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Abstract: In the modern world, cities need to keep up with the demand for mobility, efficient 
infrastructure and environmental sustainability. The future smart cities use intelligent information 
and communication technologies to raise the quality of life. This includes computer vision as one 
of the main technologies. It can observe and analyse human activities from a distance in a non-
invasive manner. Traditional computer vision utilises RGB cameras, but problems with this 
sensor include its light dependency, and the privacy issues that can be raised by people being 
observed. In this paper, we propose the use of thermal imaging in real-time smart city 
applications. Thermal cameras operate independently of light and measure the radiated infrared 
waves representing the temperature of the scene. In order to showcase the possibilities, we 
present five different applications which use thermal imaging only. These include both indoor 
and outdoor scenarios with the purposes of people detection, counting and tracking, as well as 
one application for traffic safety evaluation.  
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1 Introduction 

Contemporary urbanisation on a global scale has led to  
a number of challenges in terms of environmental stress, 
continuing migration, demographic shifts and urban 
liveability. In the literature on the application of digital 
technologies to these vast urban challenges, the notion of a 
‘Smart City’ is frequently seen (Batty et al., 2012; 
Copenhagen Cleantech Cluster, 2012). If one sets aside the 
policy and branding value of an overarching, but rather 
simplifying term, the notion of a ‘Smart City’ carries the 
potential for engaging with these urban challenges. The 
important feature to notice is that the contemporary city no 
longer can be comprehended as a bounded and mono-
nuclear unit; rather, cities are connected (or dis-connected) 
in globally reaching networks that create new dynamics of 
mobility, regardless of whether these are of the nature of 
moving goods, ecological flows or in-migrating people 
(Jensen, 2013a). But next to these vast new material 
transformations, the ‘network city’ has also become over-
layered with new types of digital technology, leading some 
scholars to speak of a ‘sentient city’ (Shepard, 2011) or a 
‘programmable city’ (Kitchin, 2011). The essence of this 
development is that networked technologies are now able to 
track and detect different types of movement (container, 
information, cars, or people) to such an extent that we may 
speak of a new ‘digital layer’ to the city (Jensen, 2013a). 
Obviously, many scenarios may play out from this. Some 
would be focusing on the issue of surveillance and control, 
whereas others would put focus on the potential for these 
new technologies to optimise the flow of people, goods and 
information, as well as to engage citizens more in their 
cities and to create better environmental solutions. 
However, in order to explore the potential of these new 
networked technologies, and thus apply them in ‘smart’ 
ways, basic research needs to be undertaken. One must 
explore what the new networked technologies may afford in 
solutions to the grand challenges facing the contemporary 
cities globally. As we are beginning to see cities where real-
time location aware data is being created on a continuous 
basis, we may start to ask how such data can inform better 
systems of traffic planning, city governance, energy 
provision and other types of urban utilities (Jensen, 2013b). 
But moreover, the new ‘digital layer’ opens up a discussion 
of whether it is possible to involve citizens more in the 
social life of public spaces, if the new technologies hold  
the potential to create new aesthetic experiences ‘on top’ of 
the existing ones; and if real-time data fed back to city 
inhabitants will create a whole new experience of the city.  
 

These issues are relevant dimensions of a new research 
agenda on the ‘Smart City’, and in this paper we will be  
focusing on one particular combination of technologies that 
we think need to be researched for their undiscovered 
potentials. 

Computer vision technologies have great potential in 
smart city applications, owing to the non-intrusive nature of 
the sensor. With cameras, it is possible to record data at a 
distance and at real-time. There are, however, some problems 
with regular RGB cameras. First of all, the deterrent effects of 
surveillance and control caused by cameras are high, as it is 
possible to visually recognise and follow people. (In some 
surveillance situations, discovery of a person’s identity is the 
ultimate goal; but in general, data acquisition is preferred to 
be anonymous.) Moreover, robust systems can be very hard 
to develop, as cameras capture reflected lighting. Thus, they 
depend on sufficient light in order to capture anything, and 
the visual perception of things changes with the lighting. In 
the context of smart cities, these problems are critical, as 24 
hour operation is assumed in many applications. This is not 
always possible to achieve with RGB sensors, while the 
natural lighting changes with the weather and the nights are 
dark. An alternative sensor, which is still non-intrusive, but 
also independent of lighting, is the thermal camera; and with 
this sensor, privacy issues are also eliminated. Thermal 
cameras capture the long-wavelength infrared radiation, 
which is radiated from all objects with a temperature  
above absolute zero. The amount of radiation depicts the 
temperature of the object, resulting in an image that visualises 
the temperature of the scene. People and objects with a 
temperature different from the surroundings can therefore be 
detected both day and night. Figure 1 shows an example of a 
thermal image from an urban square. 

Figure 1 Thermal image overlooking an urban square 
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We have in recent years done a large amount of research in 
thermal imaging for different applications related to the 
Smart City. The purpose of this paper is firstly, to introduce  
the thermal sensor and its potential to the computer vision 
research community. We will compare and discuss the use 
of thermal and RGB sensors for real-time people detection 
and tracking. Furthermore, we will showcase five successful 
use-cases where we have applied computer vision to thermal 
imagery in the context of Smart Cities. 

The following section will discuss thermal technology 
and compare RGB and thermal cameras. After that, we 
present five different smart city applications where real-time 
thermal imaging is applied.  

2 Thermal sensors 

Originally developed for military purposes, thermal cameras 
have now reached a reasonable price and have become 
available for commercial use. The technology has therefore 
started to be deployed for surveillance purposes, where 
RGB cameras would typically have been used. 

