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Spectrum Sensing for Cognitive Radio Based on
Multiple Antennas

Huan Cong Nguyen, Elisabeth de Carvalho and Ramjee Prasad
Department of Electronic Systems, Faculty of Engineering and Science,

Aalborg University, DK-9220 Aalborg, Denmark
Email: {hcn|edc|prasad}@es.aau.dk

Abstract—Spectrum sensing is a key component for enabling
the cognitive radio paradigm. In this paper, we propose a
novel totally-blind spectrum sensing technique for cognitive
radio device equipped with multiple antennas, namely the Space
Frequency Cross Product Sensing (SFCPS) algorithm. Exist-
ing correlation-based spectrum sensing techniques rely on the
assumption that the received signals are correlated and their
performance becomes poor when the signal correlation is low.
By appropriately combining the received signals from multiple
antennas, the proposed method creates new signals that are fully
correlated and on which a sensing method is developed. SFCPS
performs better than existing correlation-based techniques and
with a lower computational complexity for small number of
observed samples.

Index Terms—spectrum sensing, signal detection, multiple
antennas, antenna arrays, cognitive radio, signal processing, blind
detection.

I. INTRODUCTION

The spectrum scarcity has led to the abandonment of tradi-
tional models of radio frequency (RF) management, opening
up portions of the licensed spectrum for cognitive radio de-
vices. Cognitive radio, a relatively new paradigm for wireless
communication, allows a secondary user to opportunistically
and dynamically utilize the unused RF bands, which are
assigned to a primary user. A key component of cognitive radio
is spectrum sensing, where the secondary user monitors the
spectrum and identifies idle bands for its own communication.

In [1], non-cooperative spectrum sensing is categorized
into three different groups: 1) methods requiring information
about some part of the source signal (e.g. training sequence
or pilots) and about the noise power, 2) methods requiring
only noise power information (semiblind detection), and 3)
methods requiring no information on source signal or noise
power (totally blind detection). The first group consists of
the likelihood ratio test (LRT) [2], matched-filter (MF) detec-
tion [2] and cyclostationary feature (CSF) detection [3], while
examples of the second category include the energy detection
(ED) [4], [5] and wavelet-based sensing [6]. The third group,
which is the focus of this paper, consists of the covariance-
based sensing [7] and eigenvalue-based sensing [8], [9]. Those
methods exploit the correlation in the received signal in the
time domain, due to the time dispersion of the channel,
oversampling or inherent correlation property of the signal.
They are applicable for both single- and multiple receive
antenna cases where the signal correlation across antennas can

be additionally exploited. Their performance depends on both
the correlation strength among the signal samples and the size
of observation: if the correlation strength is low, the number
of observed samples must be increased to compensate for the
weak correlation. Otherwise, there exists an upper limit on
the probability of detection even in noise-free environment, a
phenomena we refer to as the ceiling effect.

In this paper, we propose a frequency domain sensing
technique applicable to frequency selective channels and re-
ceivers equipped with multiple antennas, which will be a
common feature for wireless devices in the future. Based on a
cross product of the received signals in space and frequency,
we create new signals that are fully correlated and develop
a sensing technique exploiting those new fully correlated
signals. We call this technique Space Frequency Cross Product
Sensing (SFCPS):
• SFCPS outperforms the existing correlation-based meth-

ods, especially for a small number of observed samples.
Because SFCPS is based on fully-correlated signals, it
does not experience the ceiling effect. It can achieve 100%
probability of detection at SNR > 0 for relatively small
observation size.

• The threshold in SFCPS does not depend on observation
size, and it can be conveniently computed from the target
probability of false alarm.

The rest of the paper is organized as follows: the system
model and the SFCPS algorithm are presented in Section II.
Section III finds the thresholds and provides the performance
analysis. We discuss the simulation results in Section IV.
Finally, conclusions and future works are summarized in
Section V. Here are notation used throughout this paper:
boldface letters denote matrices and vectors, the � represents
Schur product (i.e. the elementwise product of two matrices of
the same dimensions), and the superscripts *, T and H stand
for complex conjugate, transpose and Hermitian (transpose-
conjugate), respectively. The �.�N is modulo-N operator.

