RGB-D images. The Kinect is among such devices,
which can provide synchronized images of both color (RGB)
and depth (D). The color image depicts the appearance and
texture information of a face, while the depth map measures
the distance of each pixel from the camera. Exploiting RGB-D
images has become more and more popular in tackling various
computer vision problems [36], [37], [38]. In [39], [40], [41],
[42], interesting work on using RGB-D images for face recog-
nition was presented. Another less commonly used modality
is the infrared imagery [18]. A thermal (T) infrared image
records the amount of infrared radiation emitted by an object.
The amount of radiation increases with temperature, therefore,
this imagery allows us to see variations in temperature. When
viewed through a thermal imaging camera, humans and other
warm-blooded animals become easily visible against the cool
environment, with or without visible illumination. In Fig. 1, we
show several RGB, depth and thermal images of one person
from the face database of [43].

III. MULTIMODAL COMPLEMENTARY COHORT STRATEGY

In this work, we concentrate on multimodal face pair match-
ing. Consequently, in our problem, for each face of a pair, we
have multiple synchronized images corresponding to different
modalities, as illustrated in Fig. 2 (a). Suppose m shows the
number of the available modalities. For example, in RGB-D
based face recognition, m = 2. For each particular modality,
after matching the corresponding two face images, we can
get a similarity score. In this work, we use cosine similarity
as the similarity measure. Euclidean and Hellinger distances,
however, can be equally used in our proposed framework. In
order to both effectively and efficiently utilize information
provided by different modalities, we employ the score level
fusion strategy, following the taxonomy in information fusion
[44]. In comparison to the decision level fusion, score level
fusion preserves more information, while requires much lower
complexity than the feature level fusion. The schematic pro-
cess is depicted in Fig. 3.

Fig. 2. Examples of test and cohort face images used in our framework. (a)
two test face images; (b) cohort face images.

Fig. 3. Framework of multimodal face pair matching on the score level fusion.
M1,M2, ...,Mm represent the m modalities.

To better drive the matching, we exploit background in-
formation from an extra cohort set. Similarly, in the cohort
set, for each cohort face, we incorporate synchronized images
from different modalities, as shown in Fig. 2 (b). Our proposed
modality-specific approach for multimodal face pair matching
using cohort information is represented in Fig. 4. Take the
RGB modality as an example, we have two input RGB face
images together with a set of cohort RGB face images. By
ranking all the cohort images according to their similarity,
namely cosine similarity, to the two input face images, we
can get two ordered cohort lists, respectively. Next, cohort
information/coefficients embedded in the two sorted cohort
lists can be extracted and further combined with the direct
matching score of the two test face images, i.e., their co-
sine similarity denoted as rawSC, forming the final RGB
contribution (M1contri). In the same way, we can obtain
contributions of other modalities (M2contri, ...,Mmcontri).
The final decision is made by fusing all the m contributions.

The method we developed for extracting cohort information
is based on a series of cohort list comparisons. In CLC,
we include both cohort identity list comparisons and cohort
sample list comparisons. In both comparisons, we have the
same cohort face images from a set of subjects. We call
these subjects cohort subjects or cohort identities. In CILC,
cohort information is extracted from sorted cohort identities,
using their positions in the ranked cohort list. However, we
investigate cohort information from sorted cohort face images
in CSLC by means of ranked cohort scores, i.e., similarity
scores between cohort samples and test face images. The
reason why we use these two different cohort algorithms is
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Fig. 4. Framework of proposed multimodal complementary cohort strategy for face pair matching. M1contri,M2contri, ...,Mmcontri represent
contributions of the m different modalities to the final decision matching.

that we expect cohort information discovered by them to be
supplementary to each other for our face pair matching task
(This will be shown in the experimental result section). Let
I1 and I2 represent the two test face images, say in the RGB
modality, being compared. The cohort set C is composed of
H face images from N subjects. We denote the two sorted
cohort lists, obtained by sorting cohort samples in C according
to their similarity to I1 and I2, as C1 = [c11, . . . , c1H ] and
C2 = [c21, . . . , c2H ], where c11(c21) is the nearest cohort
sample to I1(I2) and c1H(c2H) is the furthest one. Next, we
explain the details of how to implement CILC and CSLC using
C1 and C2.

A. Cohort Identity List Comparison

A visual explanation about how CILC works is displayed
in Fig. 5. We have one genuine pair and one impostor pair.
For the genuine one, the two images faceA1 and faceA2 are
captured with different poses, whereas faceA1 and faceB1 of
the impostor pair are both frontal faces. By ranking all the
cohort images with respect to their closeness to the three test
images, we can get three corresponding ranked cohort lists.
Our CILC approach draws its motivation from the observation
that if two people look like each other, then they should to
some extent share similar expressions, profile views, etc. Let
us look at faceA1 and its cohort list in Fig. 5. Based on the
frontal view, the two cohort subjects marked by solid and
dashed squares look similar to the subject pictured by faceA1.
Correspondingly, they should have similar profile views to the
subject of faceA1. This is verified in Fig. 5 by faceA2 and
its cohort list, where the side views of the two cohort subjects
locate at positions close to faceA2, which is the profile view of
the subject represented by faceA1. Furthermore, the positions
of their side and frontal views in the two cohort lists are not far
from each other. For example, for the cohort subject marked
by the solid square, its side views locate at positions [2, 5] in

the first cohort list, while the positions of frontal views in the
second cohort list are [1, 7, 8, 9, 10]. For an ordering of 1,700
images, [2, 5] and [1, 7, 8, 9, 10] are close positions. On the
other hand, if two people look quite different from each other,
their top ranked cohort lists should include quite few images
of common cohort subjects even when they are captured
under similar imaging conditions, as substantiated in Fig. 5
that faceA1 and faceB1 share zero common cohort identities.
Based on this observation, we can describe a test face image by
its ranked cohort list. For comparing two test face images, we
calculate the similarity of their corresponding ranked cohort
lists as cohort information to assist the comparison.