The resolution of thermal sensors is slowly increasing as 
the technology evolves and new materials are explored. 
Available today are sensors ranging from cheap 8  8 pixel 
arrays (Panasonic Electric Works, 2013), up to 1280  1024 
pixel sensors (FLIR Systems, 2013a). The field-of-view ranges 
from very narrow (approx. 1°), to wide angle lenses up to 80° 
(FLIR Systems, 2013b). Some types of cameras have the 
possibility for optical zoom. The wide angle lenses are very 
useful in applications like surveillance of indoor rooms and 
urban spaces. However, the selection of wide angle lenses is 
small and the price is very high, owing to the expensive lens 
material germanium. With very narrow field-of-view lenses, it 
is possible to detect people several kilometres away. This is 
very useful, especially for border and coastal surveillance. 

For commercial use, the best known types of thermal 
cameras are the handheld cameras for building inspections. 
However, thermal surveillance cameras are becoming very 
popular, owing to their independence of lighting. These cameras 
are very similar to regular RGB surveillance cameras in terms 
of size, look and interfaces (AXIS Communications, 2013b). 
RGB cameras are still significantly cheaper than thermal 
cameras, though. 

Thermal network cameras with data communication over 
IP can be part of larger camera networks, and they enable easy 
data transfer to a computer (AXIS Communications, 2013a). 
Many cameras come with built-in memory or a slot for a 
memory card, but external computers, and thereby storage, can 
also be connected to the cameras. Some cameras have small 
built-in processing units, where simple image processing 
algorithms can be programmed; e.g., motion detection and 
cross line detection. Real-time online processing of a video 
with more demanding algorithms is possible when a computer 
is connected.  

2.1 Segmentation of people 

Our main purpose of using computer vision in Smart Cities is 
to automatically, and in real-time, detect and track the 

movements of humans (Al-Mutib et al., 2014; Andriluka  
et al., 2008). Therefore, we will focus on the possibility of 
people tracking and detection in each of the image modalities 
and start with a general overview of detection methods. 

In almost any application of computer vision figure-ground 
segmentation is needed to locate the desired object(s) in the 
images. Mainly, two approaches are widely used for detecting 
humans: pixel-based detection and object-based detection 
(Moeslund et al., 2011). Pixel-based detection methods 
consider each pixel individually, e.g. by comparing to a 
background model. The basic idea is to compare each pixel 
to a background model, and if the difference exceeds a 
given threshold, the pixel is classified as foreground. 
However, especially in outdoor scenes, obtaining a valid 
background model is challenged by the shifting sun, clouds, 
moving branches of trees, etc. Different ways of modelling 
a changing background, as well as updating it appropriately, 
is still being researched. In applications with a moving 
camera, it might be impossible to model the background, 
though. 

Image thresholding is applied after background subtraction, 
but can also be applied to original images of different 
modalities. Depending on the application, thresholding 
methods vary from the simplest constant threshold value over 
dynamic and automatic methods (Kapur et al., 1985) to bio-
inspired algorithms (Ouadfel and Meshoul, 2014). 

Object-based methods detect either entire objects or 
major parts in case of a part-based model. Often these 
methods run by translating a window over the image  
and calculate the likelihood of each window containing a 
human (Moeslund et al., 2011). The Histogram of Oriented 
Gradients (HOG) detector (Dalal and Triggs, 2005) is one 
example of a very popular object-based detector, searching 
for a learned object shape. 

The pixel-based methods detect everything that is or has 
been moving. This approach is fast, but it will often require 
post processing to filter noise and unwanted objects from 
the detections. 

Object-based methods on the other hand are designed to 
detect a specific type of object and normally need no post 
processing. However, the output is usually bounding box 
locations, compared to the more precise silhouettes 
produced by pixel-based methods. The detection rates for 
HOG degrade rapidly when the resolution decreases (people 
less than 80 pixels tall), or if people are partly occluded 
(Dollar et al., 2012). Furthermore, object-based methods are 
generally computationally expensive, and often require 
GPU-based implementations in order to perform in real-
time. 

These limitations of object-based methods affect its use 
in Smart City applications, since the appearance of people 
may vary a lot. People are often observed from a far view, 
resulting in low resolution and different viewing angles of 
the people. On the other hand, the camera is most often 
static, reducing the problems of modelling a background for 
pixel-based methods significantly. 

For the applications at hand, with focus on robust real-
time performance, pixel-based detection methods seem best 
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suited for detection. In the following section we will test 
and compare detection in RGB and thermal images.  

2.2 Comparison of thermal vs. RGB cameras 

For any kind of detection, thermal cameras have clear 
advantages compared to RGB cameras in dark conditions, 
due to the independence of lighting. Figure 2 compares the 
two modalities from a night scene. Even though parts of the 

scene are illuminated, the person is very hard to detect in the 
RGB image. In the thermal image, the person is fully visible. 

Owing to the properties of thermal imaging, detection  
of people can be easy and fast in the situations where  
human temperature differs from the surroundings. Here, a 
thresholding of the images can be sufficient for segmentation. 
Figure 3 shows an example where an automatic threshold 
method based on Maximum Entropy (Kapur et al., 1985) is 
applied to a thermal image. 

Figure 2 Example of a night scene 

   
(a) RGB (b) Thermal 

Figure 3 Segmentation of people using automatic thresholding 

   
(a) Thermal input (b) Automatic thresholding 

Figure 4 An urban scene captured with an RGB and a thermal camera. The cameras have slightly different views. The images are 
captured on an early summer day with temperatures around 15°C 

   
(a) RGB (b) Thermal 
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A similar fast approach which can be applied to both RGB and 
thermal images is background subtraction, which we described 
in Section 2.1. This approach assumes that only people, or 
other objects of interest, are moving. Otherwise filtering of the 
detections must be applied as post processing. 

