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Conditional Density Approximations with Mixtures of Polynomials
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Bielzaa

aComputational Intelligence Group, Departamento de Inteligencia Artificial, Universidad Politécnica de Madrid,
Spain

bDepartment of Computer Science, Aalborg University, Denmark

Abstract

Mixtures of polynomials (MoPs) are a non-parametric density estimation technique especially

designed for hybrid Bayesian networks with continuous and discrete variables. Algorithms to

learn one- and multi-dimensional (marginal) MoPs from data have recently been proposed. In this

paper we introduce two methods for learning MoP approximations of conditional densities from

data. Both approaches are based on learning MoP approximations of the joint density and the

marginal density of the conditioning variables, but they differ as to how the MoP approximation

of the quotient of the two densities is found. We illustrate and study the methods using data

sampled from known parametric distributions, and we demonstrate their applicability by learning

models based on real neuroscience data. Finally, we compare the performance of the proposed

methods with an approach for learning mixtures of truncated basis functions (MoTBFs). The

empirical results show that the proposed methods generally yield models that are comparable to

or significantly better than those found using the MoTBF-based method.

Keywords: Hybrid Bayesian networks, conditional density estimation, mixtures of polynomials,

mixtures of truncated basis functions

1. Introduction

Mixtures of polynomials (MoPs)1,2, mixtures of truncated basis functions (MoTBFs)3, and

mixtures of truncated exponentials (MTEs)4 have recently been proposed as non-parametric den-

sity estimation techniques for hybrid Bayesian networks (BNs) that include both continuous and

discrete random variables (MoTBF include MTEs and MoPs as special cases, and at a slight loss

of precision we will sometimes simplify the presentation by simply referring to this joint collection

of potentials as MoTBF potentials and MoTBF networks by extension). These classes of densities

are closed under multiplication and marginalization, and they therefore support exact inference
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schemes over Bayesian networks without deterministic conditionals, based on the Shenoy-Shafer

architecture5,6. Furthermore, the densities are integrable in closed form, thereby avoiding any

structural constraints on the model, unlike, e.g., conditional linear Gaussian (CLG) networks.

Typically, an MoTBF network is constructed by either making an MoTBF-translation of the

densities in an existing hybrid network or by automatically learning the MoTBF densities from

data. Methods for translating standard statistical density functions have been explored, e.g. in

Cobb et al.7 and include regular discretization as a special case. For learning MoTBF densities,

research has mainly been directed towards learning univariate densities from data. Moral et al.8

and Romero et al.9 used iterative least squares estimation procedures to obtain MTE-potentials

based on, respectively, an empirical histogram and a kernel-based density representation of the

data. Although least squares estimation procedures may provide potentials with good general-

ization properties, there is no guarantee that the estimated parameter values will be close to the

maximum likelihood values. This shortcoming has motivated alternative learning schemes that

perform direct maximum likelihood estimation. For example, Langseth et al.10 consider optimizing

the likelihood function using numerical methods, whereas Langseth et al.11,12 use a kernel-density

estimate of the data as a proxy for learning the maximum likelihood parameters, and López-Cruz

et al.13 present a maximum likelihood-based learning method relying on B-spline interpolation.

In spite of the advances in learning univariate densities, methods for learning conditional

densities have so far only receive limited attention. There are two immediate approaches for

learning conditional MoTBF densities: 1) express the conditional density f(x |y) as the quotient

f(x,y)/f(y) and learn an MoTBF representation φ(x |y) by finding MoTBF representations of

the two components in the quotient; 2) learn an MoTBF representation of f(x |y) directly from the

data. The problem with the first approach is that neither MoPs, MTEs, nor MoTBFs are closed

under division, hence the resulting potential does not belong to the class of MoTBF-potentials. The

second approach is hampered by the difficulty of ensuring that the learned MoTBF representation

is a proper conditional density. In general, the learning problem can be considered an overspecified

optimization problem, where we have an uncountable number of constraints (one for each value

of the conditioning variables), but only a finite number of parameters14. Hence, directly learning

φ(x |y) from data is not immediately feasible. As a result of these difficulties, conditional MoTBFs

are typically being obtained by simply discretizing the parent variables and learning a marginal

density for each of the discretized regions of these variables. Thus, the estimation of a conditional

density is equivalent to estimating a collection of marginal densities, where the correlation between

the variable and the conditioning variables is captured by the discretization procedure only; each

marginal density is a constant function over the region for which it is defined11,14. One exception

to this approach is a recently proposed specification/translation method by Shenoy2 who defines

MoPs based on hyper-rhombuses which generalize the hyperrectangles underlying the traditional
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MoP definition. However, this extension mainly addresses the need for modeling multi-dimensional

linear deterministic conditionals as well as high-dimensional CLG-distributions.