Our proposed CILC is similar to the Doppelgänger list
comparison developed in [15]. However, each cohort identity
appears only once in the Doppelgänger list, while in our cohort
set, each cohort identity can have multiple images, thus appear-
ing multiple times and corresponding to multiple positions in
the ranked cohort list. As discussed in [15], for distinguishing
between genuine and impostor face pairs, top positions in a
ranked cohort list include far more discriminative information
than later ones. Accordingly, we employ only the first K
cohort samples in C1 and C2 for cohort coefficient computa-
tion, i.e., Coh1 = [c11, . . . , c1K ] and Coh2 = [c21, . . . , c2K ].
The developed algorithm for computing the cohort coefficients
embedded in the ranked cohort lists is described in Alg. 1.

We use coefCI to represent the cohort coefficients extract-
ed by CILC, namely the similarity of I1 and I2 determined
by the similarity of their ranked cohort lists rather than their
cosine similarity. We include three similarity in coefCI ,
which are computed in three different levels. When computing
sim1, for each cohort identity, we employ only its closest
sample to the test image. That is only its first cohort position
is considered. For each cohort identity, let s and t represent the
numbers of its cohort positions previous to K in the two sorted
cohort lists, C1 and C2, respectively. During the computation
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Fig. 5. Visual interpretation of CILC. The cohort set used to compute the ranked cohort list contains 1,700 images from 17 cohort subjects, each with 100
images. Therefore, each ranked cohort list denotes an ordering of all the 1,700 images. The figure displays only the top ten positions, corresponding to the
first 10 closest cohort samples to the test face image. Cohort images marked by the same kind of squares (solid or dashed) share the same cohort identity.
Face images are from the database of [43].

of sim2, we consider the first r cohort positions, r is the
minimum of {s, t}. When computing sim3, all the cohort
positions of a cohort subject are considered as long as they
are previous to K. The computation of sim1, sim2 and sim3
is based on the weighted voting scheme of near neighbors
proposed by Jarvis et al. for clustering [45]. In our following
accumulated similarity,

sim = sim+
(K + 1− r1u)× (K + 1− r2v)

K ×K
(1)

r1u and r2v are positions of the two cohort samples from one
cohort subject in the two ordered cohort lists, respectively.
Then, if both cohort samples are the closest ones to their
corresponding test faces, namely r1u = 1 and r2v = 1, their
contribution to the similarity computation can be calculated
as K ×K. However, if both locate at the furthest positions,
i.e., r1u = K and r2v = K, their contribution turns to 1. This
similarity calculation scheme is in keeping with the notion
that the more similar a cohort sample to the test sample, the
more information about the local density of the test image that
cohort sample can provide. By dividing K×K, we aim to get
normalized contribution. A further normalization procedure is
followed by dividing the number of accumulated contributions,
i.e., ct1, ct2 and ct3 in Alg. 1. The extracted coefCI to
some degree provides invariance to the direct matching score
rawSC across different expressions, poses, etc. A detailed
discussion about the usefulness of coefCI in matching faces
will be given in Section V. In the following sections, for
simplicity, we use coefCI = [sim1, sim2, sim3] to represent
coefCI = [ sim1

ct1 , sim2
ct2 , sim3

ct3 ].

B. Cohort Sample List Comparison

Note that in the above described CILC, cohort coefficients
are calculated by positions of each cohort identity in the ranked
cohort lists. Now we keep on extracting cohort information

Algorithm 1 Cohort coefficient computation by CILC
Input: Coh1, Coh2, N, K;
Output: coefCI;

Set sim1 = 0, sim2 = 0, sim3 = 0;
Set ct1 = 0, ct2 = 0, ct3 = 0;
for i = 1 to N do

Let pos1 = [r11, . . . , r1s] and pos2 = [r21, . . . , r2t]
represent the ranks of the ith cohort subject’s images in
Coh1 and Coh2;
r = min(s, t);
if r ≥ 1 then
sim1 = sim1 + (K+1−r11)×(K+1−r21)

K×K ;
ct1 = ct1 + 1;
for j = 1 to r do

sim2 = sim2 +
(K+1−r1j)×(K+1−r2j)

K×K ;
ct2 = ct2 + 1;

end for
for p = 1 to s do

Find the closest value in pos2 to r1p, denoted as r2q;
sim3 = sim3 +

(K+1−r1p)×(K+1−r2q)
K×K ;

ct3 = ct3 + 1;
end for
for q = 1 to t do

Find the closest value in pos1 to r2q , denoted as r1p;
sim3 = sim3 +

(K+1−r1p)×(K+1−r2q)
K×K ;

ct3 = ct3 + 1;
end for

end if
end for
coefCI = [ sim1

ct1 , sim2
ct2 , sim3

ct3 ];
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embedded in them, but by means of sorted cohort scores be-
tween cohort samples and test samples. To do so, we expect the
extracted cohort coefficients will provide some complementary
information to those discovered by CILC. Given I1 and I2
and their ranked cohort lists C1 = [c11, . . . , c1h, . . . , c1H ]
and C2 = [c21, . . . , c2h, . . . , c2H ], we employ the picture-
specific cohort ordering strategy developed in [14] for CSLC.
For comparing two face pictures, this technique stems from
the observation that cohort samples, sorted by their closeness
to the reciprocal face picture, produce some discriminative
information between genuine and impostor pairs. Polynomial
regression is then used to extract this discriminative informa-
tion.