Figure 4 shows an example of an urban outdoor space 
captured simultaneously by an RGB and thermal camera 
(with slightly different views). Figures 5 and 6 show the 
results of background subtraction and binarisation with 
different threshold values. The threshold values are here 
chosen manually to illustrate the best possible segmentation 
and to show the effect of changing the values. In a real 
application an automatic thresholding method could be 

applied for choosing the best threshold value in any given 
frame. 

Dark colours of clothes and the relatively small size of 
people make it very hard to detect people in the RGB image. 
Furthermore, the ground is partly wet, making it even harder 
to distinguish people. Using background subtraction, some 
people can be detected, but as Figure 5 shows, it is a trade-
off between too much noise and missed detections. Using 
the thermal image, less noise is detected, even with a much 
lower threshold value of 5. Thus, as seen in Figure 6, the 
trade-off is less distinct, and people can more reliably be 
segmented with background subtraction using a thermal 
image. 

Figure 5 Background subtraction of the image in Figure 4(a), then binarisation with threshold values from 30 to 60. The edges of the carts 
in the upper right corner are detected due to small vibrations of the camera 

   
(a) th = 30  (b) th = 40 

   
(c) th = 50   (d) th = 60 

Figure 6 Background subtraction of the image in Figure 4(b), then binarisation with threshold values from 5 to 30 

   
(a) th = 5  (b) th = 10 



 Thermal imaging systems for real-time applications in smart cities 297 

Figure 6 Background subtraction of the image in Figure 4(b), then binarisation with threshold values from 5 to 30 (continued) 

   
(c) th = 20  (d) th = 30 

Segmentation using background subtraction assumes that  
it is possible to obtain a reliable background model.  
Fast changing lighting/temperature conditions can cause 
problems, and a dynamic background model must be 
adjusted and updated during run-time (Shoushtarian and 
Bez, 2005). Thermal images have only one channel, 
compared to three channels of an RGB image. Furthermore, 
the temperature often changes more slowly than the 
lighting. This can make it easier to model the background in 
the thermal domain. Another well-known problem in the 
RGB domain is the occurrence of shadows. Shadows often 
cause false detections, as the shadows move just like people. 
Shadows are related to lighting, and thereby do not exist in 
the thermal domain. However, thermal radiation can be 
reflected in glossy surfaces and cause false detections that 
are similar to shadows. This is considered a rarer problem in 
Smart City applications though, as the surfaces are often not 
reflective. 

After detection, some Smart City applications require 
the object to be tracked. Tracking humans is a complex 
problem, owing to the dynamically changing motion, and 
often occlusions must be resolved. In these situations, it can 
be necessary to re-identify people after an occlusion or an 
ambiguous situation. Recognising individual people is 
difficult in thermal images, owing to the lack of colour and 
texture information. Thereby, re-identification of people in 
thermal images is very difficult, making it very hard to 
solve these ambiguous situations in tracking. Thus, RGB 
cameras have advantages in complex tracking scenarios. 

In Table 1, the pros and cons of using RGB and thermal 
cameras for people detection and tracking are summarised. 

Table 1 Comparison of RGB and thermal cameras for people 
tracking and detection 

 Pros Cons 

RGB  
Cheap sensors 
Re-identification possible 

Sensitive to light 
Privacy issues 
Shadows 

Thermal  

Easier segmentation 
Independent of light 
No privacy issues 
Single channel images 

Re-identification difficult 
More expensive 
Reflections 

3 Application of real-time thermal imaging 

In the remaining part of this paper, we present five different 
Smart City applications. The purposes are all related to real-
time monitoring of the city, in order to optimise mobility, 
accessibility and safety for the citizens. In all applications, 
we use one or more uncooled thermal cameras with a 
resolution of 384  288 pixels (AXIS Q1921) or 640  480 
pixels (AXIS Q1922). Table 2 summarises the applications 
in terms of purpose, equipment, test time, type of scene, 
technique used and processing time. The test time stated 
here is the full run time of the set-up, the manually 
annotated period for quantitative evaluation may be shorter. 

Table 2 Summary of the applications presented in this paper 

Sec. Purpose Camera(s) Test time Scene Technique Proc. time 

4 People counting 
1 AXIS Q1921 

10 mm 
1 week Outdoor pedestrians Image differencing 1.2 ms/frame 

5 People tracking 
3 AXIS Q1921 

19 mm 
1 week Outdoor pedestrians 

Background subtraction and 
Kalman filtering 

66 ms/frame 

6 
Car and bicycle 
detection 

1 AXIS Q1922 
10 mm 

20 days Outdoor traffic Optical flow 41 ms/frame 

7 
People counting and 
activity recognition 

3 AXIS Q1922 
10 mm 

1 month Indoor sports 
Background subtraction and 
Fisher faces 

12.5-60 ms/frame 

8 People tracking 
1 AXIS Q1922 

10 mm 
2 hours Outdoor pedestrians 

Background subtraction and 
Kalman filtering 

20 ms/frame 
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4 People counting in urban environments 

In a Smart City, human movement is automatically 
registered and analysed. For both real-time and long-term 
perspectives, this knowledge can be beneficial in relation to 
urban planning and for shopkeepers in the city. Information 
in real-time can be used for analysing the current flow and 
occupancy of the city, while long-term analysis can reveal 
trends and patterns related to specific days, time or events in 
the city. In this work, we continuously counted people 
passing through a pedestrian zone in a city environment 
during one week. The location is illustrated in Figure 7, 
along with a picture of the camera’s view.  