II. SPACE FREQUENCY CROSS PRODUCT SENSING

Consider a primary transmitter sending one data stream (e.g.
using a beamforming technique) and a secondary receiver with
Q ≥ 2 antennas. There are two hypotheses: H0, the primary
transmitter is transmitting, and H1, the primary transmitter
is not transmitting. The continuous-time baseband received
signal at the qth antenna is given by:
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H0 : ỹq

(
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(
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(1)

H1 : ỹq

(
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= z̃q

(
t
)

+ w̃q

(
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)

q = 1, 2, . . .Q
where ỹq

(
t
)
, z̃q

(
t
)

and w̃q

(
t
)

is the continuous-time received
signal, the received source signal and the Additive White
Gaussian Noise (AWGN) at the qth antenna of the secondary
receiver, respectively. The received source signal z̃q

(
t
)

con-
tains the effect of the frequency-selective channel, which is
assumed to be time-invariant during the observation period:

z̃q

(
t
)

=
L∑

l=1

hq(l)x̃(t − τl) (2)

where hq(l) and τl are the complex channel gain and time
delay of the lth multipath component at the qth receive
antenna, respectively. And x̃(t) is the transmitted symbol from
the primary transmitter.

A. Space-frequency cross product

The data is processed by blocks: a Discrete Fourier Trans-
form (DFT) is performed over each block allowing for a
sensing technique in the frequency domain. Consider the
bth block of the received source signal corresponding to
observation period of To:

z̃qb

(
t
)

� z̃q

(
t
)
ΞTo

(t − bTo) (3)

=
L∑

l=1

hq(l)x̃(t − τl)ΞTo−τmax
(t − bTo − τl)

+
L∑

l=1

hq(l)x̃(t − τl)Ξτl
(t − bTo)

+
L∑

l=1

hq(l)x̃(t − τl)Ξτmax−τl
(t − (b + 1)To − τl)

in which τmax = argmaxl(τl) is the maximum time delay
of the channel impulse response (CIR) and ΞT (t) denotes the
unity amplitude gate pulse of length T . The first term in Eq. (3)
is the useful part for our algorithm, which is the convolution
of the transmitted signal x̃b(t) � x̃(t)ΞTo−τmax

(t− bTo) with
the frequency-selective fading channel. Because the channel
has a delay spreading more than one symbol duration, block
b contains contributions from the previous and next block:
the second and the third terms in Eq. (3) indicates those two
residual parts. Assume that To � τmax, and the energy of
x̃(t) is distributed evenly over time, we can neglect the effect
of the residuals and consider the following approximation:

z̃qb

(
t
) ≈

L∑
l=1

hq(l)x̃b(t − τl) (4)

Assume that the primary transmission is band-limited
with bandwidth of 2B, and the received signal is sam-
pled at rate fs ≥ 2B. The samples are stacked
into blocks of size N , and for notation simplicity,
we define yqb �

[
ỹqb

(
0
)

ỹqb

(
1
)
. . . ỹqb

(
N − 1

)]T
,
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)]T
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(
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bN)T
)
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)
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(
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)
and w̃qb

(
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)

� w̃q

(
(n +

Fig. 1. (a) The space-frequency cross-product signal processing, and (b) the
block diagram of the SFCPS algorithm.

bN)T
)
, for the bth block. The DFT of yqb, zqb and wqb

are denoted as Yqb � [Yqb

(
0
)

Yqb

(
1
)
. . . Yqb

(
N − 1

)
]T,

Zqb � [Zqb

(
0
)

Zqb

(
1
)
. . . Zqb

(
N − 1

)
]T and Wqb �

[Wqb

(
0
)
Wqb

(
1
)
. . . Wqb

(
N −1

)
]T, respectively. We can show

that the kth element of Zqb is as follows:

Zqb

(
k
)

= Hq

(
k
)
Xb

(
k
)

(5)

in which Hq

(
k
)

� H̃q( 2πk
N ) and Xb

(
k
)

� X̃b( 2πk
N ), where

H̃q(ω) and X̃b(ω) are the Fourier transforms of hq(l) and
x̃b(t) after sampling, respectively [10]. The Eq. (5) indicates
that the DFT of the discrete-time received source signal is
proportional to the product of the spectrum of transmitted
signal and the CIR.