In this paper, we present two new methods for learning conditional MoP densities, one is based

on conditional sampling and the other on interpolation. Thus, our approaches differ from previous

methods in several ways. Firstly, as opposed to Shenoy and West1, Shenoy2, and Langseth et al.3,

we learn conditional MoPs directly from data without any parametric assumptions. Secondly, we

do not rely on a discretization of the conditioning variables to capture the correlation among the

variables11,14. On the downside, the conditional MoPs being learned are not guaranteed to be

proper conditional densities, hence the posterior distributions established during inference have to

be normalized so that they integrate to one. We analyze the methods using data sampled from

known parametric distributions as well as real-world neuro-science data. Finally, we compare the

proposed methods with an algorithm for learning MoTBFs11. The results show that the proposed

methods generally yield results that are either comparable to or significantly better than those

obtained using the MoTBF-based method.

The results in this paper extend those published in López-Cruz et al.15. In comparison, the

added contributions of the present paper include a new method for learning the structure defining

parameters of the conditional MoP potentials. The empirical analysis is extended to also cover

the new learning method and we expand on the scope of this analysis by including additional data

sets (both synthetic and real-world).

The paper is organized as follows. Section 2 reviews MoPs. Section 3 details the two new

approaches for learning conditional MoPs and provides an empirical study with artificial data

sampled from known distributions. An experimental comparison with MoTBFs is shown in Sec-

tion 4. Section 5 includes the application of the new methods to real neuroscience data. Section 6

ends with conclusions and outlines future work.

2. Preliminaries

In this section we review the one- and multi-dimensional MoP approximations of a probability

density function and how they are learnt using B-spline interpolation.

2.1. Mixtures of Polynomials

Let X be a one-dimensional continuous random variable with probability density fX(x).

Shenoy and West1 defined a one-dimensional MoP approximation of fX(x) over a closed domain

ΩX = [ϵX , ξX ] ⊂ R as an LX -piece dX -degree piecewise function of the form

φX(x) =

pollX (x) for x ∈ AlX , lX = 1, . . . , LX

0 otherwise,

(1)
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where pollX (x) = b0,lX + b1,lXx + b2,lXx2 + · · · + bdX ,lXxdX is a polynomial function with degree

dX (and order rX = dX +1), b0,lX , . . . , bdX ,lX are constants and A1, . . . , ALX
are disjoint intervals

in ΩX , which do not depend on x and with ΩX = ∪LX

lX=1AlX .

Let X = (X1, . . . , Xn) be a multi-dimensional continuous random variable with probability

density fX(x). A multi-dimensional MoP approximation1 of fX(x) over a closed domain ΩX =

[ϵ1, ξ1]× · · · × [ϵn, ξn] ⊂ Rn is an L-piece d-degree piecewise function of the form

φX(x) =

poll(x) for x ∈ Al, l = 1, . . . , L,

0 otherwise,

where poll(x) is a multivariate polynomial function with degree d (and order r = d + 1) and

A1, . . . , AL are disjoint hyperrectangles in ΩX, which do not depend on x and with ΩX = ∪L
l=1Al.

d is defined as the maximum degree of any multivariate monomial for all l = 1, ..., L.

If φX(x) ≥ 0 and
∫
ΩX

φX(x)dx = 1, then φX is said to be a density. We say that φX1|X′(x1|x′)

is a conditional density forX1 given x′ = (x2, . . . , xn) if φX1|X′(x1|x′) ≥ 0 and
∫ ξ1
ϵ1

φX(x1,x
′)dx1 =

1 for all x′ ∈ ΩX′ = [ϵ2, ξ2]× · · · × [ϵn, ξn].

Example. The following φX(x1, x2, x3) is an example of an MoP approximation with L = 4 pieces

and degree d = 7 defined for X = (X1, X2, X3) in the closed domain ΩX = [−4, 4] × [−4, 4] ×

[−4, 4] ⊂ R3:

φX(x1, x2, x3) =



ax2
1x2x

2
3 for − 4 ≤ x1 ≤ 0,−4 ≤ x2 ≤ 0,−4 ≤ x3 ≤ 4,

bx4
1x2x

2
3 + cx3

3 for − 4 ≤ x1 ≤ 0, 0 < x2 ≤ 4,−4 ≤ x3 ≤ 4,

dx5
1x3 for 0 < x1 ≤ 4,−4 ≤ x2 ≤ 0,−4 ≤ x3 ≤ 4,

ex2
2x

3
3 for 0 < x1 ≤ 4, 0 < x2 ≤ 4,−4 ≤ x3 ≤ 4,

0 otherwise,

where a, b, c, d, e ∈ R.