4.1 Methods 

When counting people in a pedestrian zone or a sidewalk, it 
is assumed that most people are moving across the scene. 
But being an outdoor scene, it cannot be assumed that 
people are constantly hotter or colder than the background. 
The surrounding temperature will change throughout the 
day, and the sun can heat dark pavement to temperatures 
hotter than the human body temperature. Therefore in this 
work, it has been chosen to do segmentation based on image 
differencing. The activities are then counted solely on the 
pixel response as opposed to connected silhouettes of people. 
Double differencing will be used in order to eliminate noise. 
Figure 8 explains the algorithm. 

Figure 7 Illustration of the location and camera view 

 

 

Figure 8 Double differencing algorithm 
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Figure 9 Left: Thermal input image, right: Result of double differencing and thresholding 

     
 

A threshold value of 2 is applied to binarise the image. 
Figure 9 shows an example of an input frame, and the result 
of double differencing with the two previous frames. 

Figure 10 The chosen region of interest 

 

The activity, here represented by white pixels, must be 
converted into a number of people. From training data, the 
relation between the amount of activity and the number of 
people can be calculated. This factor depends on the specific 
set-up; camera specifications and mounting location.  
For each new location, a training phase is needed in order  
to learn this factor. However, it is tested to generalise 
appropriately over different days and activity levels at the 
same location. When the velocity of people, and thereby the 
activity in the frame, is lower, the person will instead stay 
longer within the region of interest, so that the accumulated 
activity over a time period will be equal to that of a person 
moving fast through the scene. The number of people should 
therefore be estimated for time windows, rather than 
momentarily. Choosing a smaller region of interest (ROI) in 
the image, as illustrated in Figure 10, will improve the 
results by reducing the perspective effects in the image. The 
region is chosen to represent a section of the street as close 
to the camera as possible. The top-view of the scene in 

combination with the chosen region of interest implies that 
occlusions can be neglected. 

The ROI is applied by using an AND-operation between 
a binary image representing the ROI and the current frame. 

4.2 Results 

One full week of video has been captured. Owing to the high 
time consumption of manual video annotation, 13 video 
sequences of 20 minutes each have been chosen for tests. 
These video sequences cover different days, times of the day 
and the level of activity in the video, and they have been 
manually annotated. Using a leave-one-out cross-validation, 
with 12 video sequences used for training and one for testing 
in each iteration, the mean accuracy is 90.75%. 

The full week of video has been processed and compared 
to the results of a commercial system (BLIP Systems, 2013). 
This system uses observed Bluetooth IDs to estimate the 
number of people passing a node. This does, however, only 
represent the percentage of people carrying a device with an 
open Bluetooth connection. We scale the Bluetooth results 
with a factor of 25.76, in order to compare the results as 
shown in Figure 11. The factor of 25.76 has been found 
experimentally by dividing the mean of our person detections 
with the mean of detected Bluetooth devices. 

None of these results has been manually verified, 
making it unclear which is the most precise, but it is clear 
that they follow the same trends throughout the week. Two 
times, just after 120 hours and 140 hours, our vision system 
detects more people than the Bluetooth system. This is 
caused by police cars driving in the pedestrian zone on 
Friday and Saturday nights. This is not accounted for yet in 
the vision system. The advantage of a vision system in this 
application is that it counts the actual number of people, 
compared to counting a number of, e.g. Bluetooth devices, 
where the relation to the number of people is unknown. 

The processing takes 1.2 ms per frame (384  288 
pixels), which easily obeys real-time requirements. The test 
has been performed with a multi-threaded implementation 
of the system on a laptop with a 2.00GHz Intel Core  
i7-2630QM CPU and 8GB RAM.  
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Figure 11 Our system (blue graph) compared to a commercial system based on Bluetooth devices (red graph). The Bluetooth results have 
been multiplied with a factor 25.76 

 
 

5 Interactive urban lighting 

In the coming years, it is expected that the type of urban 
illumination will change to light emitting diodes (LED) to a 
greater extent. In addition to being less energy demanding, 
this type of light source enables digital control of both 
colour and intensity. That opens up new possibilities for 
designing interactive and adaptive lighting. Interactive 
environments can engage people to feel more connected to 
the urban spaces and encourage them to stay or to play in 
the environment. Intelligent lighting can also make the 
environment appear more comfortable and secure. In this 
full scale experiment, we put up three thermal cameras and 
16 lamps in an urban space. A picture of the space is shown 
in Figure 12. 

Figure 12 Overview of part of the observed urban space 

 

Four different light scenarios were tested: 

1 Ambient Illumination: Static white lighting.  

2 Glowing Light: Each lamp individually fades up and 
down between 0% and 20% intensity.  

3 White Aura: Illuminated circle with a diameter of min 
(10 metre around each person).  

4 Red Treasure Hunt: When a person approaches a ‘trigger 
light’, a wave of light is sent out through the square.  

The first two scenarios do not depend on the movement of 
people, while the last two are interactive scenarios, where 
thermal cameras are applied to estimate people’s movements 
(Poulsen et al., 2012).  

5.1 Hardware setup 

Figure 13 illustrates the hardware of the system. Three 
thermal cameras are each connected to a computer, which 
processes the video and converts tracks of each person at  
the square into a common world coordinate system. This 
tracking data is sent to a computer that controls the lamps 
based on the live data and a chosen light scenario. A total of 
16 RGB LED lamps are controlled by the system.  

Figure 13 System overview (see online version for colours) 

 

Inside each lamp is installed a DMX module, which controls 
each colour of the LED lamp in 255 brightness steps, 
making it possible to control both colour and brightness of 
each lamp individually. The area covered by each camera is 
illustrated in Figure 14. 

The real-time aspects of this project are very important, 
because the lighting must react to people’s concurrent 
movements and have an update rate that allows for smooth 
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control. Communications between both computers and lamps 
are handled using the Open Sound Control protocol (CNMAT, 
2013).  