Without loss of generality, we consider two consecutive
blocks (b = 1, 2). Furthermore, we consider only two received
antennas. The proposed scheme can be extended to more
antennas by considering all the possible antenna pairs: the
details of this case will be the object of future publications.
The signal at antenna 1 and antenna 2 are:

Z11

(
k
)

= H1

(
k
)
X1

(
k
)

Z12

(
k
)

= H1

(
k
)
X2

(
k
)

(6)

Z21

(
k
)

= H2

(
k
)
X1

(
k
)

Z22

(
k
)

= H2

(
k
)
X2

(
k
)

(7)

Forming the cross-products, we observe the following rela-
tionship for all k:

Z11

(
k
)
Z22

(
k
)

= Z21

(
k
)
Z12

(
k
)

(8)

Denoting the cross-products of the received signals as:

V1

(
k
)

= Y11

(
k
)
Y22

(
k
)

and V2

(
k
)

= Y21

(
k
)
Y12

(
k
)

(9)

From Eq. (8), there exists a strong correlation between the
two signal sequences {V1

(
k
)} and {V2

(
k
)} when receiving

a signal from the primary transmitter. On the other hand, the
correlation is zero when there is only noise in the received
signal. Based on this property, we propose the following
spectrum sensing method.



B. Proposed Algorithm for Spectrum Sensing

The Space Frequency Cross Product Sensing Algorithm
Step 1: Sample the received signals from the two antennas

and perform the DFT to obtain Y11

(
k
)
, Y12

(
k
)
, Y21

(
k
)

and Y22

(
k
)

for all k, as described in section II-A. Compute
the cross-products V1

(
k
)

and V2

(
k
)

for all k according to
Eq. (9).

Step 2: Calculate the coefficients of the circular correla-
tion of {V1

(
k
)} and {V2

(
k
)}:

λ(i) � 1
N

N−1∑
k=0

V1

(
k
)
V1

(�k − i�N

)*
(10)

Step 3: Compute these two variables from the correlation:

T1 � |λ(0)| T2 � 1
N − 1

N−1∑
i=1

|λ(i)| (11)

Step 4: Determine the presence of the signal based on T1,
T2 and a predetermined threshold γ: If T1/T2 > γ, the
spectrum is occupied by the primary system; otherwise,
the spectrum is available.

Remark: The circular cross-correlation is chosen in step 2
to ease the computational complexity, as it can be computed
efficiently by the mean of Fast Fourier Transform (FFT).

III. THRESHOLD AND PERFORMANCE ANALYSIS

The performance of our signal detection algorithm is mea-
sured by the probability of detection Pd and the probability
of false alarm Pfa. The choice of threshold γ is a trade-off
between Pfa and Pd: a large threshold reduces the chance
of false alarm, but also decreases the chance of successful
detection. The threshold value is derived from a target Pfa,
since we do not have information about the signal [7]. Once
the threshold is fixed, we can compute the corresponding Pd.

We assume that the transmitted signal, Xb

(
k
)
, and the

channel, Hq

(
k
)
, are independent and identically distributed

(i.i.d) over the blocks b and across antennas q, with zero mean
and variance σ2

X and σ2
H per dimension, respectively. As a

result, the received signal Zqb

(
k
)

is also i.i.d with zero mean
and variance σ2

Z = 2σ2
Hσ2

X per dimension. The noise Wqb

(
k
)

is assumed to be a complex Gaussian processes with zero mean
and variance σ2

W per dimension, i.e. Wqb

(
k
) ∼ CN (0,2σ2

W ).
Lemma 1: When the primary system is not transmitting,

|λ(i)| has a Rayleigh distribution for all i, i.e. the following
cumulative density function (CDF) and mean:

Pλ(|λ(i)| ≤ R) = 1 − exp
( − R2

16σ8
W /N

)
(12)

E
{|λ(i)|} = 2σ4

W

√
π

N
(13)

Lemma 2: When the primary system is transmitting, |λ(i)|
has a Rayleigh distribution with the following mean:

E
{|λ(i)|} =

√
π

2N

(
8σ8

Z + 32σ6
Zσ2

W + 48σ4
Zσ4

W

+ 32σ2
Zσ6

W + 8σ8
W

) 1
2 ∀i �= 0 (14)

whereas |λ(0)| is approximated by a Rician distribution with
the following parameters:

E
{
λ(0)

}
= 4σ4

Z (15)

and variance per dimension:
Var

{
Re

{
λ(0)

}} ≈ Var
{
Im

{
λ(0)