Let sc1 = [sc11, . . . , sc1h, . . . , sc1H ] denote the cohort
score list of I1 and all the cohort samples in C2. That is,
sc1h is the similarity score between I1 and c2h. Similarly,
sc2 = [sc21, . . . , sc2h, . . . , sc2H ] lists cohort scores of I2 and
all the cohort samples in C1. sc1 and sc2 are the two so-called
picture-specific cohort score lists. Be warned that the ordering
of the cohort score profile for I1 is determined by I2; and that
of I2 is determined by I1. Next, we consider cohort scores in
sc1 and sc2 as discrete points on two functions of rank orders
as follows:

sc1h = f1 (h) (2)

sc2h = f2 (h) (3)

where h = 1, 2, ...,H . Now let us move on to the conception
behind the picture-specific cohort ordering strategy in [14].
If I1 and I2 are from the same subject, their ranked cohort
lists C1 and C2 should to some degree look similar. Note
that scores in sc1 are cohort scores between I1 and all the
cohort samples in C2, which are previously sorted according to
their closeness to I2. Consequently, sc1 (or f1) should follow
a decreasing profile as the cohort sample order h increases.
However, if I1 and I2 are from an impostor pair, sc1 (or f1)
should correspond to a disorganized/flat one. Likewise, we can
get a similar conclusion for sc2 (or f2).

Now we focus on how to extract this discriminative infor-
mation between cohort score profiles of genuine and impostor
pairs. The two functions are approximated using polynomial
regression as follows:

f1 (h) ≈ w1nh
n + w1,n−1h

n−1 + ...+ w11h+ w10 (4)

f2 (h) ≈ w2nh
n + w2,n−1h

n−1 + ...+ w21h+ w20 (5)

where w1 = [w10, w11, ..., w1n] and w2 = [w20, w21, ..., w2n]
are the two approximated polynomial coefficient vectors. Fur-
ther, cohort scores in sc1 and sc2 can be approximated by
the n+ 1 coefficients in w1 and w2, respectively. Finally, we
can use w1 and w2 to approximately represent the discrimi-
native information included in sorted cohort scores and have
coefCS = [w1, w2].

In Fig. 6, we display the two picture-specific cohort score
profiles (sc1 and sc2) as well as their fitted curves (w1 and
w2) for a genuine pair (denoted as “gPair”) and an impostor
pair (“iPair”) to demonstrate the effectiveness of our extracted
coefCS. The two pairs are selected from the RGB modality

Fig. 6. Cohort score profiles and the corresponding fitting lines for a genuine
pair and an impostor pair, computed from the RGB modality of the database of
[43]. The cohort set contains 1,700 face images, thus we have a total of 1,700
cohort orders and 1,700 cohort scores in sc1 and sc2. However, we employ
only half of them for polynomial regression by sampling the 1,700 sorted
cohort scores in a step of 2. Accordingly, the cohort orders are from 1 to 850.
“gPair” and “iPair” stand for the genuine and impostor pairs, respectively.

of the database of [43]. We simply employ linear functions to
fit cohort score profiles, i.e., the polynomial degree n = 1. As
can be seen, noises presented on the cohort score profiles are
significantly reduced after polynomial regression, making the
discriminative information embedded in sc1 and sc2 between
genuine and impostor pairs more significant. This is illustrated
in the fitted lines in Fig. 6, where two lines of the genuine pair
follow a downslope path as the cohort sample order increases,
whereas the course of the impostor lines is flatter.

C. Classification

Let rawSC signify the matching score of I1 and I2 ob-
tained by directly comparing them. By the above presented
CILC and CSLC, we can obtain two cohort coefficients
coefCI and coefCS. Each of {rawSC, coefCI, coefCS}
contains different but complementary information which can
be combined to enhance the classification performance. Up
to now, we have finished comparing two test face images
by our modality-specific cohort list comparison using the
RGB modality. We use M1contri to indicate the fusion of
[rawSC, coefCI, coefCS]. By applying the above described
procedures to other modalities, we can get their corresponding
contributions: M2contri,..., Mmcontri. Next, we aggregate
these contributions by training a logistic regression classifi-
er [46], which can provide discriminative weights on each
parameter of [M1contri,M2contri, ...,Mmcontri]. The final
matching score is approximated as:

finalSC = P (G |M1contri,M2contri, ...,Mmcontri)
(6)

where P (G |M1contri,M2contri, ...,Mmcontri) represents
the probability of being a genuine pair. In other words, the
larger finalSC is, the more probable I1 and I2 come from
the same person.
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IV. APPLICATION TO MULTIMODAL FACE PAIR MATCHING

In this section, we apply our proposed modality-specific
cohort list comparison to multimodal face pair matching. First,
we describe the employed databases of KinectFaceDB [39]
and RGB-D-T [43] which are used to determine the actual
performance of the proposed approach.

A. The KinectFaceDB Database

KinectFaceDB is a publicly available face database collected
by the Kinect sensor [39]. It consists of different face modal-
ities, including the RGB image, depth map and computed 3D
point cloud. For each modality, there are 936 shots from 52
individuals. The database was recorded in two different ses-
sions, with 5-14 day intervals between them. In each session,
9 facial variations were recorded, i.e., neutral face, smiling,
mouth open, strong illumination, occlusion by sunglasses,
occlusion by hand, occlusion by paper, right face profile and
left face profile. Thus, each subject has 18 face images for each
modality. For the depth map, the authors provide a .bmp depth
image and a .txt file with the depth information of each pixel
in the original coordinates. We use the .bmp depth map for our
experiments. Fig. 7 illustrates the RGB and depth images of
one subject from one session. With the RGB and depth images,
the 3D coordinates can be computed directly. However, the
low quality/depth resolution of the Kinect 3D model makes
the face recognition performance not promising, as shown in
[39]. Thus, in this work, we use only the RGB and depth
modalities for our multimodal face recognition.