Figure 14 Overview of the square with camera views illustrated 

 

5.2 Methods 

Input to the interactive lighting system is the real-time 
human movement. Since the observed area is an urban space 
with restricted car access, it is assumed that all observed 
activity is human activity of interest. People are detected by 
performing background subtraction, and then the objects are 
filtered by size. Since the background temperature naturally 
changes over time, the background must be updated. It is 
chosen to perform a running average background subtraction 
with a selective update, meaning that only pixels segmented as 
background will contribute to the new background. The 
detected image coordinates of people are transformed into 
world coordinates using a homography matrix calculated 
during an initialisation. Further description of the methods 
can be found in Poulsen et al. (2012). People walking closer 
than three metres to each other are treated as groups in this 
work. Each person or group object is tracked in world 
coordinates with a Kalman filter (Welch and Bishop, 1995; 
Ali and Terada, 2012). Treating groups of people as one object 
to track also helps to overcome the problems of occlusions 
between people, as it is not necessary to distinguish single 
persons. 

The videos from each camera are processed individually, 
but after transforming the positions, all the tracking and lamp 
positions refer to the same world coordinate system. The map 
with overlayed tracking results for a 5-minute period is 
shown in Figure 15. 

For each frame, the position and velocity vector for each 
person is registered from the tracking and sent to the light 
control system. In addition, merging and splitting of groups 
are registered as special events that could trigger light 
events. 

The reactions from people are analysed both through 
interviews and from the recorded occupancy and movements.  

 

Figure 15 Overview of the square with tracking results overlayed. 
Each person is assigned one colour 

 

5.3 Results 

The system has been tested for one week during the winter, 
when very cold weather could possibly affect the behaviour 
of people. Observations and interviews showed that people 
used the space mostly for transit, and often they did not 
notice the changed illumination. But people observing the 
square from outside noticed and appreciated the interactive 
behaviour (Poulsen et al., 2012). However, later experiments 
have shown that the lighting causes a range of abnormal 
behaviour, such as cats walking, dancing and light chasing. 

The vision system is evaluated qualitatively by looking at 
the positions of visualised tracks on a digital map compared to 
the real position of the person, as well as the actuated lighting 
scenario compared to the expected scenario. With a precision 
of approximately one metre for the mapped position, the 
system works as expected, with correct and fast feedback to the 
lamps. 

The full system runs real-time with a frame rate of 15 fps 
on 384  288 pixel images with a CPU implementation on a 
Intel Core i5-2430M 2.4GHz CPU. The real-time performance 
is crucial here, as the application does not allow delays in the 
feedback to the lamps. Testing the system for one full week 
without interruptions proves that the real-time performance is 
stable during changing conditions. For higher frame rate or 
larger images the performance could easily be improved using 
a faster CPU or possibly a multi-threaded implementation. 

Figure 16 shows two frames from the ‘White Aura’ 
scenario, where an illuminated circle follows a person. 

This study also showed that it is possible to save up to 
90% of the energy for lighting, without people changing 
their behaviour (Poulsen et al., 2012). 

The tracking information may be used for instant control 
of the lighting as described here, and it could also be used 
for later evaluation and design of urban spaces.  
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Figure 16 Two frames from the ‘White Aura’ scenario 

   

  

6 Automatic near-collision detection 

In urban environments, the high density of people leads to 
heavy traffic. Many people tend to use their private cars for 
comfortable transportation, but in order to reduce emission 
and congestion, a transition from the car to more eco-friendly 
means of transportation, such as the bicycle, is needed. To do 
this, an enhancement of the bicycle conditions must be done 
in order to increase the share of cyclists. Cities, such as 
Copenhagen (Nielsen et al., 2013), have put special focus on 
the cyclists, e.g., by designing special bike lanes on all the 
roads. However, studies have shown that bike lanes do not 
improve the safety of cyclists; even though there is a 
reduction in the number of crashes on road sections, where 
bike lanes are established, the number of crashes increases in 
the intersections; in particular at signalised intersections 
(Agerholm et al., 2006; Jensen, 2006). 

In this work, thermal cameras are used to compare 
different types of intersections in terms of safety. The 
objective is to evaluate if some geometric designs of bike 
lanes through intersections are better than others. Since 
accidents are rare, the evaluation is based on the Swedish 
Traffic Conflict Technique (Hyden, 1987). The idea is that 
accidents and near-collisions are related. Thus, the near-
collisions will be used as a measure of safety, since they 
occur more frequently than accidents. The detection of near-
collisions can be done manually, but is of course very time 
consuming and ineffective owing to the low number of 

near-collisions. In the smart city, this can be done 
automatically using a camera system.  

6.1 Methods 

In this work, we will look for close interactions between cars 
and bikes, which are prerequisites for near-collisions to happen. 
Interactions are defined as the simultaneous motion of a car and 
a bicycle in a given zone of interest. Shown in Figure 17 is the 
car zone in blue and the bike zone in red. When both cars and 
bikes are present at the same time in their respective zones, 
there is a risk that the cyclists going straight in the red zone 
could be hit by a car from lane 1 or lane 2 turning towards lane 
3. In both situations, the cars will pass the blue zone with a 
direction towards lane 3. An example image from one 
intersection is shown in Figure 18. Since both position of the 
camera and the layout of intersections and bike lanes changes 
between each scene captured, the car and bike zones must be 
defined manually for each intersection. 