2.2. Learning MoPs Using B-Spline Interpolation

Shenoy and West found MoP approximations of known parametric univariate probability den-

sity functions fX(x) by using two methods: (a) computing the Taylor series expansion1 around

the middle point of each subinterval AlX in the MoP, and (b) estimating pollX (x) as the La-

grange interpolation2 over the Chebyshev points defined in AlX . Method (a) needs to know the

mathematical expression of the probability density fX(x), whereas method (b) requires the true

probability densities of the Chebyshev points in each AlX . Moreover, Taylor series expansion can-

not ensure that MoP approximations are valid densities, i.e., they are non-negative and integrate
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to one, and although Lagrange interpolation can ensure non-negativity it cannot ensure that the

resulting MoP integrates to one.

In López-Cruz et al.13, a new proposal for learning MoP approximations of one- and multi-

dimensional probability densities from data using B-spline interpolation does not assume any

prior knowledge about the true density. It ensures that the resulting MoP approximation is non-

negative and integrates to one and provides maximum likelihood estimators of some parameters.

Additionally, it ensures that the obtained densities are continuous, which can be advantageous in

some scenarios, e.g., for visual analysis or expert validation.

B-splines or basis splines16 are polynomial curves that form a basis for the space of piecewise

polynomial functions17 over a closed domain ΩX = [ϵX , ξX ] ⊂ R. Given an increasing knot

sequence (or split points) of LX + 1 real numbers δX = {a0, a1, . . . , aLX} in the approximation

domain ΩX = [ϵX , ξX ] with ai−1 < ai, ϵX = a0 and ξX = aLX
, one can define MX = LX +

rX − 1 different B-splines with order rX spanning the whole domain ΩX . The jXth B-spline

BrX
X,jX

(x), jX = 1, . . . ,MX , is

BrX
X,jX

(x) = (ajX − ajX−rX )H(x− ajX−rX )

rX∑
t=0

(ajX−rX+t − x)rX−1H(ajX−rX+t − x)

w′
jX−rX

(ajX−rX+t)
, x ∈ ΩX ,

(2)

where w′
jX−rX

(x) is the first derivative of wjX−rX (x) =
∏rX

u=0(x − ajX−rX+u) and H(x) is the

Heaviside function

H(x) =

1 x ≥ 0,

0 x < 0.

A B-spline BrX
X,jX

(x) can be written as an MoP function with LX pieces, where each piece

pollX (x) is defined as the expansion of Equation (2) in the interval AlX = [alX−1, alX ), lX =

1, . . . , LX . B-splines have a number of interesting properties18 for approximating probability densi-

ties, e.g., BrX
X,jX

(x) is right-side continuous, differentiable, positive in and zero outside (ajX , ajX−rX ).

Zong19 proposed using B-spline interpolation to find an approximation of the one-dimensional

density fX(x) as a linear combination of MX = LX + rX − 1 B-splines

φX(x;α) =

MX∑
jX=1

αjXBrX
X,jX

(x), x ∈ ΩX , (3)

where α = (α1, . . . , αMX ) are the mixing coefficients and BrX
X,jX

(x), jX = 1, . . . ,MX are B-splines

with order rX (degree dX = rX − 1) as defined in Equation (2).

Therefore, the MoP defined using B-spline interpolation requires four kinds of parameters:

the order (rX), the number of intervals/pieces (LX), the knot sequence (δX) and the mixing

coefficients (α). In López-Cruz et al.13 we used uniform B-splines, i.e. equal-width intervals AlX ,

to determine the knots in δX . rX and LX were found by trying different values and selecting
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those with the highest BIC score (see Section 3.3). We used the Zong’s19 iterative procedure for

computing the maximum likelihood estimators of the mixing coefficients, α̂.

Zong and Lam’s20 and Zong’s19 methods for two-dimensional densities were extended in López-

Cruz et al.13 to general n-dimensional joint probability density functions. Given a vector of n

random variables X = (X1, . . . , Xn), the joint probability density function fX(x) is approximated

with a multidimensional linear combination of B-splines:

φX(x;α) =
∑

jX1=1,...,MX1

...
jXn=1,...,MXn

αjX1 ,...,jXn

n∏
i=1

B
rXi

Xi,jXi
(xi), x ∈ ΩX, (4)

where rXi is the order of the B-splines for variable Xi, MXi = LXi + rXi − 1 is the number of

B-splines for variable Xi, LXi is the number of pieces for variable Xi, and αjX1 ,...,jXn
is the mixing

coefficient for the combination of B-splines given by the indices jX1 , . . . , jXn .

