Aalborg Universitet AALBORG

UNIVERSITY

Optimising agile development practices for the maintenance operation
nine heuristics
Heeager, Lise Tordrup; Rose, Jeremy

Published in:
Empirical Software Engineering

DOl (link to publication from Publisher):
10.1007/s10664-014-9335-7

Publication date:
2015

Document Version
Publisher's PDF, also known as Version of record

Link to publication from Aalborg University

Citation for published version (APA):
Heeager, L. T., & Rose, J. (2015). Optimising agile development practices for the maintenance operation: nine
heuristics. Empirical Software Engineering, 20(6), 1762-1784. https://doi.org/10.1007/s10664-014-9335-7

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

- Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
- You may not further distribute the material or use it for any profit-making activity or commercial gain
- You may freely distribute the URL identifying the publication in the public portal -

Take down policy
If you believe that this document breaches copyright please contact us at vbn@aub.aau.dk providing details, and we will remove access to
the work immediately and investigate your claim.

Downloaded from vbn.aau.dk on: August 23, 2025

https://doi.org/10.1007/s10664-014-9335-7
https://vbn.aau.dk/en/publications/f98f6e9a-ccaf-444c-9278-eccb9061543f
https://doi.org/10.1007/s10664-014-9335-7

Empir Software Eng
DOI 10.1007/s10664-014-9335-7

Optimising agile development practices
for the maintenance operation: nine heuristics

Lise Tordrup Heeager - Jeremy Rose

© Springer Science+Business Media New York 2014

Abstract Agile methods are widely used and successful in many development situations and
beginning to attract attention amongst the software maintenance community — both researchers
and practitioners. However, it should not be assumed that implementing a well-known agile
method for a maintenance department is therefore a trivial endeavour - the maintenance operation
differs in some, important respects from development work. Classical accounts of software
maintenance emphasise more traditional software engineering processes, whereas recent re-
search accounts of agile maintenance efforts uncritically focus on benefits. In an action research
project at Aveva in Denmark we assisted with the optimisation of SCRUM, tailoring the standard
process to the immediate needs of the developers. We draw on both theoretical and empirical
learning to formulate seven heuristics for maintenance practitioners wishing to go agile.

Keywords Software maintenance - Agile methods - SCRUM - Action research

1 Introduction

Software developers have for more than a decade been concerned with a change of perspective in
favour of the lightweight flexible approaches incorporated in agile ideas and practices (Senapathi
2010; Conboy 2009; Dyba and Dingseyr 2008; Souza et al. 2005). Agile methods, including
Crystal Clear, Agile Unified Process, Lean Development, Dynamic Systems Development
Methods, Scrum and XP have become increasingly popular for development projects (Sidky
et al. 2007), with commercial adoption outstripping the ability of researchers to keep up
(Abrahamsson et al. 2009). The research evidence for the success of these approaches remains
slim, though there is work addressing success factors (Misra et al. 2010); nevertheless agile is
clearly here to stay, and agile is a accepted option for development projects.

Communicated by: Hakan Erdogmus

L. T. Heeager (<)
Department of Business Administration, Aarhus University, 8000 Aarhus C, Denmark
e-mail: lith@asb.dk

J. Rose
Department of Informatics, Skévde University, PO Box 408, SE-54128 Skovde, Sweden
e-mail: jeremy.rose@his.se

J. Rose
Department of Computer Science, Aalborg University, Aalborg, Denmark

Published online: 11 October 2014 &\ Springer

Empir Software Eng

Lehman’s first law of software evolution states that ‘a program that is used undergoes
continual change or becomes progressively less useful’ (Lehman 1980). Therefore most
software systems are maintained and further developed after their initial development.
According to the IEEE, software maintenance is defined as: the process of modifying a software
system or component after delivery to correct faults, improve performance or other attributes, or
adapt to a changed environment (Standards Coordinating Committee of the Computer Society
of the 1990). Maintenance, though under-researched, is by far the predominant activity in
software engineering. The majority of commercial projects are built over a previously devel-
oped codebase (Svensson and Host 2005), and maintenance represents typically 90 % of the
total cost of a typical software product (de Souza et al. 2006). Cockburn (2006) argues that agile
methods represent an evolutionary kind of development in which maintenance activities are
subsumed in an iterative sequence of software deliveries, but there is no evidence that this has
become common practice. Commercial software projects most typically have an agreed
delivery point, after which the system is then moved on to maintenance, which is often carried
out by specialised maintenance engineers, working in their own department. Maintainers face
multiple work-practice challenges in the same way that developers do and also seek flexible and
efficient processes and appropriate methodological support. Much of the literature on software
maintenance deals with traditional methods and software engineering techniques, but software
maintenance departments are well aware of agile methods and have started experimenting with
them. A few pioneering research studies suggest that agile practices have several advantages in
software maintenance (Choudhari and Suman 2010; Rudzki et al. 2009).

Nevertheless, software maintenance differs from development in several important respects
(Charette et al. 1997); for instance development does not normally depend on the comprehension
of an existing program, as maintenance does. Agile methods were developed for software
development (not for software maintenance). It is a reasonable assumption that the adoption of
an agile method in the maintenance context may pose considerable challenges. The principles
behind optimising an agile method for a maintenance operation are poorly researched and in need
of clarification, and there is therefore a need to investigate how agile methods can successfully be
adapted to maintenance situations. Researchers should understand which advantages and disad-
vantages the methods have for the maintenance operation, and how the well-known approaches
should be customized. They need to develop theory in the area of agile maintenance, and guidance
for maintenance practitioners wishing to adopt agile practices. In this article we therefore ask the
question: how can agile methods be optimized to fit the practice of software maintenance?

The empirical part of the research concerns an action research study of the adoption of
Scrum into the work practice of the maintenance department at Aveva, an international software
company specialising in enterprise and design solutions for large engineering plants and the
shipping industry. The focus of the study was on management of agile software maintenance.
The maintenance group in Denmark concentrates on enterprise systems for shipping, with a
global portfolio of customers. They comprise nine developers and two managers, and had been
working with Scrum for about 9 months at the time the study started. A group of three
researchers from Aalborg University assisted in the task of helping the new agile process to
run smoothly.

2 Research Process
The research is framed as two complimentary studies (Fig. 1): a literature study and an action

research project. The literature study identifies relevant maintenance literature and previous
research into agile maintenance, and investigates three questions:

@ Springer

Empir Software Eng

Literature study: Action research at Aveva:
+how do development and *(analysis) what are Aveva’s
maintenance differ? optimisation challenges?
*what’s known about agile «(intervention) which
maintenance practice? optimisations are desirable?

*what are the optimisation *(evaluation) how effective are
challenges? the results?

Heuristics for
optimising agile
methods for
maintenance

Fig. 1 Overall framing for the research

* how do software development and maintenance differ?
* what is known about agile maintenance practice?
* which challenges may be expected when optimizing an agile method for maintenance?

The action research study was a cooperation between the maintenance unit at Aveva and the
information systems group at Aalborg University. Action research is an appropriate form of
research for optimising organisational performance (Susman and Evered 1978) and accepted
both in information systems research (Baskerville and Wood-Harper 1998) and software
engineering research (Runeson and Host 2009). The objective of the research was to optimize
the Scrum implementation at Aveva. It consisted of three activities: initial analysis, interven-
tion and evaluation; the empirical data were collected over a year (November 2011 to October
2012). Table 1 summarizes the action research design.

In action research it is important to maintain a research focus (McKay and Marshall 2001);
we maintain an iterative connection between theoretical literature and action research study by
encouraging the literature study to influence issues under consideration in action research
project and vice versa. Nine issues (see Table 2) under consideration are investigated theoret-
ically, from the literature, and empirically, in the case study; the resulting heuristics are
grounded in these issues.

The rest of paper is structured as follows: in the next section the theoretical background
identifying differences between software development and maintenance, the state of the art of
agile software maintenance, and expected optimisation challenges are outlined. The learning is
presented in a summary table organised around the nine numbered issues. In the next section,
the case company is introduced, and the three stages of the action research (analysis,

Table 1 Action research design

Initial analysis Intervention Evaluation
9 qualitative interviews Meetings with management Evaluating questionnaires
Observations of stand-up and Seminar with the team, determining the 8 speed interviews
planning meetings concrete strategies
Seminar presentation Observations of planning meetings Seminar presentation and validation

Interview coded and analysed Seminars and observations audio recorded Interviews coded and analysed
using Nvivo using Nvivo

@ Springer

Empir Software Eng

intervention and evaluation) described. The major points of learning are again identified in a
summary table based on the nine issues. Section 5 develops nine heuristics for maintenance
departments adopting agile methods, which are derived from the theoretical and empirical
analyses, and the conclusion develops implications for research and practice.

3 Challenges for Optimisation of Agile Methods for Maintenance

This section describes the theoretical background for the study. It presents an analysis of the differences
between software development and maintenance, a comparison of agile software development and
agile maintenance, and nine challenges for implementing agile methods in maintenance.