Figure 17 Illustration of an intersection with marked zones of 
interest. Blue is the car zone, and red is the bike zone. 
Blue arrows indicate cars’ paths of interest, and the red 
arrow indicates bikes’ path of interest 

 

Figure 18 Example of an interaction between a car and a bicycle 
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In order to detect interactions, optical flow (Horn and Schunck, 
1981) is applied to calculate direction and magnitude of the 
motion. For cyclists, the direction must correspond to going 
straight, and for cars, they must head towards the cyclist zone. 
An angle histogram based on the optical flow vectors will 
be used to decide whether the direction is correct. As shown 
in Figure 18 the camera angle is chosen in order to have a 
straight view on both bike and car lanes, but occlusion 
between cyclists can occur as they happen to drive close to 
each other. However, the optical flow method does not rely 
on detection of individuals, rather the overall motion in the 
chosen zone. The magnitude of motion must exceed a 
specified threshold in order to eliminate noise. This 
threshold depends on the camera location and angle, but due 
to a relatively small detection area, the effects from image 
perspective within each image are neglected. 

The motion must be consistent for a short interval of 
time in order to be considered a real detection. Therefore, 
we implement a buffer that flags the frames in which either 
a cyclist or car’s motion is observed. In order to register an 
interaction, both buffers must be flagged for a number of 
consecutive frames. 

6.2 Results 

One hour of video from each of the four intersections is 
used for testing the system. The videos are captured from 
7am to 8am, corresponding to the morning rush hour. All 
interaction situations are manually labelled and compared to 
the output of the automatic system. The results show that we 
get approx. 33% false positives. This is of course a high 
rate, but as it is more critical to miss any detections, we 
allow more false positives. A manual verification process of 
the detections can be conducted afterwards. A few false 
negatives are observed. These situations occur when either a 
car or cyclist has a very low speed, resulting in a motion 
vector below the threshold. 

The speed of the algorithm obeys real-time requirements 
with a total processing time of 41 ms per frame (640  480 
pixels) on a 3.4GHz Intel Core i7-3770 CPU with 8 GB 

RAM. In idle situations, with no vehicles present, the 
processing time is 22 ms per frame.  

7 Analysing the use of sports arenas 

The interest in analysing and optimising the use of public 
facilities in cities has a large variety of applications in both 
indoor and outdoor spaces. While the previously described 
projects focus on outdoor spaces, this work copes with indoor 
scenes. Here we are focusing on sports arenas, but other 
possible applications could be libraries, museums, shopping 
malls, etc. We aim to estimate the occupancy of sports arenas 
in terms of the number of people and their positions in real 
time. Potential use of this information is both online booking 
systems, and post-processing of data for analysing the general 
use of the facilities. For the purpose of analysing the use of the 
facilities, we also try to estimate the type of sport observed 
based on people’s positions.  

7.1 Methods 

In indoor spaces, the temperature is often kept constant and 
cooler than the human temperature. Foreground segmentation 
can therefore be accomplished by automatic thresholding the 
image. In some cases unwanted hot objects, such as hot water 
pipes and heaters, can appear in the scene. In these situations, 
background subtraction can be utilised. After obtaining a 
binary image, the foreground should be converted to a number 
of people. Each white blob is simply counted as a person, but in 
order to handle partial occlusions, the blobs can be split both 
vertically and horizontally before counting them (Gade et al., 
2012). As described in Section 2, no very wide angle lenses 
exist for thermal cameras yet. To capture a wide area, more 
cameras can be put together to form a wide angle image. In 
Figure 19, three images have been stitched together to cover a 
20  40 m arena. The lower image shows the segmentation of 
people by automatic thresholding and removing white pixels 
outside the region of interest, here the court area. 

Figure 19 Upper: Thermal input image from a sports arena. Lower: Result after thresholding the image and removing white pixels outside 
the court area (ROI) 
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Figure 20 Heatmaps for 10-minute periods 

   
(a) Basketball (b) Badminton 

For crowded scenes, occlusions will result in missed 
detections, and reflections and non-human objects can result 
in false detections as well. Including temporal information 
may stabilise these measurements. Detecting when people 
leave or enter the scene gives information about the 
transitions in number; during periods with no activity in the 
border area, the number of people inside the monitored area 
must be the same. Using a dynamic programming approach, 
the results are optimised over long periods for more stable 
measurements (Gade et al., 2013). 

From the detection of people, their activities can also be 
analysed. For sports arenas, we estimate the sports type from 
the occupancy patterns over 10-minute periods. Each registered 
position of people on the court contributes with a Gaussian 
distribution to a heatmap. An example of two heatmaps for 
basketball and badminton are shown in Figure 20. 

A classifier is trained to detect five different sports  
types from the heatmaps only. From these images, the 
dimensionality is reduced with PCA and Fisher’s Linear 
Discriminant (FLD), where FLD uses labelled training data 
and seeks the dimensions which discriminate the classes. 
After transforming each sample data to the new space, the 
nearest class is found using the Euclidean distance (Gade 
and Moeslund, 2013).  

7.2 Results 

The detecting method has an error rate between 7.35% and 
11.76%, depending on the activity level in the videos. Adding 
the border activity detection and dynamic programming 
optimisation reduces the error rate to 4.44%. This full approach 
is tested on 30 minutes of annotated video, while the 
underlying detection method has been tested on a large 
annotated dataset from five different arenas. The detection 
algorithm easily runs real-time, with a processing time of 
12.5 ms per frame for large images of 1920  480 pixels. 
The approach described in Gade et al. (2013), which 
includes tracking of people near the border takes 60ms per 
frame, without any optimisation of the software. This means 
that even this method will be able to perform in real-time. 
However, the dynamic programming optimisation is a post-
processing method and must run after the full period of 
video has been processed. Both methods are tested on an 
Intel Core i7-3770K 3.5 GHz CPU with 8GB RAM, and 
processing 1920  480 pixel images. 

The sports type classification has been tested on 30 
heatmaps representing five different sports types, plus a 
category of miscellaneous activities. The recognition rate is 
90.76%.  