Thus, the multidimensional MoP requires four kinds of parameters: the number of intervals

(LX1 , . . . , LXn), the order of the polynomials (rX1 , . . . , rXn), the knot sequence (δX) and the mix-

ing coefficients (α). In López-Cruz et al.13 we used the multidimensional knots given by the Carte-

sian product of the knot sequences of each dimension δX = δX1 ×· · ·×δXn , where δXi correspond

to equal-width intervals as in the one-dimensional case. Similarly, the mixing coefficient vector has

one value for each combination of one-dimensional B-splines, i.e., α = (α1,...,1, . . . , αMX1 ,...,MXn
).

The resulting MoP has L =
∏n

i=1 LXi pieces, where each piece pollX1
,...,lXn

(x) is defined in an

n-dimensional hyperrectangle AlX1
,...,lXn

=
[
alX1

−1, alX1

]
× · · · ×

[
alXn−1, alXn

]
.

3. Learning Conditional Distributions

Given a sample DX,Y = {(xi,yi), i = 1, . . . , N}, from the joint density of (X,Y), the aim

is to learn an MoP approximation φX|Y(x|y) of the conditional density fX|Y(x|y) of X|Y from

DX,Y. Following the terminology used for BNs, we consider the conditional random variable X as

the child variable and the vector of conditioning random variables Y = (Y1, . . . , Yn) as the parent

variables.

3.1. Learning Conditional MoPs Using Sampling

The proposed method is based on first obtaining a sample from the conditional density of X|Y

and then learning a conditional MoP density from the sampled values. Algorithm 1 shows the

main steps of the procedure.

Algorithm 1.

Input: A training dataset DX,Y = {(xi,yi), i = 1, . . . , N}.

Output: φX|Y(x|y), the MoP approximation of the density of X|Y.

Steps:
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1. Learn an MoP φX,Y(x,y) of the joint density of (X,Y) from the dataset DX,Y using the

algorithm in López-Cruz et al.13.

2. Marginalize out X from φX,Y(x,y) to yield an MoP φY(y) of the marginal density of the

parent variables Y: φY(y) =
∫
ΩX

φX,Y(x,y)dx.

3. Use the Metropolis-Hastings algorithm (Algorithm 2) to produce a sample DX|Y from a

density proportional to the conditional density φX,Y(x,y)/φY(y).

4. Find an unnormalized conditional MoP φ
(u)
X|Y(x|y) based on DX|Y and using the algorithm

in López-Cruz et al.13.

5. Partially normalize the conditional MoP φ
(u)
X|Y(x|y) to make it integrate the Lebesgue mea-

sure of the Y domain (as the true conditional density).

First, we find an MoP representation of the joint density φX,Y(x,y) (step 1) using the B-

spline interpolation approach proposed in López-Cruz et al.13 and reviewed in Section 2. Second,

we obtain an MoP of the marginal density of the parents φY(y) by marginalization (step 2).

Next, we use a sampling algorithm to obtain a sample DX|Y from a distribution proportional

to the conditional density of X|Y (step 3), where the conditional density values are obtained by

evaluating the quotient φX,Y(x,y)/φY(y). More specifically, we have used a standard Metropolis-

Hastings sampler for the reported experimental results, as specified in Algorithm 2. Finally, we

find an MoP approximation, φ
(u)
X|Y(x|y), from data set DX|Y (step 4). The MoP φ

(u)
X|Y(x|y) is an

approximation of a proper density which is proportional to the conditional density fX|Y(x|y). To

normalize it we know that ∫
ΩX×ΩY

fX|Y(x|y)dxdy =

∫
ΩY

1dy = |ΩY| .

Consequently, to find the partial normalization constant, we can impose the analogous constraint

to the approximating MoP. In particular we find K such that

1

K

∫
ΩX×ΩY

φ
(u)
X|Y(x|y)dxdy = |ΩY| ,

and set φX|Y(x|y) = 1
Kφ

(u)
X|Y(x|y) as the approximating MoP of the conditional density fX|Y(x|y)

(step 5).

For the sampling process described in Algorithm 2, we generate uniformly distributed values

over ΩY for the parent variables Y, whereas we use a Gaussian distribution Q(xnew;x) ≡ N (x, σ)

as proposal distribution for the child variable; in the experiments we set σ2 = 0.5. The Metropolis-

Hastings algorithm is a Markov Chain Monte Carlo method; i.e., it is based on building a Markov

chain which has as stationary distribution the one we would like to sample from. Consequently

we have to wait (termed the burn in period) until the Markov chain is close to its stationary

distribution before sampling from it. This is the purpose of discarding the first h values. Another
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consequence of the Metropolis-Hastings algorithm is the correlation that may be present between

near sampled values, which follows from the Markov chain assumption. This is partially avoided

by setting a jumping width, h′.

Algorithm 2.