3.1 Software: Maintenance is not Development

The literature defines software maintenance as “modification of a software product after delivery”
(Bennett and Rajlich 2000); hence as a stage that take place after software development. During
maintenance, software systems move away from their original state (Stachour and Collier-Brown
2009) into continuous evolution (Sukumaran and Sreenivas 2005). Maintenance work can be
understood as a lifecycle (as system development sometimes also is) with four stages (Kung and
Hsu 1998):

* Introduction stage: the first few months after the system goes live, normally with low
usage; identification and resolution of initial problems

* Growth stage: growth of system usage exposes deeper level technical problems (such as performance
issues), bugs in less-used features and mismatches with work processes requiring changes

* Maturity stage: during this stage, major enhancement projects occur that test the limits of
the technologies and functionality embedded in the application software

* Decline stage: the system reaches the limits of the embedded technologies, and users
require software renovation — the system is patched until it is replaced.

However, this lifecycle can be considerably longer than the development life cycle, and mainte-
nance work may cover several overlapping system cycles. It is therefore more often organised as a
departmental unit than a time-limited project. A classical typology of maintenance types was provided
by Lientz and Swanson (1980) — maintenance is:

e Adaptive — responding to changes in the software environment
* Perfective — responding to new user requirements

* Corrective - fixing errors

* Preventive — preventing foreseeable problems in the future

Maintenance is mis-represented as bug fixing (corrective maintenance) since approximately
75 % of it is adaptive or perfective - effectively new development. This may be a good
argument for adopting a agile development method, even though some other premises may be
different. Whereas development projects usually only deal with one instance of a system at a
time; maintenance is often complicated by dealing with customers with different
customizations of several versions of a software system (Bennett and Rajlich 2000). The
result may be many small independent tasks with limited cohesion, rather that the naturally
homogenous tasks in a development project. Tasks are usually initiated by customers, leading
to a change mini-cycle (Bennett and Rajlich 2000):

@ Springer

Empir Software Eng

* Request for change

* Planning phase: program comprehension, change impact analysis

* Change implementation: restructuring for change, change propagation
* Verification and validation

* Re-documentation

For minor changes, further customer involvement may not be necessary, and the large-scale
requirements and analysis tasks of a development project are replaced by program comprehen-
sion - a demanding skill, requiring both understanding and interrelation of domain, situation and
program models, and the generation and testing of hypotheses and high-level strategies (Vans
et al. 1999). Up to 50 % of the effort in such a maintenance cycle can be devoted to program
comprehension (Bennett and Rajlich 2000). However, maintenance requires a skill-set com-
mensurate with development work (Taylor et al. 1998), encompassing not only technical skills
in programming and de-bugging, but also analytical skills such as requirements analysis,
business skills such as understanding work-process and social skills for user liaison.

Much research in software maintenance has been focused on traditional software engineer-
ing techniques such as modelling techniques and UML, (Arisholm et al. 2006; Dzidek et al.
2008), estimation, (Buchmann et al. 2011; De Lucia et al. 2003; Nguyen et al. 2011), risk
management, (Charette et al. 1997; Sherer 1997), statistical process control (De Lucia et al.
2003; Popovic et al. 2001; Ware et al. 2007; Zanker and Gordea 2006), quality, (Ghods and
Nelson 1998), metrics, (Hall and Lineham 1997; Popovic et al. 2001; Ware et al. 2007), post
mortem, (De Sousa et al. 2004) and testing, (Sukumaran and Sreenivas 2005). The major thrust
of this research -in line with standard textbooks such as Pigoski (1996) and Grubb & Takang
(2003) - is directed towards increasing discipline (Boehm and Turner 2003) in the maintenance
operation, rather than agility.

In summary, many common assumptions about development work are poorly transferable
to the maintenance operation. Development is usually organised as a project, in a matrix-
structured organisation, whereas a stable group (structured like a department) often carries out
maintenance. Release planning and personnel responsibilities are not necessarily synchronized,
which keeps maintenance organizations from attaining a sense of cohesion (Charette et al.
1997). Maintenance organizations do not often have a project completion date to rally around.
There is only the next task, and the one after that, and the one after that, ad infinitum. If there
are releases, they are a mixture of enhancements and corrections for different customers, which
further reduce the sense of focused purpose. Individuals frequently work alone on tasks and
often have sole responsibility for the task. They are not necessarily working as part of a team,
in which individuals communicate with one another during their work. The tasks can be ad-
hoc, and have no intrinsic relationship with each other. Maintenance planning is constantly
interrupted by urgent requests from customers whose own businesses may be threatened by
system failures or changes that must be accommodated. The traditional measures of success in
development work revolve around delivering a unified product at specific points in time at an
acceptable cost with sufficient quality to satisfy a single customer, however these need some
adjustment in the case of the maintenance operation.

3.2 Agile Maintenance
It is generally accepted that agile methods share a group of common characteristics (Prochazka
2011; Abrahamsson et al. 2002), which include an iterative development process, focused

work objectives around delivery points, small teams working closely together, close customer
involvement, face-to-face communication, light documentation, frequent testing, intrinsic

@ Springer

Empir Software Eng

motivation through collective ownership, knowledge transfer through openness, and a focus
on a high quality of code and product. These characteristics are also understood to function
well, at least in some kinds of development situations.

A smaller body of research work investigates the application of these characteristics to
maintenance work. Since we have argued that there are significant differences between
development and maintenance engineering, we do not assume that the tools and techniques
associated with agile development will necessarily produce good results in maintenance (Polo
et al. 2002). The agile maintenance studies are generally positive in tone and highlight
advantages: agile methods help speed up the process (Choudhari and Suman 2010) and
improve communication between members of the maintenance team (Rudzki et al. 2009).
Other cases demonstrate improved user satisfaction and team motivation (Prochazka 2011) and
an increase in code quality (Choudhari and Suman 2010; Rudzki et al. 2009; Pino et al. 2012).
An iterative lifecycle can be seen as advantageous for maintenance (Choudhari and Suman
2010), due to the short-term nature of the work (Shaw 2007). Whereas some maintenance
engineers easily adopt pair programming, and find that it improves the quality of the code
(Poole and Huisman 2001; Poole et al. 2001), others regard it as pointless and time consuming
(Kajko-Mattsson and Nyfjord 2009) - these findings mirror the agile development literature.
There are no documented examples of maintenance teams with on-site customers, but close
cooperation with customers is regarded positively (Svensson and Host 2005). Scrum meetings
have been successfully implemented in maintenance (Rudzki et al. 2009). Maintenance
departments traditionally respect documentation (though they do not necessarily trust it) since
they expect other engineers to work on their code. They are therefore naturally suspicious of
agile attempts to reduce documentation to a minimum (Souza et al. 2005). Agile testing
practices work well in maintenance situations; frequent testing is necessary, and suites of
automated tests reduce the overhead of performing them (Poole and Huisman 2001; Poole
et al. 2001). Regression testing (which agile methods encourage through iterative practices) is
important to detect knock-on effects of maintenance improvements (Thomas 2006). Collective
ownership proves a mixed blessing; many maintenance jobs are small, distinct and specialised
and there is a natural tendency for the developer with the necessary specialised knowledge to
take responsibility for them (Svensson and Host 2005). Openness leads to visibility of tasks
and their allocation, which is also highly valued in maintenance (Poole and Huisman 2001;
Poole et al. 2001). However, the principle of simple design can be difficult to apply, as teams
are constrained by the design decisions of the original developers, and have to allow for future
implementations and corrections (Svensson and Host 2005).

A certain amount of redesign both of agile practices and of maintenance work process is
commonly necessary when agile methods are adopted by maintenance engineers, and all studies
point to implementation difficulties. The few case studies available are largely practice reports;
the principles behind optimising an agile method for a maintenance operation are not discussed.

3.3 Challenges for Optimising Agile Methods for Maintenance

We have discussed the principal differences between development and maintenance work, and
looked at how agile characteristics operate in the few existing studies of agile maintenance. We
summarise this literature-based investigation as a series of challenges for the optimisation of
agile methods in the maintenance environment:

* in relation to the agile characteristic of iterative development: maintenance work can be

organised into sprints (iterations), but the task synergy and common goal assumed in
development work are usually missing in maintenance (Poole and Huisman 2001)

@ Springer

Empir Software Eng

* in relation to focused work objective: maintenance sprints are subject to interruption by
urgent customer demands and there are few common delivery points or integrated releases
(Bennett and Rajlich 2000)

* in relation to teams working closely together: maintainers predominantly work on indi-
vidual tasks on many different systems and system variants (Bennett and Rajlich 2000)

* in relation to close customer involvement: maintenance engineers typically work with
many customers with many small change requests, they are seldom on-site, and there is
often little close interaction (Bennett and Rajlich 2000)

* in relation to face-to-face communication: this is not always necessary or productive in
maintenance, due to the diverse nature of the tasks undertaken (Kitchenham et al. 1999)

* in relation to light documentation: maintainers consider documentation necessary to
maintain the integrity of the evolving system, and to help with program comprehension
in future maintenance work (de Souza et al. 2006; Prochazka 2011)

* in relation to frequent testing: comprehensive system testing is usually impractical, testing
limited to immediate impacts of current fix (Junio et al. 2011)

* in relation to motivation through collective ownership: collective ownership may be irrelevant
where maintainers are working on independent tasks in multiple codebases, motivation is
difficult without common tasks and delivery points (Kitchenham et al. 1999; Singer 1998)

* in relation to knowledge transfer through openness: openness and information sharing may
be of little value if tasks are un-related, and there is no coherent release or natural deadline
(Bennett and Rajlich 2000)

Table 2 summarizes the results of the literature investigation.