The evaluation protocol designed by authors of the Kinect-
FaceDB database is for face identification and face verifica-
tion. To benchmark our algorithm, we define a new protocol
specific for face pair matching. For each modality, we divide
the 52 subjects into three folds, which includes 17, 17 and
18 subjects, respectively. With such a division scheme, the
subjects are disjoint from one another in the three folds.
Consequently, there are 17 × 18 = 306, 17 × 18 = 306 and
18× 18 = 324 images in the three folds, as listed in Table I.
We perform 3-fold cross validation experiments. In each one
of the three experiments, one fold is used for evaluation, one
is the development set, and the remaining one is used as the
cohort set. When we perform face matching in the evaluation
and development sets, each face image is compared against all
the remaining images. For example, if Fold 1 is used as the
development/evaluation set, then the number of total matching
is C2

306 = 46, 665, including 17 × C2
18 = 2, 601 genuine and

44, 064 impostor matches. Be warned that, in such defined
protocol, we can cover a number of challenging matches. For
example, a right profile of a person is compared with his/her
occluded face by the paper. If one fold is used as the cohort
set, then for both CILC and CSLC, all the images in this fold
are used as cohort samples. The data configuration of the 3
folds is listed in Table I.

B. The RGB-D-T Face Database

In [43], the authors organized a face database of 51 persons
including 45,900 facial images of synchronized RGB, depth

TABLE I
DATA CONFIGURATION OF THE 3 FOLDS ON KINECTFACEDB.

Fold 1 2 3
# subjects 17 17 18
# images 306 306 324
# total matches 46,665 46,665 52,326
# genuine matches 2,601 2,601 2,754
# impostor matches 44,064 44,064 49,572
# cohort samples 306 306 324

and thermal modalities. The Microsoft Kinect for Windows
was used to capture RGB and depth images, while thermal
images are obtained by the thermal camera AXIS Q1922.
This database incorporates three capturing scenarios, recording
facial appearance variations due to different poses, expressions
and illumination conditions. In each scenario, there are 300
images for each person, with 100 RGB, 100 depth and 100
thermal synchronized pictures. Together with the database,
the ground-truth data representing coordinates of the face
bounding box is also provided for each image. With such a
ground-truth data, face region can be easily detected. Fig. 1
displays several detected face regions from this database.

As presented above, each subject has 900 synchronized
images from RGB, D and T modalities, with each modality
containing 300 images. In our experiments, for each modality,
we select only 100 images from the entire 300 images of
one subject due to the high similarity between neighbour-
ing images. These 100 images include images from all the
three sessions. Therefore, in our protocol, we employ only
51×100 = 5, 100 images for each modality. For each modality,
the total 5,100 images are separated into three folds, with
each fold 1,700 images from 17 subjects. Similarly, in these
three folds, the subjects are disjoint from one another. Next,
we can conduct 3-fold cross validation experiments as on
the KinectFaceDB database. When we perform face matching
in the evaluation and development sets, each face image is
compared against all the remaining 1, 700−1 = 1, 699 images.
In total, we have C2

1,700 = 1, 444, 150 matches, including
17×C2

100 = 84, 150 genuine and 1, 360, 000 impostor match-
es. For the cohort set, we employ all the 1,700 images for
both CILC and CSLC. Table II lists the data configuration of
individual folds on the RGB-D-T database.

C. Face Pair Matching Pipeline

Here, we provide some details about the preprocessing,
feature extraction and face matching involved in our face pair
matching pipeline.

1) Preprocessing: When dealing with RGB images, we first
convert them to grayscale ones on both databases. For the
RGB-D-T database, we directly detect the face region using
the available ground-truth information. For KinectFaceDB,
based on the manual landmarks provided by the authors,
the images are first cropped from 256 × 256 to 140 × 120
pixels, with distance between the two eye centers set to
60 pixels. After cropping, the coordinate of the eye center
(vertical, horizontal) is equal to (40, 60). For the right (left)
profile images, the left (right) eye and the nose are used to
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Fig. 7. Face images of one subject from one session corresponding to different facial variations on the KinectFaceDB database. The lower depth maps are
aligned with the upper RGB images. (a) neutral; (b) smiling; (c) mouth open; (d) strong illumination; (e) sunglass occlusion; (f) hand occlusion; (g) paper
occlusion; (h) right profile; (i) left profile.

TABLE II
DATA CONFIGURATION OF INDIVIDUAL FOLDS ON RGB-D-T.

Fold # subjects # images # total matches # genuine matches # impostor matches # cohort samples
1/2/3 17 1,700 1,444,150 84,150 1,360,000 1,700

Fig. 8. Aligned grayscale images and depth maps on the KinectFaceDB
database.

align them. These profile images are also cropped to 140×120
pixels. For the right profile images, the horizontal axis of the
nose is set to 11 and the vertical axis of the left eye is set to
40. Similarly, for the left profile images, the horizontal axis
of the nose is set to 110 and the vertical axis of the right eye
is set to 40. In Fig. 8, we show the aligned grayscale images
and depth maps. As can be seen, the original depth maps are
relatively noisy. For example, the depth values on some pixels
are sensed as 0mm but their true values are not zero. To fill
these holes, closing operation is further applied to depth maps.
The improved depth maps are also illustrated in Fig. 8.