Input: φX|Y(x|y), an approximation to the conditional density of X|Y.

Output: DX|Y a sample of a distribution, with density proportional to the conditional density

φX|Y(x|y).

Steps:

1. Initialize x = x0, y = y0

2. Generate a candidate (xnew, ynew) from the product of a proposal distribution for the Xnew

variable, Q(Xnew;x), and an independent uniform distribution for ynew.

3. Calculate the acceptance ratio t = φX|Y(xnew|ynew)/φX|Y(x|y)

4. if t ≥ u, where u is a realization from a uniform distribution in [0, 1], the candidate is

accepted and we set (x,y) = (xnew,ynew), otherwise the candidate is rejected and the old

values (x,y) are kept.

5. Repeat from step 1, discarding the first h values generated and storing the following values,

one every h′ repetitions.

The proposed method has some interesting properties. The B-spline interpolation algorithm

for learning MoPs in López-Cruz et al.13 guarantees that the approximations are continuous,

non-negative and integrate to one. Therefore, the conditional MoPs obtained with Algorithm 1

are also continuous and non-negative. Continuity is not required for inference in BNs, but it is

usually a desirable property, e.g., for visualization purposes. The algorithm provides maximum

likelihood estimators of the mixing coefficients of the linear combination of the B-splines when

learning MoPs of the joint density φXY(x,y) and the marginal density φy(y). Hence the quotient

φX,Y(x,y)/φY(y) corresponds to a maximum likelihood model of the conditional distribution. It

should be noted, though, that this property is not shared by the model learned in step 4, i.e., it is

not necessarily a maximum likelihood model. Furthermore, since the partial normalization (step

5) does not ensure that the learned MoP is a proper conditional density, the posterior densities

may need to be normalized to integrate to one during inference.

3.2. Learning Conditional MoPs Using Interpolation

The preliminary empirical results provided by Algorithm 1 show that the sampling approach

can produce good approximations. However, it is difficult to control or guarantee the quality of

the approximation due to the sampling procedure and the partial normalization in the last step.
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This shortcoming has motivated an alternative method for learning an MoP approximation

of a conditional probability density for X|Y. The main steps of the procedure are summarized

in Algorithm 3. First, we find MoP approximations of both the joint density of (X,Y) and the

marginal density of Y following the same procedure as in Algorithm 1 (steps 1 and 2). Next, we

build the conditional MoP φX|Y(x|y) by finding, for each piece poll(x,y) defined in the hyper-

rectangle Al, a multidimensional interpolation polynomial of the function given by the quotient

of the joint and the marginal densities φX,Y(x,y)/φY(y).

Algorithm 3.

Input: A training dataset DX,Y = {(xi,yi), i = 1, . . . , N}.

Output: φX|Y(x|y), the MoP approximation of the density of X|Y.

Steps:

1. Find an MoP φX,Y(x,y) of the joint density of the variables X and Y from the dataset

DX,Y using the method in López-Cruz et al.13.

2. Marginalize out X from φX,Y(x,y) to obtain an MoP φY(y) of the marginal density of the

parent variables Y: φY(y) =
∫
ΩX

φX,Y(x,y)dx.

3. For piece poll(x,y), defined in Al, l = 1, . . . , L, in the conditional MoP φX|Y(x|y):

Find a multi-dimensional polynomial approximation of the function g(x,y) = φX,Y(x,y)/φY(y)

using an interpolation method with polynomial degree equal to the degree of the MoP

of the joint density.

We consider two multidimensional interpolation methods to obtain the polynomials of the

pieces poll(x,y) in step 3 of Algorithm 3:

• The multidimensional Taylor series expansion (TSE) for a point yields a polynomial approx-

imation of any differentiable function g. The quotient of any two functions is differentiable

as long as the two functions are also differentiable and the denominator is not zero. In our

scenario, polynomials are differentiable functions and, thus, we can compute the TSE of

the quotient of two polynomials. Consequently, we can use multidimensional TSEs to find

a polynomial approximation of g(x,y) = φX,Y(x,y)/φY(y) for each piece poll(x,y). We

computed these TSEs of g(x,y) for the midpoint of the hyperrectangle Al.

• Lagrange interpolation (LI) finds a polynomial approximation of any function g. Before find-

ing the LI polynomial, we need to evaluate function g on a set of interpolation points. In the

one-dimensional scenario, Chebyshev points are frequently used as interpolation points21.

However, multidimensional LI is not a trivial task because it is difficult to find good inter-

polation points in a multidimensional space. Some researchers have recently addressed the
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two-dimensional scenario21,22. To find a conditional MoP using LI, we first find and evalu-

ate the conditional density function g(x,y) = φX,Y(x,y)/φY(y) on the set of interpolation

points in Al. Next, we compute the polynomial poll(x,y) for the piece as the LI polynomial

over the interpolation points defined in Al. Note that other approaches, e.g., kernel-based

conditional estimation methods, can also be used to evaluate the conditional density g(x,y)

on the set of interpolation points.