4 Optimising Scrum at Aveva’s Maintenance Operation
4.1 The Aveva Operation

Aveva is a large worldwide software company specialising in engineering software for the
plant and marine industries. They have technology centres in six European countries and the
USA and India, and sales and support operations around the world.

The maintenance department at Aalborg works primarily with MARS (an enterprise
management system for the ship-building industry) and consists of a small team of 8-9
persons with two integrated managers. These two managers and other team members with
accumulated experience were in charge of keeping the contact to the customers. The team
services a portfolio of customers around the world with heavily customized
implementations. The team members in the maintenance department were mainly
women (two men) with very different background and a great difference in years of
experience. While about half of the team members had 10+ years of experience, the
remainders were very new in software development and maintenance. The team
primarily consisted of Danish citizens but also included a few other nationalities.
Only a few of the team members had practical experience with agile methods.

4.2 The Pre-research-State
The maintenance operation at Aveva Aalborg was for many years based around a conventional

task management system, with dedicated maintainers servicing their own customers. Though this
approach generated a good rapport between individual maintainers and their customers and a high

@ Springer

Empir Software Eng

8
(9007 sewoy) Sursay (1002 apoog
(1707 'Te 10 omuny) x13 Juelmnod Jo spedun worssardar A[rerdadse (1007 Te 19 9[00d {1007 pue 10qeMY0S) Jurds yoes ur pajse} pue
Sjerpourtul 0) pajywl unsey ‘[eonoerdur UewISINY Pue 9]00) ddurUUIEW J[iTe ul PadojoAap wd)sAS Ay JO JUSIAIOUT FurIom
L Ajrensn Sunse) wisAs aarsuoyrdwo) juepodunr se papiedar s)s9) pajewione juanbaig © (3109g) p1edoApe Juawdo[oAdp USALIP-)SA, Sunsay juonbarg
(110T e3jzeyo01d 900 ‘Te 12 eZNog dp) (S00T 'Te 1 eznog) Juetoydp
w)sAs FUIAJOAS Jo ALISquI urejurews spoyjow 9[IFe ‘DduBUAUILW U (0102 preresz pue A0quo))) UOHEBIUIWNIOP
9 0} ATESS209U PAISPISUOD UOTBIUAWNIO] juepodun A[[euonipen Uoneuaunooq uet)) jueliodulr 210 Se U9dS Ak SUONORIAU] UONEIUWNOOP JYSI]
(6661 'Te 10 WeYUaYINIY]) JI0M JO 2Ineu (100 2[p2eg pue 1oqemyds)
9SIOAIP 01 onp dAnonpoId 10 Aressooou (6007 T8 30 D{ZpMy) 9OURUAUIBW Ul SSI00NS s3uneow juonboxy Aq pauoddns Aja3rey st siy L, UOTBIIUNTUTIOD
S SAeMIE JOU UONEOIUNUITIOD 9IBJ-0}-008 [JIM PIUaWR[du Ud9q dABY SFUNSIW WNIOS [RHUISSS SE UDS SI UONBIIUNUITOD 908J-03-908,] 90BJ-0)-008]
(100 2Ip2ag
pue I2qemuyds) Joumo jonpoid ay) Jo 9[o1
(000T yotIfey pue noutag) uonoeIRUl (00T 1s0H pue oY) sey winog (100 e 10 Yo9g) PWoIsnd
9S0[0 Q[NI] “A)S-UO WOP[as ‘sjsanbax UOSSUIAS) SIAWO0ISND A)Is-UO Jo sojdurexs ou 9)IS-UO UB SPUAWOdI JX Judwdo[oadp JUSWIAAOAUI
% oBueyp [ews Auew ‘S1owoIsNd AUBJ INQ ‘O[qEIISIP SIOWO0ISND M uoneredoods aso)) oiSe ur ofo1 [enuad & sAerd Jowo)sNo oY, IOW0ISND 3S0[)
(600z p1oGAN pue
uosspeN-oyfey]) onsind 0} oa1suadxa 00 10 (0102 prereszng pue
(000Z yorifey pue pouuog) “(100Z Te 12 9100 <1 (O UeWISINY pue [00J) Koquo)) Surwwres3oxd ared asn pue 10y3030)
SJUBLIBA WQJSAS JUSIQYIP UO SYSB) 9JOIISIP Ayrenb opoo sorordwr pue snoaSejueApe JIS WL} 9y} JBT]) SAJBI0APE JX “A[9SO[0 1013030} 1043030} AJ9so[o
€ [enpIAIpul AUeUI UO SIom KB SIQUTBJUIR]A] Surwwrer3oxd ared :poprospun sAIpyg JI0M 0} 9[qe 9q 0} JOPIO UI [[BWS dIe Wed) ISy Sunyjiom sweay,
(000Z yon ey pue pouuag) sasea|ar SPUBLUAP IOWO)SNO
parer3ayur 1o syurod AI9AT[Op uouwnuod JUAZIN [BIOAS Sey ouBuUIRW YINOL) (100T 21p22g pue 12qemyos)
MJJ ATk 91U} PUB SPUBLUDP IOWO)SNO UQAD JI0M Pasnooy Jo 9A1a[qo ap dooy suondnisyut Jnoyim sHom 03 sum e s1odofoadp
7 a3 Aq uondnuur 0 309(qns a1 s)ulids 0} MOY JO ONSST A} SISTRI [OIRISAI JUILIND ON) 9AIS 0} ST SUONEIANI HIOYS A} JO [80T dYJ, IANIAQO jIom Pasndo]
(100 uewsmy pue 9[00y) [e03
uowwod 10 A310uAs yse} Aue AJLIESSaou (LO0T MeyS) SI0M JO 2Injeu WLIJ-1I0YS (100T 91p22g pue 19qeMUOS) SAWel) duir) pax1j
jou st 210y} Inq ‘(suoneroy) syurids 01 onp ([(7 UBWING pue LIEYPNOy))) ur y10m s1odofaasp (1007 Te 10 yoog) A3arens
I OJUI PASIULSIO 9q UBD SIOM DURUNUIB]N IOUBUJUIRW 10 SNOIFIUBAPE J[OAOJI] 2ANRIN JUSWAO[IAP SANRIN UR 2)BIOAPE SpoOyiow 1Ty Judwdo[oAdp dAneI)]
ouonss] saguo[[eyo uonesiundo soueusiUTEW J[ISY QoURU)UIEBW OIEMYOS J[ISY yuowrdo[oAsp oremyos 9ISy SonsLIR)oRIRYD J[ITY

BOIE QouBUdUIEW dy) Ul 9onoed oiSe Junuowejdwr 10y soFusyieyo uonestundo ¢ 7 qel

pringer

A's

Empir Software Eng

(0007 yo1|fey pue pouudg) durpeap
EHE&E I0 OwsﬂuH HEOHQEOU ou wﬂ ohoﬁﬁ

puR ‘pajeloI-un dIe SYSe) JI an[eA SNI] JO
6 9q Aew Suweys uoneuLojul pue sssuuadO

(8661 108UIS 6661 T2 10 WEYUOYOIY)
syutod AI9AI[Op UOWIWOD JNOYIM JNOIFIP
UONBAIIOU ‘SaSBqOPOO S[dnnuu ur syse)
judpuadopur uo Junpom I sIourejUTE
QIoUM JUBAJ[OLI dIYSIOUMO 9ANII[[0))

(010 PreseszILg
pue Koquo))) doeds uado ayy ur papiaoid oq
jsnur snye)s sy pue 309(oxd) uo uoneULIOJU]

(100T e 10 21004 100T
UBWSINH PUB 3[004) OUBUUIBW Ul PAN[eA
Ays1y “sysey Jo Aiqisia 0y sped| ssauuad

ssouuado ySnoxyy
IoJsuen) o3pajmous|

UONEATOW WIEd)
saduelUd (100T Te 12 Moag) 9pod pue (1007
9[pa2g pue Ioqemuyods) syse) 10y Ajiqisuodsar
UOUILIOD YIIM SWIed) SUIZIUBSIO-J[oS Ul SUISIOA

(00T 3s0H
PUE UOSSUSAS) 9[qIsuodsar 9q [[1m WoISAS

A Jo a3pajmouy| Isieroads yim uosiad oy
oy 9y Jo jsowt ‘dIysIoumo 9A1A[[00 Adsoq

diys1oumo 2A199[[00
ySnoxy) uoneAnonN

ouonss] saSud[eyd uopesrundo douBUSUTEW J[ITY

QOUBUQUIEW AIMYOS AITY juowidojoAsp o1em1jos 9ISy SONSLIONOBIRYD J[ISY

(ponunuoo) g aqex,

pringer

A's

Empir Software Eng

level of specialised knowledge of these customers’ implementations, it also led to mismatching of
experience and tasks (a very experienced maintainer with a trivial task), work troughs and peaks
for individual maintainers which could sometimes induce long working hours and stressful
deadlines, and vulnerability in the case of absence through, for example, sickness.