}}

≈
(
48σ4

Zσ4
W + 32σ2

Zσ6
W + 8σ8

W

)
N

(16)

The proofs of these lemmas are based on the central limit
theorem and are given in the Appendix. From Eq. (11), (12)
and (13), we can derive the probability of false alarm:
Pfa = P

(
T1/T2 > γ | H0

)
= P

(|λ(0)| > γE
{|λ(i)|} | H0

)
= 1 − Pλ

(|λ(0)| ≤ γE
{|λ(i)|})

= exp
( − γ2π

4
)

(17)

Eq. (17) indicates that the Pfa does not depend on the
noise variance nor the block size N . It is a function of the
threshold value only. For a target Pfa, we can use the following
threshold:

γ =

√
−4 loge(Pfa)

π
(18)

Furthermore, based on Lemma 2, the probability of detection
is derived as:
Pd = P

(
T1/T2 > γ | H1

)
= P

(
E

{|λ(0)|} > γE
{|λ(i)|} | H1

)

≈ Q1

( 4SNR2√
1
N

(
48SNR2 + 32SNR + 8

) ,

γ
√

π
2N

(
8SNR4 + 32SNR3 + 48SNR2 + 32SNR + 8

)
√

1
N

(
48SNR2 + 32SNR + 8

) )

(19)

where Q1

(
a, b

)
is the Marcum Q-function of the first or-

der [11], and SNR � σ2
Z

σ2
W

is the energy per symbol per noise
power spectral density.

A. Computational complexity

The algorithm requires two FFT operations per receive
antenna, each costs O(N log2 N) operations. The circular cor-
relation implemented via FFT requires O(N log2 N). In total,
the algorithm’s complexity is O(QN log2 N). For comparison,
the eigenvalue-based Blindly Combining Energy Detection
(BCED) method requires about O(QNL+Q3L3), where L is
the smoothing factor [9]. When log2 N < L, our algorithm’s
complexity is lower than that of existing methods.

IV. NUMERICAL RESULTS

In this section, we evaluate the performance of the pro-
posed scheme by Monte Carlo simulations. The main system
parameters used in simulations are summarized in Table I.
The performance of the proposed scheme is compared with
those of the BCED, and for fair comparison, the BCED also
works on two blocks per antenna, such that the total number
of samples is Ns = 2N .



TABLE I
SIMULATION PARAMETERS

Parameter Value
Primary transmitter
System modulation Orthogonal Frequency-Division Multiplexing
System bandwidth 40MHz
Number of subcarriers 1024
Cyclic prefix 300
Subcarrier modulation Binary Phase Shift Keying
Number of Tx antennas 1

Propagation channel
Channel model 7-tap exponential decay Rayleigh fading [12]
Channel delay spread 1µs

Secondary receiver
Number of Rx antennas 2

Fig. 2. The choice of threshold based on the target probability of false alarm

Figure 2 shows the dependency of Pfa on the threshold
value and it validates our analysis in Section III. Pfa in SFCPS
is a function of the threshold only, representing a significant
adavantage compared to BCED. Pfa of BCED varies with Ns:
as Ns increases, the variation becomes more abrupt, which
means a small error in threshold level could introduce large
error in the outcome Pfa.

We set the target Pfa = 10% and vary the SNR to
obtain the corresponding probability of detection in Figure 3.
Since the Pd of the BCED scheme depends on large Ns to
compensate for weak correlation strength among receive signal
samples [9], we can observe the ceiling effect: the Pd does
not converge to 1 for small Ns, irrespective of how high the
SNR is. The SFCPS scheme outperforms the BCED especially
for a small number of samples Ns, and it can reach 100%
probability of detect when the SNR allows. The theoretical
analysis is proven to be a close approximation of the actual
Pd performance, especially at low SNR region.

V. CONCLUSIONS

This paper proposes a frequency domain spectrum sens-
ing method applicable to frequency selective channels and
receivers equipped with two antennas. Extensive analysis has
been accomplished to give its theoretical performance in terms

Fig. 3. Pd versus SNR for OFDM signal at Pfa = 10%

of both probability of false alarm and probability of detection.
From analysis and numerical evaluations, the proposed method
is shown to have high performance without using the knowl-
edge about the signal, channel and noise power. It outperforms
the reference scheme with a small number of samples and
with a lower complexity. This technique can be extended to
secondary devices with more than 2 antennas, which is the
object of future research.