Compared with Algorithm 1, there are some apparent (dis)advantages. First, the conditional MoPs

produced by Algorithm 3 are not necessarily continuous. Second, interpolation methods cannot

in general ensure non-negativity, although LI can be used to ensure it by increasing the order of

the polynomials. On the other hand, the learning method in Algorithm 3 does not need a partial

normalization (step 2). Thus, if the polynomial approximations are close to the conditional density

φX,Y(x,y)/φY(y), then the conditional MoP using these polynomial interpolations is expected to

be close to normalized. As a result, we can more directly control the quality of the approximation

by varying the degree of the polynomials and the number of hyperrectangles. It should be observed

that both Algorithm 1 and 3 output MoPs approximations, but the approximations are built

differently and lead to different models. Algorithm 1 uses B-spline interpolation and so the number

of parameters in the resulting models is

(LX + rX − 1)

n∏
i=1

(LYi + rYi − 1) .

On the other hand, Algorithm 3 builds MoPs that are not necessarily continuous and therefore

more general. The number of parameters in the learned models is

rXLX

n∏
i=1

LYirYi .

3.3. Heuristic to Search for a Good MoP Approximation

Steps 1 and 4 in Algorithm 1 and step 1 in Algorithm 3 require finding an MoP approximation

starting from a data set DX,Y. The algorithm proposed in López-Cruz et al.13 provides a way to

compute a multi-dimensional MoP approximation given a data set, the orders of the polynomials,

and the pieces of the domains of approximation for each dimension. Here we use a penalized

likelihood-based search iterating over the algorithm in López-Cruz et al.13 in order to find the

best MoP approximation for the data set DX,Y. The method performs a simple greedy search for

the optimal parameters. From now on we will refer to those parameters as follows: r is the order

of the polynomials in each dimension, LX is the number of pieces for variable X, and LY is the

number of pieces for variable Y (to simplify the presentation we assume a single parent variable).

The algorithm starts from the initial point (r, LX , LY ) = (2, 1, 1), computes the MoP with these
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parameters and compares its BIC score to those of the nearest neighbour solutions: (r+1, LX , LY ),

(r, LX +1, LY ), (r, LX , LY +1) and (r, LX +1, LY +1). The parameters (r, LX , LY ) are updated

to the best ones and the steps are iterated until no improvement in BIC score is achieved or the

parameters (r, LX , LY ) reach some user predefined boundaries. Algorithm 4 lists the steps of this

heuristic search.

Algorithm 4.

Input: A training dataset DX,Y = {(xi, yi), i = 1, ..., N}.

Output: φX,Y (x, y), the MoP approximation of the density of (X,Y ).

Steps:

1. Set r = 2 and LX = LY = 1.

2. Calculate, using the method in López-Cruz et al.13, MoP approximations given the dataset

DX,Y with the following parameters:

• (r, LX , LY ).

• (r + 1, LX , LY ).

• (r, LX + 1, LY ).

• (r, LX , LY + 1).

• (r, LX + 1, LY + 1).

3. Compute the BIC score of the five MoPs computed in the previous step with the dataset

DX,Y .

4. Select the MoP with the highest BIC score and update r, LX and LY to their parameters.

5. Repeat from step 2 until there is no gain in the BIC score or the maximum boundaries for

the parameters are reached.

The BIC score23 is defined as

BIC(φX,Y (x, y),DX,Y ) = ℓ(DX,Y |φX,Y (x, y))−
dim (φX,Y (x, y)) logN

2
,

where ℓ(DX,Y |φX,Y (x, y)) is the log-likelihood of the training dataset DX,Y given an MoP model

φX,Y (x, y), N is the number of observations in the dataset DX,Y and dim (φX,Y (x, y)) is the

number of free parameters in the model encoding the split points and the coefficients in the

polynomials.

The previous algorithm could be implemented with uniform knots or using data-dependent

knots. In particular it is possible to use empirical quantiles (i.e. an equal-frequency rather than

an equal-width approach), calculated over the data set DX,Y = {(xi, yi), i = 1, ..., N}.