They switched to Scrum in 2010, implementing a method with following Scrum elements:

* The Scrum master role is assigned to one of the maintainers

* The Product owner role is assigned to several internal persons, due to multiple customer
relations

* Highly self-organized team

* Sprints of 2 weeks length

* Planning meetings before each sprint

* Daily 5-minute scrum meetings

* Tasks collected into a prioritized product backlog

* A subset of tasks is chosen for the sprint backlog

* A large task board is used to keep track of the sprint progress

Even though they had succeed in implementing the majority of the practices of Scrum, the
method immediately demanded modifications — there was no natural overall product owner or
on-site customer, and release dates were chosen arbitrarily because they worked with batches of
(often unrelated) jobs made unpredictable by emergency calls from customers that had to be
attended to immediately. They initially decided to use fourteen-day sprints for fast turnover, and
adopted planning poker for estimation (practices more usually associated with XP). The scrum
master role was assigned to one of the more experienced maintainers; her task was to lead the
team through planning meetings, daily stand-up meetings and retrospectives (every second
month). The new Scrum approach introduced shared ownership; everybody was involved in
estimation, had a say in prioritising tasks, selected their tasks from the common scrum board
(instead of responding to their own customers) and took responsibility for completing their own
tasks on time. Even though the maintenance team at Aveva overall was pleased with moving to
Scrum, they found that an adaptation and optimisation of the method was necessary.

5 Optimising Agile Maintenance Practice at Aveva
5.1 Analysis

The study was initiated with an analysis based on semi-structured qualitative interviews
(Myers and Newman 2007) with developers and managers of the software maintenance team
(in total 9 interviews). A stand-up meeting and a planning meeting were observed. The
interviews and the observations were audio-recorded; the audio files were later coded and
analysed using NVivo 9 and the relevant passages were transcribed. The analysis focused on
documenting current practice with Scrum and identifying strengths and weaknesses (optimi-
sation needs). The whole team attended a seminar to validate the analysis results and determine
focus points for the intervention. The initial analysis identified six inter-connected issues with
the group’s use of Scrum. Table 3 gives these and their interview coding frequency. The coding
frequency is not included for generalization of the findings, but as an indicator of which issues
were focused on by the maintenance team.

@ Springer

Empir Software Eng

Table 3 Analysis findings

Findings Frequency

Explanation

Looser relationships with 5
customers compared with
the earlier work-practice

Sprint goal not consistently 70
reached

Poor motivation and lack 15
of feedback for maintainers
compared with the earlier
work-practice

Administration of Scrum is 29
time consuming,
particularly the meetings

Lack of shared knowledge 11
of individual customer
installations

Unhelpful use cases with 13
low communication value
for fellow maintainers

Close relationships between individual maintainers and customers
in the earlier work-practice provided both good feedback and a
form of relational motivation derived from satisfying customer
needs. These became less evident when Scrum was introduced.

A mixture of emergency jobs (which could not be planned for) and
difficulties with estimation (partly caused by incomplete use
cases) meant that the sprint plan was not consistently met, and
unfinished tasks were held over to the next sprint.

Not meeting the sprint goal was de-motivating, especially where
earlier types of feedback and motivation were less evident than
before.

Meetings were long inefficient (particularly planning meetings)
consuming resources that could not be billed to customers.
Planning poker was only partially effective; with some
incomplete use cases, and maintainers who did not necessarily
know anything about the task, customer and installation being
estimated. Many discussions involved only a minority of the
more experienced maintainers - leaving the others unable to
contribute.

Maintainers were often expected to take the next task from the
Scrum board which were prioritised in order, resulting in them
working on an installation or a task with which they were not
familiar and needed support.

Use cases had traditionally been written in a shorthand form that
signalled their content for the writer/implementer (often the
result of a telephone call or email with a customer). This didn’t
provide a secure foundation for group estimation and
programming by a different maintainer. Maintainers provided
examples of both poor practice and good.

5.2 Intervention

At a seminar presentation of the findings presented above, the group identified the adminis-
tration issue and the use case problem as important starting points for the intervention, though
many of the problems can be seen as inter-related. The intervention covered optimisations in

four areas:

* Use cases. A use case template was developed from the examples of good
practice identified earlier, and implemented in the task-handling system as a
non-compulsory structure. In addition the team adopted the practice of rejecting
poorly formulated use-cases at the planning meeting and asking for them to be
re-written. It was expected both that estimation would improve, and that time
spent clarifying tasks would be reduced. Both should contribute to reaching

sprint goals.

@ Springer

Empir Software Eng

» Estimation. Practice was changed so that maintainers with special responsibility
for customers estimated their own customers’ use cases before planning meet-
ings. Group estimation (planning poker) was not eliminated entirely, but confined
to estimates that were found questionable by the team. This change was designed
both to improve estimation quality and reduce the time spent on planning poker
in planning meetings.

* Planning meetings. The planning meetings were re-organised so that a backlog
printout was distributed in advance of the meeting and the team asked to prepare
by reading through it. They could then spot poor use cases and estimates they did
not agree with. The scrum master was also given powers to curtail lengthy or
irrelevant discussion. The intention was to create more efficient, better-focused and
shorter meetings.

e Metrics. A lightweight portfolio of metrics was introduced. The team identified
the parameters that defined their successful working environment as: employee
satisfaction (interesting tasks, team spirit, appropriate pressure), cooperation
(meeting results, involvement in decisions, quality (errors found at test,
customer-reported errors) and estimation accuracy. Metrics were developed com-
bining data from the task-management system and the questionnaire, and the
process was automated so that the metrics could be graphically represented for
each planning meeting with minimal effort. Metrics served both to help visualize
progress in the other intervention areas and to provide an alternative form of
motivation for the team.

The intervention strategy was organised in collaboration with the two managers and
initiated at a seminar where the whole group was invited to refine the concrete improvement
suggestions. During the intervention three planning meetings were observed and the team was
followed closely.

5.3 Evaluation

The progress of the intervention was evaluated through questionnaires every second
week and eight qualitative speed-interviews (one developer had resigned since the
initial analysis). The interviews focused on the actions taken during the intervention,
while the questionnaires monitored the overall levels of satisfaction on agreed
parameters. Audio recordings of the evaluation interviews were coded and analysed
using Nvivo 9; the results were presented and validated at a seminar with the whole
team.

The evaluation showed that the quality of the use cases had improved. The
template developed for the use cases was considered really useful but there was
also room for improvement. Estimation accuracy remained somewhat variable,
thought the team managed two sprints that were perfectly estimated. The evalu-
ation showed how changing the ground rules had resulted in more efficient
planning meetings. The team thought the meetings now provided the same
benefits/information in a shorter time and continued with the new practice.
They acknowledged, however, that preparation time was longer, and that much
of this fell on the scrum master. The metrics were adopted as standard practice,
providing a useful overview of the progress of the group and a starting point for
retrospectives.

Table 4 summarizes learning from the action research project.

@ Springer

Empir Software Eng

wm d1ow — sSunedw oy Jo uoneredaid payisusjur
J13)SBUI TUNIOS J], *9213esIp 0} UOSeal B pey A9y}
Q1oyM Sayewunsd A3ud[[eyd 03 YL oY) Surure)dr
‘ssed Auewr ul 90udLIdXd JUBAS[I YNIM SIUISUD

A JO SA)EWNSI Ay} JunSnI 0) PALISAI Wkd) AY],

swapqoid Aoy Surpuey

pue SuLIOJUdW ‘UonBWIISS I0J SanI[IqIsuodsar
[eroads s1owoysnd s sdiysuoneror

SunsIxo YHm s1oquiot osoy) SulAlS — A3orens

10umo jonpoid opdnnw e paydope wes) ay [,

'sangea[[00 padusLadxd ss] poddns

P[NO9 JUBLIBA WOISAS Jo woqoid rernonted

© JO 00uoLIadxXd 1M SIOQUISUD Jey) OS WISAS
Surojuowr JeurIoyur ue padojoAdp wes)) Inq

‘orerrdordde paropisuoo jou sem SurunueiSord med — dInjeu 2J0I0SIP SIY) JO AIOM BAIAY 1B SYSE) U} JO ISOIN

‘syunds

poys Suump Areroadss ‘ojqejdrpaidun paurewar

sy[se} ot Jo o[eas oy ysnoyy ‘Suruuerd jurds

QU) OJuI PAIOJOR] SEM SYSE) PA)IAdXOUN JOJ dWl} dWOS

*9A1399[qo uowod siyy Joddns 0y padojoadp

SeA SOLIOUI POJEWOINE JS00 MO[JO)INS [BUITUIU
vy oouewoprad Suraoidwr Jo oA € YSI[qeISo

AI9A 919UM SISBO UI S)[nsar 100d pap[aIA uonewnss
10§ Joxjod Suruuerd ‘voueysur 1o -doudnddxe
UOWILIO JO JOr[B JO 9SNBIQ SANIIJUI 10 SUTINSUOd

-own a19m s3unedw Suruue(d oy Jo spodse owog

"2Imongs dAneuasaidar

J2WOISND PJO) HIM JUIXS SWOS 0) Furyealq
JUBOUI JI0M AT} JO dIYSIOUMO DATIOJ[[0D 0) dAOW I}
pue ‘Teonoeldw sem IOWIO)SNO AIS-UO UR JO 9ANIR[qO
918k ay . s1owo)snd juepoduwur pISIA Wed) Ay}

JO SIOqUIOUT JOTUSS PUE ‘UOTIOBIOII JO SIBOA YSnoIy)
[[oM SIOWIO)SNO AUWIOS MUY SIUITUS [eNnpIAIPU]