APPENDIX

PROOF OF LEMMAS

The hypothesis testing problem based on two blocks of N
samples over two receive antennas are as follows:

H0 :
{

Y11 � Y22 = W11 � W22

Y12 � Y21 = W12 � W21
(20)

H1 :

⎧⎪⎪⎨
⎪⎪⎩

Y11 � Y22 = Z11 � Z22 + Z11 � W22+
Z22 � W11 + W11 � W22

Y12 � Y21 = Z12 � Z21 + Z12 � W21+
Z12 � W21 + W12 � W21

For notation simplicity, we define V1i � cshift
(
Y11 �

Y22, i
)
, V2i � cshift

(
Y12 �Y21, i

)
. We notice that Eq. (10)

can be simply written as: λ(i) = 1
N VH

10V2i. Likewise, we de-
fine: A1i � cshift

(
Z11�Z22, i

)
, A2i � cshift

(
Z12�Z21, i

)
,

B1i � cshift
(
Z11 � W22, i

)
, B2i � cshift

(
Z12 � W21, i

)
,

C1i � cshift
(
Z22 � W11, i

)
, C2i � cshift

(
Z12 � W21, i

)
,

D1i � cshift
(
W11 � W22, i

)
and D2i � cshift

(
W12 �

W21, i
)
, where cshift

(
x, i

)
indicates the circular shift of

vector x by i elements to the right.
Proof of Lemma 1: Replacing the null hypothesis of

Eq. (20) into (10), we have:

λ(i) =
1
N

DH
10D2i =

1
N

(
DT

I10DI2i + DT
Q10DQ2i

)

+ j
1
N

(
DT

I10DQ2i − DT
Q10DI2i

)
(21)

where DIvi � [W I
vi

(
0
)

W I
vi

(
1
)
. . . W I

vi

(
N − 1

)
]T and

DQvi � [WQ
vi

(
0
)

WQ
vi

(
1
)
. . . WQ

vi

(
N − 1

)
]T denotes the real



and imaginary part of Dvi (v = 1, 2), respectively. Without
loss of generality, we analyze only the first term in Eq. (21):

1
N

DT
I10DI2i =

1
N

N−1∑
k=0

[
W I

11

(
k
)
W I

22

(
k
)
W I

12

(�k − i�N

)
W I

21

(�k − i�N

)

− WQ
11

(
k
)
WQ

22

(
k
)
W I

12

(�k − i�N

)
W I

21

(�k − i�N

)
− W I

11

(
k
)
W I

22

(
k
)
WQ

12

(�k − i�N

)
WQ

21

(�k − i�N

)
+ WQ

11

(
k
)
WQ

22

(
k
)
WQ

12

(�k − i�N

)
WQ

21

(�k − i�N

)]
(22)

For large N , based on the central limit theorem, we can
show that this term has normal distribution, i.e. DT

I10DI2i ∼
N(0, 4

N σ8
W ). The same goes true for other terms in Eq. (21),

and therefore λ(i) ∼ CN (0, 16
N σ8

W ). As a result, the envelop of
λ(i) has Rayleigh distributed with the CDF and mean given
in Eq. (12) and (13), respectively [13].

Proof of Lemma 2: Put the alternative hypothesis of
Eq. (20) into (10), we have:

λ(i) =
1
N

(
AH

10A2i + AH
10B2i + AH

10C2i + AH
10D2i

+ BH
10A2i + BH

10B2i + BH
10C2i + BH

10D2i

+ CH
10A2i + CH

10B2i + CH
10C2i + CH

10D2i

+ DH
10A2i + DH

10B2i + DH
10C2i + DH

10D2i

)
(23)

Case i �= 0: Using a similar proof as in Lemma 1, where
the central limit theorem is applied, we can show that each
term in Eq. (23) is complex normal distributed, specifi-
cally AH