2) Feature Extraction: We compute both Local Binary
Patterns (LBP) [47] and Histograms of Oriented Gradients
(HOG) [48] for facial feature representation. For computing
LBP, we first resize the preprocessed face images to a fixed
size 130 × 100 and then divide each face image into non-
overlapping blocks with size 10 × 10. For each block, we
extract a 59-bin uniform LBP histogram. By concatenating
histograms of all the blocks, we can get a final feature vector
of 7,670 dimension. Before extracting the HOG feature, the

preprocessed images are first resized to 128×96. Next, we use
the settings adopted in [48] for our feature extraction. The cell
size is 8×8, and each block contains 2×2 cells. The number
of orientation bins in the histogram of a cell is set to 9. The
resulting HOG feature vector is of length 5,940. Since in this
work, the focus is on using cohort information and multiple
modalities for face pair matching, we do not perform further
descriptor fusion, which results in a single descriptor of length
7,670 + 5,940, but simply use LBP and HOG separately.

3) Face Matching: It is worth emphasizing again that in
our work, for directly matching two test face images, ranking
all the cohort samples according to their similarity to the
test sample and computing cohort scores between cohort
samples and test samples, we employ the cosine similarity
as the similarity measure. For polynomial regression involved
in CSLC, we adopt a linear function to fit the two cohort
score functions f1 (h) and f2 (h). For KinectFaceDB, there are
H = 306/324 cohort scores in sc1 and sc2, while H = 1, 700
for the RGB-D-T database. Be warned however, for RGB-D-
T, we employ only half of them for polynomial regression by
sampling the H sorted cohort scores in a step of 2. That is,
we use H

2 = 850 to regress the two cohort score profiles. By
doing this, we can perform polynomial regression in a more
efficient way but with slight information loss. For training
the logistic regression classifier, we use l2-penalized logistic
regression which leads to maximum likelihood estimate [49],
[50]. Finally, the Equal Error Rate (EER) is used as the
performance evaluation measure [51].

D. Experimental Results

We perform a series of experiments on multimodal face pair
matching to investigate the power of each particular modality
on matching faces, the cohort behavior and the matching
performance achieved by fusing different modalities.

1) Potential of Individual Modality: The first sequence of
experiments is conducted to find out the capacity of each
individual modality on matching faces. In order to get a
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TABLE III
EERS (%) OF 3-FOLD CROSS VALIDATION EXPERIMENTS BY USING TWO

INDIVIDUAL MODALITIES ON KINECTFACEDB.

Feature LBP HOG
Modality RGB D RGB D
Fold1 42.37 48.06 43.87 46.14
Fold2 44.29 47.33 46.17 46.33
Fold3 42.48 47.46 44.66 45.86
Mean 43.05 47.62 44.90 46.11

TABLE IV
EERS (%) OF 3-FOLD CROSS VALIDATION EXPERIMENTS BY USING THREE

INDIVIDUAL MODALITIES ON RGB-D-T.

Feature LBP HOG
Modality RGB D T RGB D T
Fold1 27.04 29.79 31.42 29.06 31.15 27.87
Fold2 25.18 30.44 29.27 29.87 30.82 29.27
Fold3 27.95 34.95 34.01 33.48 34.81 35.22
Mean 26.72 31.73 31.57 30.80 32.26 30.79

clear insight of this, in these experiments, we directly use the
raw matching score rawSC for the classification instead of
getting help from cohort. We report the results of the 3-fold
experiments on the two databases as well as their mean EERs
in Table III and Table IV, respectively. From Table III, it is
easy to conclude that with both LBP and HOG, using the RGB
modality achieves much lower EERs than using depth maps
on the KinectFaceDB database. On the RGB-D-T database,
when LBP is used as the facial feature, the best performance is
obtained by the RGB modality. Depth and thermal modalities
lead to similar performance. However, when using HOG as
the feature, we get the best performance with the thermal
modality in most cases. As shown in the above results, LBP
works better on RGB images compared to the other modalities
because LBP is known to be more depended on the texture
[52], which is more visible in RGB than in thermal and depth.
HOG, however, is more depended on the edge information
[48], [53], [54]. The edges are more pronounced in thermal
compared to RGB and depth. From Fig. 1, we can observe
that edge information in depth is the least noticeable. This
is consistent with the above experimental resutls that HOG
works better with thermal and RGB than with depth.

2) Impact of Parameter K on CILC Performance: As
described in Section III-A, for all the H positions in the ranked
cohort list, we employ only the top K positions. Therefore, it
is interesting to find out the impact of different K values on
the generalization performance. For this issue, we still perform
experiments independently for each modality. In addition, we
do not take cohort coefficients determined by CSLC into
account, as it does not change the influence of K. Finally, the
input of our classifier becomes [rawSC, coefCI]. In Table
V, we show the EERs obtained by CILC with different values
of K on one fold of KinectFaceDB, using the LBP feature.
The results of RGB-D-T are reported in Table VI. We further
list the EERs achieved by using only the raw matching score
rawSC, denoted as “noCLC” in the two tables. It is observed
that K does not affect the performance significantly. In all our
following experiments, therefore we simply choose K = 50

TABLE V
COMPARATIVE EERS (%) OBTAINED BY CILC WITH DIFFERENT K
VALUES FOR SINGLE MODALITY ON KINECTFACEDB, USING LBP.

Modality noCLC K=50 K=100 K=200 K=300
RGB 42.37 32.06 34.45 32.87 34.18
D 48.06 41.41 44.18 43.21 44.83

TABLE VI
COMPARATIVE EERS (%) OBTAINED BY CILC WITH DIFFERENT K

VALUES FOR SINGLE MODALITY ON RGB-D-T, USING LBP.