‘[rewd Aq paprwqgns a1am sjsanbar a3ueyo 1o

"SJUSUUUOIIAUD JUSIOJIIP UT SYSE) JUSIIIP
Auew uo yIom 0) paddinbo o1om s1oom3ud jey
0s 03po[Mouy AIBYS 0} SUILIAq 2I0J01Y) dSUS[[LYD oY)

JNOYIP S[eoS

Jurds oy SUIASIYOE pPUE UOHBWINSY YJOq dpetll Yorym
‘sysanbar 1owo)snd JueSin Aq paydnuiojur skemfe jsowrfe
atom syundg “Auedwod ay) je a1oymas[e padojoaap
d10Mm sased[a1 jonpoid mou ‘uonejuowd[dwr IWOoISNO
UO U} A10W SUIA[OAUT TWOP[IS JNq ‘Syse) 151e]

QUWIOS PI[PUEBY BAJAY J& Juownredop dourujuIEL Y],

“SI0OM 1) JO AIMONIS [RINJRU)
ueyp apud [euoissajord Aq a1ow pajeAnow ‘sdANIQo

ATeniqIe JeyMIuIOS 2I0JOIA) 21om (JTTd UMOp-UIng

& y3noxyp ssasSoid Juuojyuowr pue) sjeod jurds oy

Surasiyoy “Addey siowoysno jo orjoprod oy Surdooy
pue Aoud3In Jo siseq dY) UO UISOYO SYSe) (paje[orun
03 syuuds Surredwos Aq pajeanow a1om s1douisuyg A[ensn) Jo suond[[od Jo dn apewr 219Mm BAAY Je sjuLdg

(6661 'Te 10 wequayIIy])
S[10M JO 2IMjeu dSIDAIP 0} anp aAnonpoid 10
ATeSS000U m%ﬁk&& jou uonesrunuItod 39ej-0)-9deq S

(000Z yonfey pue
N2UUSE) UONORIAUI 9SO[O J[PI] “A)IS-UO WOP[AS
‘sysanbar a3ueyo [fews Auew ‘SIOWOISNO AUBIA! ¥

(0007 yorfey
pue poUUdg) SJUBLIBA WQISAS JUIIJIP
UO SYSB) [ENPIAIPUI UO YIOM ABUI SIOUTRIUTEIA ¢

(0007 yor|fey pue

pnouudg) saseajar peidaur 10 syutod AIAIRP

UOWIIIOD MJJ OI8 919} PUE SPUBUAP JOWIO)SNO
oS £q uondnuoyur 0y 102[qns a1e syuLdg 4

(100 uewISINY pue 9[00) [60T UOWIWIOD JO ASISUAS
3se) Aue A[LIBSS900U J0U SI 219y} INQ “(SUONRIAN)
syuLds ojur pasIueSIo 9q UBD JI0M JUBUUIRIA 1

wnog o3 suonesiundo

[OIBISAI UONI.) WOy Surured|

sa3uojreyd uonesiundo soueudjurewr ISy Ou ANSS|

199(01d yo18asaI1 UONIR AU WO} JuruIed] Jo AleWWNG qeL,

pringer

A's

Empir Software Eng

‘santunyioddo

Suuojuow pue Jurured] Pim ‘ssardord Jo Sunroyruow

pue SsySe) JO uonNqLISIP JO MIIAIIAO 10130 © dALS
Aoy — panjea d1om SuLreys uonewojul pue ssauuddo

‘uonewns? 03 30adsar
ur Aprernonred ‘s3uneowr Suruuerd 10§ Aressooou
QIoM SUONEBOIIPOW NG ‘SUONEBIJIPOW JOUIW M
M pojuowo[dur o1om SpIE0q WINIOG [euonIpen oy
‘wsieuorssajord
Tesuountedop Jo 9SUSS oY) Sea Se ‘SI0jeAT}OW PoO3 [[e
QIoM ISAV, "SYOUS[NOq JOMI] O} PI] YOIYM IoM JO
uonnNqLISIP dANOAJO SIOW I} pue ‘S[[Iys [euorssojoid
1oy oroxdwr o3 Arumioddo oy ‘swd)sAs pue syse)
JO K)9LIBA I9PROIQ B UO JI0M 0} AN[IqR U} ‘PIAJOAUL
IoJsueI) O3PI[MOUY 9} Pan[eA Aoy} JUBAS[OLI
dIySIoumMO 9ATIOQ[[0D PUl) 10U PIP SIOAUITUD O],

donoeld Ul YI0M J1 SYBW 0} PIPAAU UOHEOIUNUITLIOD

poo3 pue Jurures] pareys Sunzoddns suonesyIpow
Trews Auewr — ordiourd ur paydeose sem ordiound oy

‘Teonoeadur

SeM SJUBLIBA WIQISAS AUBW JO Suljsd) pajewone

A[my 1nq ‘voneyusweldunr 21050q X1J Yoeo SUnsd) Jo
donoeid s, 100uISud Y Y [[om panly sednoeid oISy

"JUBLIBA WIOJSAS JO JOWOISND JO

oFpaymoury Joud S[I] ALY JYSIW oYM JOSUISUD Ue 0}

QJLOTUNUITIION 0} PIPIIU JIOJOIAY) SISLI asn pue jurids

oy ur Kuowud juuds £q pajyjof[e d1om syse) asnedoq

sem ST, “dIYSIOUMO TOWILIOD 0} SAOUI) [HIM
UONEJUSWINIOP 19)oq pamnbal sased asn ‘A[jedrxopered

‘Surures] pareys paseInooud

yey) 2onoeld I9Jes & se popIe3al sem SIY) UMo

Io7) Sunso) JO PeaIsur SoXy S IOYI0 [Ord 1S3} PInod
S100UISUD Jey) Juedw dIYSIOUMO 9ATIOI[[0D 0} AW |,

‘paurejurewt saonoeld
UONLIUSWNIOP JAYI0 PIINPONUI SISED SN PAININNS
“JUBLIEA WIOISAS S, IOWIOISND) [HIM U
119dxo 10 “Yse) 9y JO aFpojmouy| pey SIUISUD MO

"ooyM B SE UIEd}
AU} J0J QWIOSUPING SSI INQ “IOY J0oJ FUIUNSUOd

(000 yoyfey puv

JOUUSY) SUI[PEIP [BINJEU JO ISBI[AI JUSISYOD

OU SI 219} PUEB ‘Paje[al-Uun oIk SYSE) JI onjeA
] JO 2q Aewr SuLieys uonewLIojul pue ssouuad 6

(8661

103UIS {6661 T8 10 Wwequayary]) syutod AI0AIop

UOWILIOD JNOYIIM J[NOLIP UOHBAIOUW ‘S3SBGIPOD

ordnnw ur sysey juopuadopur uo Junjiom are
SIOUIBJUTEW QISYM JUBAJ[OLI dIYSIOUMO 9ATIO[[0)) Q

(110 'Te 3o omuny) Xy
JuaLINd Jo spoeduwr sjeIpowLlI 0) Pyl Sunso)
‘[eonoeduur Ajjensn Sunsa) wWSAS salsudyardwo)) L

(1107 ®¥2eY001d 9007
‘Te 12 8ZnoS 9p) Wd)sAs JUIAJOAD Jo ASur
UIBJUTBW 0] ATeSSI00U PAISPISUOD UONRIUSWNIO 9

wng 0 suonestundo 01891 UONIE 9} WOy Surured|

soguareyd uonesiundo soueuduIEw SISy "OU ONSS]

(ponunuoo) # alqex,

pringer

A's

Empir Software Eng

6 Nine Heuristics for Maintainers Adopting Agile Methods

Though Scrum is targeted at software development and not software maintenance, several of
its practices are advantageous for maintenance projects as well. Aveva experienced benefits
including 1) improvement of code quality, 2) improvement of team morale, 3) an increased
visibility of the project and 4) better communication and knowledge sharing. These results
align with previous reports in the literature examined in section 3. Adoption is, however, not
trivial. As with software development adoption, methods need to be tailored to fit the situation
(Boehm 2002; Nerur et al. 2005). Our theoretical analysis suggests that there are also
differences between maintenance and development work that would indicate that modifica-
tions might be necessary. At Aveva several optimizations were necessary in order to improve
the fit of Scrum, and their optimisation work continues. In this respect our study reinforces the
work of Svensson and Host (2005), and we recommend caution with other studies that
uncritically report benefits of agile implementation in maintenance.

This section combines lessons from both theoretical and empirical investigations and
presents nine heuristics for maintainers adopting agile methods, derived from the issues
presented in Tables 2 and 4.

Heuristic 1 ~ (derived from Tables 2 and 4, issue 1) Use sprints to organize the maintenance

work; balance the needs of the portfolio of customers
Previous research shows how iterations can be used in a maintenance context,

both 2 week iterations (Poole and Huisman 2001) and 4 week iterations
(Nawrocki et al. 2002). Maintenance tasks often have a short-term nature and
shorter iterations are therefore preferable (Shaw 2007). Short iterations were also
considered advantageous for at Aveva. However the issue of lack of task synergy
and the absence of a common goal have not previously been considered. This
issue arises because of the number of different customers with outstanding
maintenance requests at any time. At Aveva, they adopted two principles to
structure their sprints. The first was that, as far as possible, all customers with
current requests should be served in the sprint, even if all of their tasks could not
be completed. This avoids customer dissatisfaction through lack of attention. The
second was that customers with urgent (business threatening) request should be
prioritised. Hanssen et al. (2009) found that software quality was sometimes
compromised by the desire to complete the sprint tasks on time. This was not the
case at Aveva - their code quality improved when working in sprints. This may
be related to better testing practices (see heuristic 7).