11



Conceptually, the algorithm can also easily be extended to handle a multidimensional parent

set Y, but at the cost of a considerable increase in the computational complexity. Introducing a

multidimensional parent set Y means that at each iteration of Algorithm 4, we have to compute an

increasing number of candidate MoPs resulting in a corresponding increase in the computational

cost: If at every iteration we select the best parameter set among all possible combinations of

parameters, the number of MoP computations increases exponentially with the size of Y. As an

alternative, one may attempt to devise heuristic-based search strategies or constrain the parameter

combinations. However, even if this approach would turn out successful we still have to face the fact

that Algorithm 4 uses the procedure described in López-Cruz et al.13 to compute multidimensional

MoPs and this procedure is not immediately scalable. In summary, to ensure scalability a new

algorithm for computing multidimensional MoPs might be developed and more efficient search

strategies should be deployed.

3.4. Illustrative Examples

We apply the proposed algorithms to three examples, all of them are thought of as graph-

ical models with two variables, a parent Y and a child X. In the first example we consider a

joint Gaussian distribution, (X,Y ) ∼ N

 0

0

 ,

 2 1

1 1

. This two-dimensional density

corresponds to a Gaussian Bayesian network, where Y ∼ N (0, 1) and X|Y ∼ N (y, 1).

In the second example we consider Y distributed as a Gamma distribution with rate = 10

and shape = 10, and X distributed, conditionally to Y = y, as an exponential distribution with

rate = y.

In the third example we model Y as a mixture of two Gaussian distributions, Y ∼ 0.5N (−3, 1)+

0.5N (3, 1). The distribution of X, conditioned on Y = y is considered a Gaussian with mean y

and unit variance, i.e., X|Y ∼ N (y, 1).

For each model we generate sets of ten (X,Y ) samples of length equal toN = 25, 500, 2500, 5000.

For each example we apply the two algorithms (Algorithm 1 and 3) to approximate the conditional

density (see Figure 1 for N = 5000). In Algorithm 2 we set the parameters h and h′ to 1000 and

3 samples, respectively, and in Algorithm 4 we set the boundaries artificially high so that they are

not reached.

To check the goodness of the learned MoP we evaluate the mean square error (MSE) between

the approximated conditional densities φX|Y (x|y) and the true one fX|Y (x|y), for three values of

y0, corresponding to the percentiles 25, 50, 75 of the distribution of Y . The results can be found

in Tables 1, 2 and 3. The comparison is done without normalizing the approximated conditional

densities φX|Y (x|y0), hence Kullback-Leibler divergence cannot be used as an evaluation measure.

The results in Tables 1 and 2 show that Algorithms 1 and 3 perform similarly with respect to

the Gaussian model, but that Algorithm 3 achieves better results with respect to the Exp-Gamma

12



(a) Y ∼ N (0, 1) and X|Y ∼ N (y, 1)
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(b) Y ∼ Gamma(rate = 10, shape = 10) and X|Y ∼ Exp(y)
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(c) Y ∼ 0.5N (−3, 1) + 0.5N (3, 1) and X|Y ∼ N (y, 1)
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Figure 1: For the three examples (in rows), true conditional density and MoP approximation obtained with Algo-

rithm 1 (second column) and Algorithm 3 with Lagrange Interpolation (third column), case N = 5000.

model. The results in Table 3 show that even in the more complex mixture model, the proposed

algorithms perform quite well with respect to the mean squared errors. Moreover with respect

to the complexity of the learned MoPs, we can see that the algorithms deal with the increasing

complexity by learning MoPs with more pieces instead of MoPs with higher orders. The main

problem with Algorithm 1 is the partial normalization step and the loose link between the MoP
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Table 1: Mean MSE between the MoP approximations and the true conditional densities for ten datasets sampled

from the BN, where Y ∼ N (0, 1) and X|Y ∼ N (y, 1). Mean order r and mean number of pieces in the X and Y

domains LX , LY are also reported.

Alg 1 Alg 3 LI Alg 3 TSE

N fX|Y (x|y) MSE r LX LY MSE r LX LY MSE r LX LY

25

y = −0.6748 0.0103 0.0113 0.0114

y = 0.00 0.0089 3.1 2 1.5 0.0108 2 1.7 1.3 0.0108 2 1.7 1.3

y = 0.6748 0.0105 0.0123 0.0122

500

y = −0.6748 0.0025 0.0031 0.0033

y = 0.00 0.0009 4 4 2.6 0.0008 3 3 3 0.0008 3 3 3

y = 0.6748 0.0020 0.0032 0.0031

2500

y = −0.6748 0.0006 0.0006 0.0006

y = 0.00 0.0002 4 4 4 0.0001 4 4 4 0.0001 4 4 4

y = 0.6748 0.0006 0.0006 0.0006

5000

y = −0.6748 0.0006 0.0005 0.0005

y = 0.00 0.0002 4 4 4 0.0001 4 4 4 0.0001 4 4 4

y = 0.6748 0.0006 0.0005 0.0005

Table 2: Mean MSE between the MoP approximations and the true conditional densities for ten datasets sampled

from the BN, where Y ∼ Gamma(rate = 10, shape = 10) and X|Y ∼ Exp(y). Mean order r and mean number of

pieces in the X and Y domains LX , LY are also reported.