Modality noCLC K=100 K=300 K=500 K=700
RGB 27.04 24.20 24.42 23.81 23.77
D 29.79 30.38 27.48 26.55 26.52
T 31.42 28.71 30.15 30.17 29.34

and K = 300 for KinectFaceDB and RGB-D-T, respectively.
3) Discriminative Information Discovered by CSLC: Now

we visualize the discriminative information embedded in sort-
ed cohort scores discovered by CSLC for each modality.
The experiments are conducted on one fold of the RGB-D-
T database. Thus, we have 84,150 genuine and 1,360,000
impostor pairs. For each pair, we can get two picture-specific
cohort score profiles sc1 and sc2, each of which is a single
vector of 850. Correspondingly, we can get a total of 84, 150×
2 = 168, 300 genuine and 1, 360, 000 × 2 = 2, 720, 000
impostor cohort score profiles. Next, we respectively compute
the mean and standard deviation of these cohort score profiles.
Fig. 9 shows the cohort score distribution using LBP for each
modality. By illustrating the mean of large numbers of cohort
score profiles, we can get smoother cohort score distribution
than directly displaying single cohort score profile, i.e., the
noisy profiles shown in Fig. 6. As noticed from these figures,
the discriminative information between genuine and impostor
pairs is made explicit by CSLC.

4) Modality-Specific Cohort Behavior: Now we perform a
group of experiments to unearth the cohort behavior. Recall
that for each modality, the final contribution to matching
the two test face images is [rawSC, coefCI, coefCS] =
[rawSC, sim1, sim2, sim3, w1, w2]. By cohort behavior, we
are driving at the level of useful information that each in-
dividual cohort coefficient can offer to the pair matching
task, namely their contributions. We quantitatively analyze this
cohort information by computing how much improvement we
can achieve in the presence of different cohort coefficients
compared to the baseline system using only rawSC. We use
a group of tags to represent different systems, as listed in Table
VII. Thus, “noCLC” denotes the baseline system using only
rawSC and “CILC1” is the system using [rawSC, sim1].
“CILC” indicates integrating only cohort identity list compar-
ison with the direct matching score, i.e., [rawSC, coefCI].
In the system of “CLC”, we implement our proposed CLC by
including both CILC and CSLC.

The mean EERs of the 3-fold cross validation experiments
using both LBP and HOG are reported in Table VIII and
Table IX, for KinectFaceDB and RGB-D-T, respectively. As
observed, by using either CILC or CSLC, the EER is signif-
icantly reduced on both databases. However, CSLC achieves
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Fig. 9. Distribution of cohort scores generated by ordered cohort samples for the three modalities on the RGB-D-T database, using LBP.

TABLE VII
TAGS USED TO REPRESENT DIFFERENT SYSTEMS.

Tag noCLC CILC1 CILC2 CILC3 CILC

System [rawSC] [rawSC, sim1] [rawSC, sim2] [rawSC, sim3] [rawSC, coefCI]

Tag CSLC1 CSLC2 CSLC CLC

System [rawSC,w1] [rawSC,w2] [rawSC, coefCS] [rawSC, coefCI, coefCS]

much lower EER than CILC. Take the HOG feature as an
example, on RGB-D-T, the reduced EERs by CILC are 5.61%,
3.98% and 4.97% for RGB, depth and thermal modalities,
respectively. While the three figures achieved by CSLC are
13.99%, 10.14% and 14.89%, respectively. One reason might
be the largely suppressed noise on sorted cohort score profiles
by polynomial regression as shown in Fig. 6. Another reason
might be the small number of cohort identities included in the
cohort set. In our RGB-D-T experiments, the cohort set con-
tains 1,700 face images from only 17 cohort identities, while
in [15], the authors employed a Library of 750,000 face images
from 337 subjects. By integrating CILC into CSLC, i.e., our
proposed CLC, we do get some improvement. In Section V,
we shall discuss the necessity of CILC, by showing its com-
plementarity to CSLC for our face pair matching. Further, we
observe that the three similarity measures [sim1, sim2, sim3]
we designed lead to different performance, by combining them
together, we achieve the best performance in most cases.
Similarly, in some cases, w1 and w2 discovered by CSLC
produce largely different performance, however by fusing
them, we get better results than using either of them. This
demonstrates again the effectiveness of the picture-specific
cohort ordering strategy proposed in [14].

Now let us go back to Section IV-D1 about the potential
of each individual modality on matching faces. By integrating
CLC, the lowest EER (25.08%) is achieved by using the RGB
modality with LBP on KinectFaceDB. While on the RGB-
D-T, the best performance (14.96%) is obtained by using the
thermal modality with HOG. Observe that with thermal, using
LBP achieves much higher EER (23.14%) than HOG. This
again demonstrates that HOG is more effective than LBP for
capturing temperature variations. As shown in Table IV, using
the depth modality leads to inferior performance than RGB and

TABLE VIII
MEAN EERS (%) OF 3-FOLD CROSS VALIDATION EXPERIMENTS BY USING

DIFFERENT SYSTEMS ON KINECTFACEDB.

Feature LBP HOG
Modality RGB D RGB D
noCLC 43.05 47.62 44.90 46.11
CILC1 36.22 43.11 38.74 41.88
CILC2 36.69 43.19 38.74 41.03
CILC3 33.92 41.30 35.31 39.31
CILC 33.74 41.03 35.21 39.47
CSLC1 27.75 38.70 31.44 37.70
CSLC2 28.25 37.50 31.50 37.90
CSLC 27.14 35.68 29.10 34.43
CLC 25.08 34.93 27.71 33.71

TABLE IX
MEAN EERS (%) OF 3-FOLD CROSS VALIDATION EXPERIMENTS BY USING

DIFFERENT SYSTEMS ON RGB-D-T.