Heuristic 2 (derived from Tables 2 and 4, issue 2) Allow for unexpected urgent customer
requests

Agile methods advocate focused development iterations where the team

works without interruptions (Schwaber and Beedle 2001), although it’s not
necessarily easy or desirable to avoid them (Heeager and Nielsen 2009;
Pikkarainen et al. 2008). In maintenance work, urgent customer requests may
occur at any time (Bennett and Rajlich 2000). There are consequently two types
of tasks: those that can be planned (releases, new version, minor bug fixes) and
those that cannot (urgent, acute fixes). Sprint interruptions and mid-cycle
reprioritization are therefore inevitable (Poole and Huisman 2001). The literature
on agile maintenance does not provide much guidance on how to handle urgent
customer demands. Pino et al. (2012) suggest having two different types of
maintenance sprints - a short one for unexpected demands and a longer one for

@ Springer

Empir Software Eng

Heuristic 3

Heuristic 4

Heuristic 5

@ Springer

tasks that can be planned. Aveva found that they had to attend to urgent customer
requests even during very short sprints. They introduced a buffer (Schwaber and
Beedle 2001) - some sprint time which was not allocated in advance - however
the size of this buffer was hard to predict. Sprint disruptions need to be managed
in order to avoid frustration and demotivation in relation to planning and sprint
goals.
(derived from Tables 2 and 4, issue 3) Structure team learning where team
members work on discrete tasks

Agile methods advocate shared ownership of the code (Cockburn 2006),
whereas maintainers tend to become specialists in a few customer systems
(Singer 1998). Shared ownership of tasks independent of customers helps
optimise the workload across the team, and increases team morale. At Aveva,
shared ownership of tasks was considered one of the strengths of Scrum - the
workload was no longer distributed unevenly and the maintainers were able to
help each other out in busy periods. The maintainers went from being specialists
in a few customer systems to becoming generalists working with several cus-
tomer systems. This change required a strong focus on team learning and
knowledge transfer — achieved in agile methods by close cooperation. These
benefits are reported both in the agile development literature (Dyba and
Dingseyr 2008) and the more limited agile maintenance literature (Rudzki
et al. 2009). The maintainers at Aveva also experienced improvement in internal
knowledge sharing with the adoption of Scrum. Daily stand-up meetings served
as a place for identifying knowledge in the team and as a basis for team learning.
Pair programming didn’t really work; instead the team adopted an internal
mentoring practice. Those engineers working on an unfamiliar system identified
someone who had experience with it and asked for help, often starting with a
detailed explanation of the task as specified in the use case.
(derived from Tables 2 and 4, issue 4) Structure multiple customer relationships

Maintenance is characterized by multiple customer relationships using multi-
ple systems or system variants (Bennett and Rajlich 2000). Scrum advocates a
product owner role taken by a single customer representative (Schwaber and
Beedle 2001); XP advocates having an onsite customer (Beck and Andres 2004).
Implementing this role in development work is not simple (Paulk 2002), as few
customer organizations can make so much time available (Heeager and Nielsen
2013). In maintenance work a different logic must clearly operate; however the
existing literature provides no recommendations. At Aveva several engineers had
established relationships with customers they had previously been responsible for.
These engineers were assigned the role of product owners; they were responsible
for receiving the tasks, writing initial use cases (using their specialist customer
knowledge) where necessary, and being advocates for their respective customers
in the planning process. Multiple product owners implies a co-operative process
for prioritizing backlogs, otherwise some customers’ requests may win at the
expense of other customers. Aveva adopted the principle that every customer
should experience some progress in a sprint; after that the relative urgency of the
request as expressed by the individual product owner should determine priority.
(derived from Tables 2 and 4, issue 5) Balance documentation and face-to-face
communication appropriately

Traditional software development methods (Paetsch et al. 2003) and tradi-
tional maintenance approaches (de Souza et al. 2006; Prochazka 2011) are more

Empir Software Eng

Heuristic 6

Heuristic 7

dependent on documentation than agile methods, which to a larger degree
depend on face-to-face communication (Nerur et al. 2005). Maintainers con-
stantly work with changing systems and program comprehension, so they
understand the need for good documentation. Agile proponents advocate keep-
ing the documentation to a minimum, in order to avoid unnecessary overhead in
writing and maintaining specifications (Beck et al. 2001). The maintenance team
at Aveva sometimes found face-to-face communication unproductive, especially
where they could not contribute because they had no detailed knowledge of
customer, system variant, or task (see heuristic 9). Their need for documentation
increased because of shared ownership: they had to work on a variety of tasks
with which they might not be familiar, even when colleagues with specific
domain knowledge were not available to help (see heuristic 6).
(derived from Tables 2 and 4, issue 6) Write (minimally) structured use cases for
communication

Task specification was a case in point where Aveva needed good documen-
tation; the minimal user stories of agile practice tuned out to be inadequate for
their needs. Use case diagrams and specifications are regarded important in
maintenance (de Souza et al. 2005, 2006), for representing requirements and
developing tests (Choudhari and Suman 2014; Kajko-Mattsson and Nyfjord
2009). At Aveva the writer of the use case was (in many cases) no longer the
engineer undertaking the task. The use case had to specify the task in such a way
that any of the team’s engineers could understand it, regardless of their level of
experience with the customer or system. The more experienced maintainers
travelled frequently to visit customer sites, and were not always around to
explain. Nevertheless, with many small tasks, and customers unwilling to pay
for documentation considered unnecessary, use cases had to remain lean and
efficient - an agile principle. The solution was to write a short structured use case,
where the structure ensured that all the necessary information was included. The
task receiver could complete some trivial tasks without a use case, whereas
especially complex tasks sometimes required more analysis and design work.
(derived from Tables 2 and 4, issue 7) Strengthen collective ownership and
learning by testing each other’s code

Agile methods advocate automated testing, early and often (Beck and Andres
2004). In maintenance work, testing the system adequately is a difficult chal-
lenge (Kajko-Mattsson 2008). Comprehensive system testing is usually imprac-
tical and testing is often limited to the immediate impacts of the current fix (Junio
et al. 2011). Studies show that testing remains a challenge in agile maintenance
environments (Poole and Huisman 2001). Test-driven development is not easy to
implement (Kajko-Mattsson 2008), and when implemented not observed in
practice (Hanssen et al. 2009), with negative impacts on software quality.
Good documentation is necessary for comprehensive testing, but not always
present (de Souza et al. 2005; Kajko-Mattsson and Nyfjord 2009; Nawrocki et al.
2002). Nevertheless test-driven development can sometimes improve mainte-
nance code quality (Choudhari and Suman 2014). Aveva found it impractical to
have fully automated tests of the many system variants. They continued with
their practice of testing every fix before releasing it, but nevertheless found a way
to improve quality through collective ownership. Engineers switched to testing
each other’s fixes instead of their own; this is a more effective practice and
encouraged shared learning.

@ Springer

Empir Software Eng

Heuristic 8

Heuristic 9

@ Springer

(derived from Tables 2 and 4, issue 8) Find team motivators to replace the
natural motivation of reaching the end of a sprint or project

Team motivation is a general problem in software maintenance (Kitchenham
et al. 1999). Agile developers strive for motivation and morale in the team
through close cooperation (Cockburn and Highsmith 2002), and committing to
tasks and sprint deadlines (Schwaber and Beedle 2001). Pair programming also
strengthens team motivation (Poole and Huisman 2001) - though this presup-
poses a certain amount of task synergy and shared experience, which is some-
times missing in maintenance work. Agility in software maintenance has been
shown to enhance team morale (Prochazka 2011), and Aveva experienced an
improvement in team morale immediately after introducing Scrum. However,
maintenance work lacks the natural project form of development work, where
tasks have synergies, the work has combined team delivery points and the project
has an end point. Maintenance work is never ‘done,” nor does reaching the end
of a sprint bring the overall project goal closer — there is just another batch of
maintenance jobs in the next sprint. Aveva’s experience was that the planning
difficulties outlined earlier made it hard to reach the sprint goal, which
undermined morale instead of improving it. They tried, and abandoned pair
programming; where the tasks are discrete it’s more effective to work alone.