8 Mapping and modelling human movement and 
behaviour in public spaces 

In matters of urban planning and management, it is essential 
to know how streets and public spaces are being used and 
how people move around. To quantify and eventually model 
human movements and patterns of use of a public space 
over time, which we refer to as Human Spatial Dynamics 
(HSD), it is thus necessary to track each individual crossing 
the space under scrutiny. Pivotal to this research is the use 
of Geographical Information Systems (GIS). The idea is to 
use computer vision technology to extract accurate geo-
referenced tracks of people and use GIS based methods to 
store and analyse the HSD data created. The advantage of 
utilising GIS is that the HSD data captured can be easily 
related to other geospatial data layers and be directly 
available in the GIS workflow of professional planners and 
managers. 

Along with the advances in software technology and 
computing power in the last decade, there has been a 
growing interest in modelling pedestrian and bicyclist 
behaviour based on a bottom-up approach of programming 
them as individual entities or agents, which can interact in 
simulations and yield emergent movement patterns and 
behaviours resembling those observed in the real world. 
Collectively, these micro models are referred to as Agent-
Based Models (ABM) and there are several approaches to 
programme the underlying principles. Concepts such as 
Social Forces (Helbing et al., 2001; Moussad et al., 2010), 
Cellular Automata (Blue and Adler, 2001), Behavioural 
Heuristics (Moussad et al., 2009; Moussad et al., 2011), 
Discrete Choice (Antonini et al., 2006; Bierlaire and Robin, 
2009; Robin et al., 2009) and Behavioural Geography and 
spatial cognition (Torrens, 2012) have been suggested. 
However, most models focus specifically on crowd or 
evacuation dynamics and not so much on modelling entire trips 
of pedestrians in regular traffic in public spaces. Despite 
advances in modelling techniques towards sophisticated 
ABMs, they still have challenges in reproducing real world  
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behaviours reliably in all situations (Castle and Crooks, 2006; 
Crooks et al., 2008; Papadimitriou et al., 2009). A main reason 
for that collectively mentioned in the literature is that there 
exist few empirical studies and verified standard HSD 
datasets from recordings of real life pedestrian and bicycle 
traffic to calibrate the models against. The thermal video 
tracking technology holds the potential for being a way to 
collect long time HSD datasets in various places, and thus 
contribute to improve the ABM models. This quantitative 
approach to tracking urban public life may also be able to 
supplement the traditional and intuitive manual approaches 
to HSD data collection used in the studies of urban public 
spaces and qualities. Inspired by the works of Whyte (1980) 
and Gehl (2010), a possible outcome of the project is also to 
contribute with new digital methods to this field.  

8.1 Methods 

A pilot study was made to prove the concept. A pedestrian 
zone in Copenhagen with occasional bicycle traffic and 
goods delivery by vehicles was used as a test scene. The 
scene was situated where one of the city’s major shopping 
streets meets a perpendicular street and an open square on 
the way to a major subway station. The site therefore had a 
continuous flow of pedestrians from several directions that 
had to negotiate with others to make their way through the 
scene. At the same time, there were also people in the scene 
waiting, meeting and talking for longer periods of time. 
People dragging their bikes or pushing prams or wheelchairs 
were also observed, as well as groups of school children on 
excursions. Occasionally, cyclists were observed riding their 
bikes despite the legislation. Figure 4 shows the scene as 
both an RGB and thermal image, though with slightly 
different views. The camera was placed as high as possible 
on the roof top terrace of a five-storey building next to the 
scene to minimise the number of people occluding others in 
the camera FOV, while at the same time capturing the 
traffic of as large an area as possible. Control points in the 
scene used to calibrate the homography matrix transferring 
image pixel coordinates to real world coordinates were 
measured with high precision GPS equipment. 

Computer vision software was applied to analyse 5 
minutes of thermal video for which a simultaneous RGB video 
was also recorded for reference. Background subtraction was 
used in order to detect people. Since the observed scene was 
very busy, it was not possible to find an empty frame which 
could be used as background. Instead, a background model 
was obtained by calculating the median value for each pixel 
over a 30 second initialising period. The background was 
updated during run-time, using a selective update method 
equal to the one described in Section 5.2. The foreground 
objects were filtered by size, in order to remove noise. Even 
though the camera was mounted at a high position, 
occlusions still caused problems due to the high density of 
people. In order to solve partial occlusions, we are able to 
split blobs both vertically and horizontally (Gade et al., 
2012). After converting the position of the remaining 
objects to world coordinates, they were tracked using  
 

Kalman filtering (Welch and Bishop, 1995). For each frame, 
the tracking software yields a list of ID numbers and 
positions of the detected persons in real-world coordinates. 
To read the data in a GIS, the raw files were passed by a 
Python script to render a list of locations for the tracking of 
each of the IDs. To reduce the amount of data processed 
while still maintaining sufficient location accuracy the 
points were down-sampled to fewer instances per second 
than the original frame rate (30 fps). During parsing of the 
raw files, a series of attributes were added to the individual 
points, including speed (in relation to the previous point, a 
given interval back in time, and accumulated for the track 
up to the given point) and incremental distance and time. 
Further metadata was generated for each individual track, 
including distance, duration, Euclidean distance, average 
speed, number of points etc.  