10A2i ∼ CN (0, 16
N σ8

Z), AH
10B2i ∼ CN (0, 16

N σ6
Zσ2

W ),
AH

10C2i ∼ CN (0, 16
N σ6

Zσ2
W ), AH

10D2i ∼ CN (0, 16
N σ4

Zσ4
W ),

BH
10A2i ∼ CN (0, 16

N σ6
Zσ2

W ), BH
10B2i ∼ CN (0, 16

N σ4
Zσ4

W ),
BH

10C2i ∼ CN (0, 16
N σ4

Zσ4
W ), BH

10D2i ∼ CN (0, 16
N σ2

Zσ6
W ),

CH
10A2i ∼ CN (0, 16

N σ6
Zσ2

W ), CH
10B2i ∼ CN (0, 16

N σ4
Zσ4

W ),
CH

10C2i ∼ CN (0, 16
N σ4

Zσ4
W ), CH

10D2i ∼ CN (0, 16
N σ2

Zσ6
W ),

DH
10A2i ∼ CN (0, 16

N σ4
Zσ4

W ), DH
10B2i ∼ CN (0, 16

N σ2
Zσ6

W ),
DH

10C2i ∼ CN (0, 16
N σ2

Zσ6
W ) and DH

10D2i ∼ CN (0, 16
N σ8

W ).
Therefore, λ(i) is also zero-mean complex normal distributed,
i.e. λ(i) ∼ CN (0, 16

N (σ8
Z+4σ6

Zσ2
W +6σ4

Zσ4
W +4σ2

Zσ6
W +σ8

W )). Hence,
|λ(i)| has Rayleigh distribution with the mean given in
Eq. (14) [13].

Case i = 0: From Eq. (8), we have A10 = A20 and Eq. (23)
becomes:

λ(0) =
1
N

(
AH

10A10 + AH
10B20 + AH

10C20 + AH
10D20

+ BH
10A10 + BH

10B20 + BH
10C20 + BH

10D20

+ CH
10A10 + CH

10B20 + CH
10C20 + CH

10D20

+ DH
10A10 + DH

10B20 + DH
10C20 + DH

10D20

)
(24)

Similarly, after tedious but straightforward derivation, we
can show that the first term in Eq. (24) is real and nor-
mal distributed, i.e. AH

10A10 ∼ N(4σ4
Z , 4

N (β2
Z−σ8

Z)), while
the other terms are complex normal distributed, namely
AH

10B20 ∼ CN (0, 16
N βZσ2

Zσ2
W ), AH

10C20 ∼ CN (0, 16
N βZσ2

Zσ2
W ),

AH
10D20 ∼ CN (0, 16

N σ4
Zσ4

W ), BH
10A10 ∼ CN (0, 16

N βZσ2
Zσ2

W )

, BH
10B20 ∼ CN (0, 16

N σ4
Zσ4

W ), BH
10C20 ∼ CN (0, 16

N σ4
Zσ4

W ),

BH
10D20 ∼ CN (0, 16

N σ2
Zσ6

W ), CH
10A10 ∼ CN (0, 16

N βZσ2
Zσ2

W ),
CH

10B20 ∼ CN (0, 16
N σ4

Zσ4
W ), CH

10C20 ∼ CN (0, 16
N σ4

Zσ4
W ),

CH
10D20 ∼ CN (0, 16

N σ2
Zσ6

W ), DH
10A10 ∼ CN (0, 16

N σ4
Zσ4

W ),
DH

10B20 ∼ CN (0, 16
N σ2

Zσ6
W ), DH

10C20 ∼ CN (0, 16
N σ2

Zσ6
W ) and

DH
10D20 ∼ CN (0, 16

N σ8
W ) where βZ is the forth moment

of the real (or imaginary) part of Zqb

(
k
)
. As a result,

λ(0) ∼ N
(4σ4

Z ,
(4β2

Z
−4σ8

Z
+32β

Z
σ2

Z
σ2

W
+48σ4

Z
σ4

W
+32σ2

Z
σ6

W
+8σ8

W
)

N )
+

jN
(0,

32β
Z

σ2
Z

σ2
W

+48σ4
Z

σ4
W

+32σ2
Z

σ6
W

+8σ8
W

N )
.

The fourth moment βZ is tricky to derive, and it might
not have a closed form expression. Therefore we consider the
following approximation: if the SNR is low, i.e. the noise
variance is more dominant than the signal variance, we can
neglect the following terms β2

Z , βZσ2
Zσ2

W σ8
Z , σ6

Zσ2
W . Thus:

λ(0) ∼ CN
(4σ4

Z ,
96σ4

Z
σ4

W
+64σ2

Z
σ6

W
+16σ8

W
N )

(25)

It is well-known that the envelop of λ(0) has Rician distribu-
tion with parameters given in Eq. (14) and (16) [13].
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