Several factors helped with motivation. A combination of planning expe-
rience and the introduction of sprint buffers, together with better estimation,
improved sprint performance. Visibility of the team’s effort improved
through an informative workspace and frequent communication (in line with
the findings of Poole and Huisman (2001)) which also increased morale. The
introduction of a light set of metrics allowed for motivation across sprints,
providing a mechanism for comparing sprints on simple parameters, and for
monitoring the evolution of the department’s progress. Motivations concerned
with finishing a project, implicit in the agile approach for development, were
here replaced with motivations concerned with professionalism in the oper-
ation of a department.
(derived from Tables 2 and 4, issue 9) Keep the planning meetings short and
effective

Agile methods have a strong focus on face-to-face communication and
information sharing facilitated through frequent meetings (Beck et al. 2001).
Rudzki et al. (2009) conclude that this causes no additional cost in Scrum
projects, however inexperienced teams spend more time planning (Beck and
Andres 2004) and it is necessary to learn how to keep meetings short and
efficient (Heeager 2012; Moe et al. 2010). Several characteristics of maintenance
work can result in long and tedious planning meetings: multiple systems and
customers result in many smaller tasks, and shorter sprints imply more meetings.
Engineers may have little knowledge of some of the customers and systems
being discussed, and therefore be unable to contribute much of value. The team
at Aveva worked hard to improve the quality of their meetings. Long rounds of
planning poker were discontinued in favour of pre-estimates from experienced
engineers, which the meeting could accept or question. A printed backlog was
produced before the meeting to give the maintainers a chance to prepare. The
scrum master was authorised to be more direct in controlling the progress of the
meeting. The result was an improvement in meeting quality, at the cost of some
more preparation time for the scrum master.

Empir Software Eng

7 Conclusions

Agile methods have become accepted within software development and are also beginning to
spread to software maintenance teams. However there is relatively little research on agile
maintenance; we asked the research question: how can agile methods be optimized to fit the
practice of software maintenance? We investigate the question both from a theoretical per-
spective, and from an empirical perspective. From a theoretical perspective we argue that agile
methods (when applied to development work) have certain relatively well-understood charac-
teristics, however maintenance work differs from development work in certain key respects,
and therefore it’s reasonable to expect a number of challenges when implementing agile
methods in a maintenance department. Table 2 outlines those challenges. From the empirical
perspective we can find many of those challenges echoed in our optimisation work at Aveva,
and outline some solutions that the maintenance team developed to improve their agile work
practice. Our findings confirm that agile practices can have various benefits for maintenance
departments. Aveva experienced improvement of code quality, improvement in team morale,
an increased visibility of progress, and better communication and knowledge sharing amongst
the team members. However those benefits may not occur automatically and some optimisa-
tion will normally be necessary to accommodate both the different character of maintenance
work and local practice differences. We use both theoretical and empirical lessons to formulate
nine heuristics for the optimisation process:

1. Use sprints to organize the maintenance work; balance the needs of the portfolio of
customers

Allow for unexpected urgent customer requests

Structure team learning where team members work on discrete tasks

Structure multiple customer relationships

Balance documentation and face-to-face communication appropriately

Write (minimally) structured use cases for communication

Strengthen collective ownership and learning by testing each other’s code

Find team motivators to replace the natural motivation of reaching the end of a sprint or
project

9. Keep the planning meetings short and effective

PN h LD

This is an action research study with the limitations that this implies; for example limited
control over process and outcomes. The research is inevitably somewhat driven by the
problem-based needs of the practitioners, rather than a pre-formulated research agenda.
Action research suffers from difficulties establishing rigour and objectivity according to
conventional positivist natural science traditions. It is often preoccupied with organizational
problem solving at the expense of transferable theoretical understandings. Experimental
controls are not available and the exploration of relevant hypotheses through statistical
methods normally precluded by the demands of the situation. In addition, the agile
maintenance area is poorly developed in terms of theoretical sophistication and there
are few well-established causal theories or testable hypotheses available on which
rigorous controls could be established. Neither is action research a suitable vehicle for
developing causal theory or testable propositions; there is lack of epistemological
clarity in theory testing and development (Rose 1997). We offer a single case study,
which does not preclude generalisation, but implies that other researchers should be
sensitive to local variations and cultural differences when incorporating our conclu-
sions into their own work.

@ Springer

Empir Software Eng

Despite these limitations, action research does have one major advantage over other forms
of research: relevance for practice is ensured through its empirical foundation and the
purposeful interactions with practitioners. We consequently choose to present our findings as
constructive heuristics, rather than theoretical propositions. Though the heuristics do not
amount to a prescription for adapting an agile method to a maintenance department, practi-
tioners may find this work useful as sensitization for the kinds of issues that may emerge with
agile implementations, as early warnings for the kinds of optimisations that may be necessary,
and as suggestions for practical improvements to their practices. Researchers may be more
interested in its methodological implications, especially in the area of normative method theory
for maintenance work. This is presently dominated by documentation- and technique-heavy
prescriptions from conventional software engineering schools, and the present work can
contribute to the emergence of targeted agile methods for maintenance by pointing at theoret-
ical differences between development and maintenance work that need to be accommodated,
and empirical problems with agile methods and their possible solutions.

Acknowledgments The authors would like to thank our dedicated collaborators at Aveva.
The project was partially funded by the European Union through the CAIN project.

References

Abrahamsson P, Salo O, Ronkainen J, Warsta J (2002) Agile software development methods: review and
analysis. VTT, Finland

Abrahamsson P, Conboy K, Wang X (2009) ‘Lots done, more to do’: the current state of agile systems
development research. Eur J Inf Syst 18(4):281-284

Arisholm E, Briand LC, Hove SE, Labiche Y (2006) The impact of UML documentation on software
maintenance: an experimental evaluation. IEEE Trans Softw Eng 32(6):365-381

Baskerville R, Wood-Harper AT (1998) Diversity in information systems action research methods. Eur J Inf Syst
7:90-107

Beck K, Andres C (2004) Extreme programming explained: embrace change. Addison-Wesley Professional,
USA

Beck K, Beedle M, van Bennekum A, Cockburn A, Cunningham W, Fowler M, Grenning J, Highsmith J, Hunt
A, Jeffries R, Kern J, Marick B, Martin RC, Mellor S, Schwaber K, Sutherland J, Thomas D (2001)
Manifesto for Agile Software Development. Accessed Web Page

Bennett KH, Rajlich VT (2000) Software maintenance and evolution: a roadmap. In: Proceedings of the
Conference on the Future of Software Engineering. ACM, pp 73-87

Boehm B (2002) Get ready for agile methods, with care. Computer 35(1):64-69

Boehm B, Tumer R (2003) Observations on balancing discipline and agility. In: Proceedings of the Agile
Development Conference, Salt Lake City, Utah, USA. IEEE Computer Society, pp 32-39

Buchmann I, Frischbier S, Putz D (2011) Towards an estimation model for software maintenance costs. In: 15th
European Conference on Software Maintenance and Reengineering (CSMR) Oldenburg. IEEE Computer
Society, pp 313-316

Charette RN, Adams KM, White MB (1997) Managing risk in software maintenance. IEEE Softw 14(3):43-50

Choudhari J, Suman U (2010) Iterative Maintenance Life Cycle Using eXtreme Programming. In: International
Conference on Advances in Recent Technologies in Communication and Computing (ARTCom 2010).
IEEE, pp 401403

Choudhari J, Suman U (2014) Extended iterative maintenance life cycle using eXtreme programming. ACM
SIGSOFT Softw Eng Notes 39(1):1-12

Cockburn A (2006) Agile software development: the cooperative game. Addison-Wesley Professional, Boston

Cockburn A, Highsmith J (2002) Agile software development, the people factor. Computer 34(11):131-133

Conboy K (2009) Agility from first principles: reconstructing the concept of agility in information systems
development. Inf Syst Res 20(3):329-354

@ Springer

Empir Software Eng

Conboy K, Fitzgerald B (2010) Method and developer characteristics for effective agile method tailoring: A
study of XP expert opinion, vol 20. ACM Transactions on Software Engineering Methodology, vol 1. doi:
10.1145/1767751.1767753

De Lucia A, Pompella E, Stefanucci S (2003) Assessing the maintenance processes of a software organization: an
empirical analysis of a large industrial project. J Syst Softw 65(2):87-103

De Sousa KD, Anquetil N, De Oliveira KM (2004) Learning software maintenance organizations. In: Advances
in Learning Software Organizations. Springer-Verlag Berlin Heidelberg, pp 67-77

de Souza SCB, Anquetil N, de Oliveira KM (2005) A study of the documentation essential to software
maintenance. In: Proceedings of the 23rd annual international conference on Design of communication:
documenting & designing for pervasive information. ACM, pp 68-75

de Souza SC, Anquetil N, de Oliveira KM (2006) Which documentation for software maintenance? J Braz
Comput Soc 12(3):3144

Dyba T, Dingseyr T (2008) Empirical studies of agile software development: a systematic review. Inf Softw
Technol 50(9-10):833-859

Dzidek WJ, Arisholm E, Briand LC (2008) A realistic empirical evaluation of the costs and benefits of UML in
software maintenance. IEEE Trans Softw Eng 34(3):407-432

Ghods M, Nelson KM (1998) Contributors to quality during software maintenance. Decis Support Syst 23(4):361-369

Grubb P, Takang AA (2003) Software maintenance: concepts and practice. Thomson Computer Press, London

Hall R, Lineham S (1997) Using metrics to improve software maintenance. BT Technol J 15(3):123-129. doi:10.
1023/a:1018694404616

Hanssen GK, Yamashita AF, Conradi R, Moonen L (2009) Maintenance and agile development: Challenges,
opportunities and future directions. In: International Conference on Software Maintenance, ICSM 2009.,
Edmonton, Alberta, Canada. IEEE, pp 487-490

Heeager LT (2012) Introducing agile practices in a documentation-driven software development practice: a case
study. J Inf Technol Case Appl Res 14(1):3-24