Feature LBP HOG
Modality RGB D T RGB D T
noCLC 26.72 31.73 31.57 30.80 32.26 30.79
CILC1 25.30 28.37 28.99 26.68 29.75 26.32
CILC2 24.40 28.75 29.63 26.63 29.82 28.02
CILC3 23.98 28.12 28.42 25.78 29.09 26.51
CILC 23.51 27.49 28.20 25.19 28.28 25.82
CSLC1 22.24 28.48 27.28 25.65 30.90 27.62
CSLC2 22.34 17.54 30.36 18.53 23.86 16.91
CSLC 18.90 16.61 24.64 16.81 22.12 15.90
CLC 17.42 16.07 23.14 16.22 21.13 14.96

T modalities on the RGB-D-T database. However, by using
CLC, we achieve the best performance (16.07%) with depth
maps when LBP is used as the facial feature.

Table VIII and Table IX show the absolute improvement
on matching performance induced by using cohort. To better
evaluate the impact of CLC, we compute the relative improve-
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TABLE X
MEAN EERS (%) OF 3-FOLD CROSS VALIDATION EXPERIMENTS BY USING

RGB-D ON KINECTFACEDB.

noCLC CILC CSLC CLC
LBP 38.00 31.48 26.02 24.31
HOG 41.07 34.21 29.41 27.55

ment of a system using cohort with respect to the performance
of the baseline system without cohort. The evaluation measure
is the relative change of EER used in [14], which is computed
as:

rel. change of EER =
EERcohort − EERnoCohort

EERnoCohort
(7)

where EERcohort is the EER of a system using cohort, while
EERnoCohort is the EER of the baseline system. A negative
change in the EER implies an improvement over the baseline
system. Since there are three experiments corresponding to
three folds, we summarize the results in a boxplot. Fig. 10
reports the results for the three modalities on RGB-D-T using
the LBP feature. From these figures, we can clearly observe
the relative contribution of each cohort coefficient to our pair
matching task.

5) Fusion of Different Modalities: Finally, we fuse dif-
ferent modalities to see the improvement achieved by our
multimodal complementary cohort strategy. Here, m = 2 for
the KinectFaceDB database, while the value of m is 3 for
the RGB-D-T database. The results on the two databases are
listed in Table X and Table XI, respectively. By comparing
Table X to Table VIII, we find in most cases, using RGB-
D leads to better performance than using either of them on
KinectFaceDB. For both LBP and HOG, the best results are
obtained by our multimodal cohort strategy, i.e., RGB-D with
CLC. Their corresponding EERs are 24.31% and 27.55%.
Similarly, by comparing Table XI to Table IX, using RGB-
D-T with CLC achieves the lowest EERs, which are 12.31%
and 14.16% for LBP and HOG, respectively.

V. ANALYSIS OF COHORT LIST COMPARISON

In this section, we discuss several issues involved in our
cohort investigation algorithm including its differences from
existing cohort algorithms and the complementarity of CILC
to CSLC for our face pair matching problem. To the best
of our knowledge, this work, for the first time, introduces
cohort investigation to multimodal face pair matching, as all
the existing algorithms using cohort focus on the widely used
RGB or intensity modality. Furthermore, by incorporating
CILC (extracting cohort coefficients via sorted cohort position-
s) and CSLC (extracting cohort information via sorted cohort
scores), we can comprehensively exploit the fixed cohort set.
For performing CSLC, we employ exactly the picture-specific
cohort ordering strategy proposed in [14]. When doing cohort
identity list comparison, we borrow a similar idea to the
Doppelgänger list comparison developed in [15]. Next, we list
several differences between our CILC and the Doppelgänger
list comparison.

As mentioned in Section III-A, in the Doppelgänger list,
for each cohort identity, only one cohort face sample (the

closest one to the test face image) is considered to calculate
the similarity. This similarity is actually equal to our sim1 in
coefCI = [sim1, sim2, sim3]. On the other hand, there are
a set of face images for each cohort identity in our cohort
set. Thus, each cohort identity can appear multiple times
corresponding to multiple positions in the ranked cohort list.
To compute similarity between such cohort lists, we designed
two additional algorithms resulting in two similarity measures
sim2 and sim3. Another difference lies in the similarity nor-
malization. As noted in Alg. 1, for computing all sim1, sim2
and sim3, we employ a divisor, i.e., K×K. By doing this, we
actually perform a normalization on the similarity. A further
normalization procedure is followed by dividing the number of
accumulated contributions. There is no such a normalization
in [15]. Besides, in their approach, only the extracted cohort
information was employed for the classification without the
raw matching score taken into account. We in fact incorporate
the coefCI into the rawSC to assist the matching. This is
consistent with the notion that the raw matching score contains
much more information to drive the matching than cohort
coefficients. Finally, the Doppelgänger list is computed using
a large Library including 750,000 images from 337 subjects.
While in our approach, there are only 306/324 images from
17/18 cohort subjects on the KinectFaceDB database and 1,700
images from 17 cohort subjects on the RGB-D-T database.