8.2 Results 

The attributes added allowed for various ways of sorting 
and visualising the tracks in GIS. First noise and false 
detection needed to be identified and removed. A threshold 
value of 3 seconds was chosen as the acceptable quality 
criterion for the minimum duration of a track. From the 
segmentation of the thermal video described in Figure 6 it 
was known that there were areas with a high degree of 
noise, particularly to the right in the FOV near the camera, 
caused by wind movement of the edges of some sun shades 
in the scene. Tracks detected along or intersecting the edges 
of this area were thus classified as unreliable and removed 
from the rest of the tracks. In Figure 21 the green lines 
depict the tracks that met the quality criteria (460 tracks) 
whereas the red crosses indicate detections that were too 
short in time or distance (1475 IDs). The green tracks 
clearly show the movement patterns of the area as well as 
the density of the tracks indicating which routes were the 
most used. The shaded areas depict the obstacles that the 
traffic had to evade. An interesting observation concerning 
the obstacles is the diverging traffic flow in the upper part 
of the figure, where it is clearly seen that tracks split into 
two routes, indicating that people are passing either to the 
left or right around the shaded area in the urban square seen 
outside the FOV. 

Concerning the false detections, the ones caused by the 
sun shades are clearly seen in the FOV to the right of the 
camera position. A dense cluster of short detections is also 
seen near the camera. This was caused by two persons 
standing close together at that same spot talking for the 
entire period analysed, including the initialisation period. 
This caused the two persons to be part of the background 
model, but small movements and gestures of the people 
generate short detections. A dense cluster of short detections is 
also evident at the entrance to the building in the southern end 
of the FOV. This was caused by several persons passing the 
doorway simultaneously, thus creating heavy occlusions. 
Several short detections are also seen spread out across the area 
where the green tracks dominate. These are probably caused by 
people occluding each other when walking close together or  
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passing others in the scene. The number of occlusions would 
probably be able to be lowered substantially with a nadir 
looking camera to monitor the scene. 

Figure 21 The green lines indicate all the tracks from the  
5-minute period analysed, where an ID was followed 
for more than 3 seconds. The red crosses represent 
short detections that did not fit the quality criterion. 
The shaded areas represent obstacles that the traffic had 
to evade 

 

Figure 22 The site and the FOV illustrated in a 3D view with four 
selected tracks from the same 30 second period 
coloured according to their speed. All four tracks start 
in the bottom of the image in the open square and  
move up towards the street. The tracks indicate both 
increasing and decreasing speeds. All tracks from 
Figure 21 are displayed as background. The position of 
the camera is shown on the corner of the building to the 
left. The obstacles are indicated in grey 

 

The GIS setup made it possible to make analysis of each 
individual track and to compare tracks spatio-temporally in 
order to assess behavioural patterns and the HSD seen in the  
 
 

scene. To show an example of this, four tracks of people 
moving in the same direction in the same 30 second period 
were selected and colourised according to their speed as 
shown in Figure 22. Both increasing and decreasing speeds 
are seen on the tracks. 

To assess the method’s overall ability to measure speed, 
the distribution of the average speeds of all tracks from 
Figure 21 were plotted in the histogram shown in Figure 23. 
The graph shows a normal distribution of speeds around  
5 km/h, which is typical for pedestrian traffic. In the lower 
extreme around speeds of 1–2 km/h there are more tracks 
than in the higher end around 8–9 km/h. This is possibly due 
the fact that more people are stopping or waiting briefly 
while in the scene, which lowers their average speed, as 
opposed to fewer individuals that hurry through the scene. 
The few tracks in the upper extreme around 13–14 km/h 
were identified as bicyclist in the video. 

Figure 23 The graph shows the distribution of average speeds  
of the green tracks displayed in Figure 21. The 
distribution is as expected for pedestrians with speeds 
normally distributed around 5 km/h. The few tracks 
with an average speed of around 13 km/h were 
identified as bicyclists in the video (see online version 
for colours) 

 

Further research based on this project will aim to develop 
more advanced GIS methods to study behaviour, such as 
people’s choices of direction and speed, and the interaction 
with others, in order to enable extraction of behavioural 
parameters that can be used in ABMs. The analyses shown 
here were all made as post-processing procedures, but there 
is nothing hindering the GIS analysis from being automated 
to generate near real-time online maps of the tracked scene. 
The processing time of the computer vision tracking 
algorithm was 20 ms per frame for 640  480 pixel images 
on an Intel Core i7-3770K 3.5 GHz CPU with 8GB RAM. 
Even without any optimisation or parallelisation of the 
algorithm this easily obeys real-time requirements, and 
could be used as input for any real-time analysis of the 
human behaviour in the public space. GIS methods could 
thus also be applied in conjunction with some of the other 
projects presented to make spatial analyses of the tracks 
generated.  
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9 Conclusion 

The thermal camera is considered an important technology 
for use in the future Smart Cities. Being a non-intrusive 
passive sensor, which also preserves privacy, makes it very 
suitable for the purpose. Furthermore, the thermal camera is 
independent of light, and thereby operates equally well 
during day and night, compared to other sensors like the RGB 
camera; which is strongly dependent on sufficient and stable 
lighting. For the purposes of e.g. people counting and simple 
tracking, thermal imaging is highly suited. Some segmentation 
methods, such as thresholding and image differencing are 
extremely fast, and still accurate. For more complex tasks, such 
as tracking of individual people through the city, a different 
technology able to detect unique features or ID’s must be 
applied. 

This paper presented five different Smart City applications 
in which we applied thermal imaging. They cover both indoor 
and outdoor environments, monitoring the movements of 
people, cars and bikes. All systems have proven to be real-time 
compatible and are tested over very long time in real-world 
settings. 

We have shown here, that by employing thermal 
cameras it is possible to measure the human use of a city, 
without violating the privacy of citizens. For the expected 
future scenario of large scale implementation of intelligent 
technology in smart cities, we find it crucial to consider 
sensors and methods that protect the privacy of people. 
Furthermore, being able to operate day and night without 
any manual involvement opens up a great number of new 
applications. Thus, the applications presented in this paper 
could easily be extended to other smart city applications 
based on detection and tracking of humans or vehicles. 
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