Heeager LT, Nielsen PA (2009) Agile Software Development and its Compatibility with a Document-Driven
Approach? A Case Study. In: Scheepers H DM (ed) Australasian Conference on Information Systems,
Melbourne, Australien, 2009. p 205

Heeager LT, Nielsen PA (2013) Agile software development and the barriers to transfer of knowledge: an
interpretive case study. In: Aanestad M, Bratteteig T (eds) Scandinavian conference on information systems.
Springer, Oslo, pp 18-39

Junio GA, Malta MN, de Almeida Mossri H, Marques-Neto HT, Valente MT (2011) On the benefits of planning
and grouping software maintenance requests. In: 15th European Conference on Software Maintenance and
Reengineering (CSMR), Oldenburg. IEEE, pp 55-64

Kajko-Mattsson M (2008) Problems in agile trenches. In: Proceedings of the Second ACM-IEEE international
symposium on Empirical Software Engineering and Measurement, Kaiserslautern, Germany. ACM, pp 111-119

Kajko-Mattsson M, Nyfjord J (2009) A model of agile evolution and maintenance process. In: 42nd Hawaii
International Conference on System Sciences Hawaii. IEEE, pp 1-10

Kitchenham BA, Travassos GH, von Mayrhauser A, Niessink F, Schneidewind NF, Singer J, Takada S,
Vehvilainen R, Yang H (1999) Towards an ontology of software maintenance. J Softw Maint 11(6):365-389

Kung H, Hsu C (1998) Software maintenance life cycle model. International Conference on Software
Maintenance. [IEEE Computer Society, Bethesda

Lehman MM (1980) on understanding laws, evolution, and conservation in the large-program life cycle. J Syst
Softw 1:213-221

Lientz BP, Swanson EB (1980) Software maintenance management. Addison Wesley, Reading MA

McKay J, Marshall P (2001) The dual imperatives of action research. Inf Technol People 14(1):46-59

Misra SC, Kumar V, Kumar U (2010) Identifying some critical changes required in adopting agile practices in
traditional software development projects. Int J Qual Reliab Manag 27(4):451-474

Moe NB, Dingseyr T, Dyba T (2010) A teamwork model for understanding an agile team: a case study of a
Scrum project. Inf Softw Technol 52(5):480-491

Myers MD, Newman M (2007) The qualitative interview in IS research: examining the craft. Inf Organ 17(1):2-26

Nawrocki JR, Walter B, Wojciechowski A (2002) Comparison of CMM level 2 and eXtreme programming. In:
7th European Conference on Software Quality Software Quality, Hensinki, Finland. Springer, pp 288-297

Nerur S, Mahapatra RK, Mangalaraj G (2005) Challenges of migrating to agile methodologies. Commun ACM
48(5):73-78

Nguyen V, Boehm B, Danphitsanuphan P (2011) A controlled experiment in assessing and estimating software
maintenance tasks. Inf Softw Technol 53(6):682—691

Paetsch F, Eberlein A, Maurer F (2003) Requirements engineering and agile software development. In:
Proceedings of the Twelfth International Workshop on Enabling Technologies: Infrastructure for
Collaborative Enterprises, Linz, Austria. Citeseer, p 308

@ Springer

http://dx.doi.org/10.1145/1767751.1767753
http://dx.doi.org/10.1023/a:1018694404616
http://dx.doi.org/10.1023/a:1018694404616

Empir Software Eng

Paulk MC (2002) Agile methodologies and process discipline. Crosstalk-J Def Softw Eng 1(1):15-18

Pigoski TM (1996) Practical software maintenance: best practices for managing your software investment. Wiley,
New York

Pikkarainen M, Haikara J, Salo O, Abrahamsson P, Still J (2008) The impact of agile practices on communication
in software development. Empir Softw Eng 13(3):303-337

Pino FJ, Ruiz F, Garcia F, Piattini M (2012) A software maintenance methodology for small organizations:
Agile MANTEMA. J Softw Evol and Process 24(8):851-876

Polo M, Piattini M, Ruiz F (2002) Using a qualitative research method for building a software maintenance
methodology. Softw Pract Experience 32(13):1239-1260

Poole C, Huisman JW (2001) Using extreme programming in a maintenance environment. IEEE Softw 18(6):
42-50

Poole CJ, Murphy T, Huisman JW, Higgins A (2001) Extreme maintenance. In: Software Maintenance.
Proceedings. IEEE International Conference on, Florence, Italy. IEEE, pp 301-309

Popovic M, Atlagic B, Kovacevic V (2001) Case study: a maintenance practice used with real-time telecom-
munications software. J Softw Maint Evol Res Pract 13(2):97-126

Prochazka J (2011) Agile Support and Maintenance of IT Services. In: Information Systems Development,
Prague, Czech Republic. Springer, pp 597-609. doi: 10.1007/978-1-4419-9790-6_48

Rose J (1997) Soft systems methodology as a social science research tool. Syst Res Behav Sci 14(4):249-258

Rudzki J, Hammouda I, Mikkola T (2009) Agile Experiences in a Software Service Company. In: 35th
Euromicro Conference on Software Engineering and Advanced Applications, SEAA'09. IEEE, pp 224-228

Runeson P, Host M (2009) Guidelines for conducting and reporting case study research in software engineering.
Empir Softw Eng 14(2):131-164

Schwaber K, Beedle M (2001) Agile software development with Scrum. Prentice Hall, Upper Saddle River

Senapathi M (2010) Adoption of software engineering process innovations: The case of agile software develop-
ment methodologies. In: Agile Processes in Software Engineering and Extreme Programming, 11th
International Conference, XP 2010, Trondheim, Norway. Springer, pp 226-231

Shaw S (2007) Using Agile Practices in a Maintenance Environment. Intelliware Development Inc

Sherer SA (1997) Using risk analysis to manage software maintenance. J Softw Maint Res Pract 9(6):345-364

Sidky A, Arthur J, Bohner S (2007) A disciplined approach to adopting agile practices: the agile adoption
framework. Innov Syst Softw Eng 3(3):203-216

Singer J (1998) Practices of software maintenance. In: International Conference on Software Maintenance. IEEE,
pp 139-145

Souza SCBd, Anquetil N, #225, Oliveira tMd (2005) A study of the documentation essential to software
maintenance. Paper presented at the Proceedings of the 23rd annual international conference on Design of
Communication: designing for pervasive information, Coventry, United Kingdom

Stachour P, Collier-Brown D (2009) You don’t know jack about software maintenance. Commun ACM 52(11):54-58

Standards Coordinating Committee of the Computer Society of the I (1990) IEEE Standard Glossary of Software
Engineering Terminology. vol IEEE Standard 610.12. Los Alamitos

Sukumaran S, Sreenivas A (2005) Identifying test conditions for software maintenance. Ninth European
conference on software maintenance and reengineering. IEEE Computer Society, Manchester. doi:10.
1109/CSMR.2005.32

Susman GI, Evered RD (1978) An assessment of the scientific merits of action research. Adm Sci Q 23:582—603

Svensson H, Host M (2005) Introducing an agile process in a software maintenance and evolution organization.
In: Ninth European Conference on Software Maintenance and Reengineering, Manchester, United Kingdom.
IEEE, pp 256264

Taylor M, Moynihan E, Laws A (1998) Training for software maintenance. J Softw Maint Res Pract 10:381-393

Thomas D (2006) Agile evolution: towards the continuous improvement of legacy software. J Object Technol 5(7):19—
26

Vans M, von Mayrhauser A, Somlo G (1999) Program understanding behavior during corrective maintenance of
large-scale software. Int J Hum Comput Studies 51(1):31-70

Ware M, Wilkie FG, Shapcott M (2007) The application of product measures in directing software maintenance
activity. J Softw Maint Evol Res Pract 19(2):133-154

Zanker M, Gordea S (2006) Measuring, monitoring and controlling software maintenance efforts. In: Thirteenth
International Symposium on Temporal Representation and Reasoning, TIME 2006 Budapest. IEEE
Computer Society, pp 103-110

@ Springer

http://dx.doi.org/10.1007/978-1-4419-9790-6_48
http://dx.doi.org/10.1109/CSMR.2005.32
http://dx.doi.org/10.1109/CSMR.2005.32

Empir Software Eng

Lise Tordrup Heeager holds a PhD (2012) from Aalborg University in Denmark. She is currently employed as
assistant professor at the Information System Research group at the department of Business Administration at
Aarhus University, Denmark. Her research interests include action research and case studies on systems
development and system maintenance practice with an emphasis on agile software development and agile project
management.

Jeremy Rose is Professor of Informatics at Skovde University, and Associate Professor at the Department of
Computer Science at Aalborg University. He has worked with the PITNIT, SPV, DISIMIT, CaIN research
projects in Denmark, and in a variety of engaged research and consulting roles. His research interests are
principally concerned with IT and organizational change, IT and societal change, the management of IT, and
systems development. He has published in management, systems, eGovernment and information systems
journals and is associate editor at Communications of the AIS, Information Technology and People, and Systems,
Signs and Actions. He was the founding director of the Centre for eGovernance at Aalborg University and a
member of the steering committee for the Demo-Net European network of excellence. Current research themes
include achieving value in eGovernment projects and managing innovation in small software companies (in
connection with which he has recently finished a sabbatical project at the Judge Institute at Cambridge University
funded by the Danish Research Council).

@ Springer