As reported in our experiments, the amount of reduced EER
achieved by CILC is much less than that brought about by
CSLC. By integrating CILC to CSLC, we observe that cohort
coefficients extracted by CILC indeed contain some comple-
mentary information to coefCS. We take an example for this.
In Table XII, we list the output of our logistic regression clas-
sifier on the RGB-D-T database, i.e., the probability of being a
genuine pair for the two test pairs in Fig. 5. Together with the
classifier output, we list also its threshold. Manifestly, a larger
probability than the corresponding threshold leads to a genuine
pair, whereas a lower one corresponds to an impostor pair.
We use “gPair” (genuine pair) to denote{faceA1, faceA2}
and “iPair” (impostor pair) to represent {faceA1, faceB1}.
LBP is used as the facial feature. For the genuine pair, using
the direct matching score gets a probability of 0.1964, while
the threshold is 0.5659. Obviously, the classifier will wrongly
classify it into an impostor pair. By CILC, both the probability
and the threshold increase. However, the probability increases
much more than the threshold, leading to a higher probability
than the threshold and thus a right decision. Similarly, the
probability and the threshold increase after using CSLC,
whereas the probability does not increase enough to exceed
the increased threshold, thus resulting in still a wrong decision.
For the impostor pair, the three systems can all achieve a right
decision.

VI. CONCLUSION AND FUTURE WORK

In this paper, to handle large facial variation, we addressed
the face pair matching issue by fusing different face modal-
ities. By doing this, we can reduce the impact of diverse
degrading factors, which usually affect different modalities
in different degrees, on face matching performance. For the
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Fig. 10. Boxplot of the relative change of EER using different systems for the three modalities on the RGB-D-T database, using LBP.

TABLE XI
MEAN EERS (%) OF 3-FOLD CROSS VALIDATION EXPERIMENTS BY FUSING DIFFERENT MODALITIES ON RGB-D-T.

Feature LBP HOG
Modality RGB-D RGB-T D-T RGB-D-T RGB-D RGB-T D-T RGB-D-T
noCLC 27.01 26.28 30.37 26.35 31.07 30.85 30.81 30.85
CILC 22.66 22.11 25.04 21.56 24.48 23.67 24.60 23.31
CSLC 13.05 19.18 14.28 13.12 16.74 15.12 15.90 15.18
CLC 12.39 16.95 13.46 12.31 15.91 14.18 14.74 14.16

TABLE XII
CLASSIFIER OUTPUTS AND THRESHOLDS FOR THE GENUINE AND

IMPOSTOR PAIRS IN FIG. 5.

Probability Threshold
System noCLC CILC CSLC noCLC CILC CSLC
gPair 0.1964 0.9230 0.7576 0.5659 0.8096 0.8593iPair 0.3281 0.3593 0.0395

lack of representative information due to the few available
face images, we proposed to further exploit a cohort set for
additional information to better drive the matching. On two
recently organized multimodal face databases, we investigated
the power of each individual modality on matching faces
and the performance achieved by fusing different modalities.
Further, a set of experiments were performed to discover how
much useful information the developed cohort investigation
scheme can provide for the final matching. We observed
that with different individual modalities, we got different
face pair matching performance. By applying our multimodal
complementary cohort strategy, we obtained promising results
on both databases.

As facial biometric systems are expected to operate under
challenging conditions, fusing different modalities and em-
ploying cohort information certainly offer two promising alter-
natives to render them more robust. For taking full advantage
of different modalities, there is a great demand for developing
modality-specific facial representations. It is equally impor-
tant to design facial descriptors which take into account the
relationship among different modalities. In addition, cohort
coefficients discovered by CILC provide limited information
for driving the matching, as seen from our experimental

results. To better exploit cohort information from sorted cohort
identities, further research might benefit from developing more
effective similarity measures between sorted cohort lists and
employing a much larger cohort set including large number of
cohort identities.
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[38] A. Ramey, V. González-Pacheco and M. A. Salichs, Integration of a
Low-Cost RGB-D Sensor in a Social Robot for Gesture Recognition. In:
Proceedings of International Conference on Human-Robot Interaction, pp.
229–230, 2011.

[39] R. Min, N. Kose and J.-L. Dugelay, KinectFaceDB: A Kinect Database
for Face Recognition. IEEE Transactions on Systems, Man, and Cyber-
netics: Systems, vol. 44, no. 11, pp. 1534–1548, 2014.

[40] B.Y.L. Li, A.S. Mian, W. Liu and A. Krishna, Using Kinect for Face
Recognition Under Varying Poses, Expressions, Illumination and Dis-
guise. In: Proceedings of IEEE Workshop on Applications of Computer
Vision, pp. 186–192, 2013.

[41] M.P. Segundo, S. Sarkar, D. Goldgof L. Silva and O. Bellon, Continuous
3D Face Authentication using RGB-D Cameras. In: Proceedings of IEEE
Conference on Computer Vision and Pattern Recognition Workshops, pp.
64–69, 2013.

[42] G. Goswami, M. Vatsa and R. Singh, RGB-D Face Recogntion with Tex-
ture and Attribute Features. IEEE Transactions on Information Forensics
and Security, vol. 9, no. 10, pp. 1629–1640, 2014.

[43] O. Nikisins, K. Nasrollahi, M. Greitans and T.B. Moeslund, RGB-D-
T based Face Recognition. In: Proceedings of the 22nd International
Conference on Pattern Recognition, 2014.

[44] A. Ross and A. Jain, Information Fusion in Biometrics. Pattern Recog-
nition Letters, vol. 24, pp. 2115–2125, 2003.

[45] R.A. Jarvis and E.A. Patrick, Clustering Using a Similarity Measure
Based on Shared Near Neighbors. IEEE Transactions on Computers, vol.
C-22, no. 11, pp. 1025–1034, 1973.

[46] A.Y. NG and M.I. Jordan On Discriminative vs. Generative classifiers:
A comparison of logistic regression and naive Bayes . Advances in Neural
Information Processing Systems, pp. 841–848, 2001.

[47] T. Ahonen, A. Hadid and M. Pietikäinen, Face Recognition with Local
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