Alg 1 Alg 3 LI Alg 3 TSE

N fX|Y (x|y) MSE r LX LY MSE r LX LY MSE r LX LY

25

y = 0.7706 0.0131 0.0060 0.0059

y = 0.9684 0.0225 3.5 2.8 1 0.0117 2 1.5 1.2 0.0121 2 1.5 1.2

y = 1.1916 0.0374 0.0225 0.0226

500

y = 0.7706 0.0012 0.0008 0.0009

y = 0.9684 0.0022 3 2.4 2.2 0.0005 3 2 1.9 0.0004 3 2 1.9

y = 1.1916 0.0057 0.0016 0.0016

2500

y = 0.7706 0.0025 0.0004 0.0005

y = 0.9684 0.0043 3.1 3.1 1.8 0.0003 3 2.2 2.5 0.0003 3 2.2 2.5

y = 1.1916 0.0074 0.0009 0.0009

5000

y = 0.7706 0.0015 0.0003 0.0004

y = 0.9684 0.0022 3 2.2 2 0.0003 3.1 2.3 2.7 0.0003 3.1 2.3 2.7

y = 1.1916 0.0032 0.0006 0.0006

approximation for the joint density (step 1) and the MoP approximation of the conditional density

(steps 4 and 5).

Next, we perform inference based on the MoP learned with the algorithms. We compute the

posterior density of Y |X and compare it with the true one (Figure 2, 3 and 4). The comparison

is done based on the MSE and the Kullback-Leibler divergence (KL). The posterior density is cal-

culated conditional on nine different values for the child variable, corresponding to the percentiles
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Table 3: Mean MSE between the MoP approximations and the true conditional densities for ten datasets sampled

from the BN, where Y ∼ 0.5N (−3, 1) + 0.5N (3, 1) and X|Y ∼ N (y, 1). Mean order r and mean number of pieces

in the X and Y domains LX , LY are also reported.

Alg 1 Alg 3 LI Alg 3 TSE

N fX|Y (x|y) MSE r LX LY MSE r LX LY MSE r LX LY

25

y = −3 0.0099 0.0111 0.0111

y = 0 0.0204 3.9 2.9 3.2 0.0115 2 1.9 2 0.0256 2 1.9 2

y = 3 0.0090 0.0109 0.0116

500

y = −3 0.0024 0.0031 0.0022

y = 0 0.0158 4.4 4.5 5.4 0.0157 4 4.1 3.7 0.0156 4 4.1 3.7

y = 3 0.0024 0.0025 0.0024

2500

y = −3 0.0014 0.0007 0.0007

y = 0 0.0078 4 6.2 6.2 0.0049 4 6.2 7.3 0.0048 4 6.2 7.3

y = 3 0.0015 0.0009 0.0009

5000

y = −3 0.0012 0.0007 0.0007

y = 0 0.0014 4 7.1 7.4 0.0019 4 7 9 0.0019 4 7 9

y = 3 0.0011 0.0005 0.0005

10, 20, 30, 40, 50, 60, 70, 80, 90. The results of the comparison are shown in Tables 4, 5, 6, 7, 8

and 9.

For both algorithms, we cannot ensure that the approximated conditional densities, φX|Y (x|y0),

integrate to one for every y0. This is not necessarily a problem when doing inference, though, as

one may perform an additional normalization step in order to obtain proper densities.

To compare the algorithms we apply a paired Wilcoxon signed-rank test. For every pair

of algorithms, for every N and for every fixed value xobs of the conditioning variable we run

a Wilcoxon signed-rank over the results of the comparison between the approximated posterior

density and the true posterior density. The results are reported in Table 10. We list the number

of cases in which the algorithm on the left significantly outperforms (significance level α = 0.05)

the algorithm on the top. Recall that the total number of cases is 36, for each of the datasets (4

values for N and 9 quantiles corresponding to the xobs values).

With respect to the posterior density approximation, the results of the Wilcoxon signed-rank

test based on KL divergence indicate that Algorithm 1 outperforms Algorithm 3 using Lagrange

interpolation in the Exp-Gamma model (Table 10). This is visually appreciated in Figure 3.

However, for the Gaussian model, Algorithm 3 achieves statistically significant better results with

respect to KL (Table 10) in some cases. The mixture model is the one that shows the great-

est difference between the two algorithms (Table 10 and Figure 4 ). From the results of the

Wilcoxon signed-rank test with respect to the mixture model we see that Algorithm 3 outper-

forms Algorithm 1 in almost one-third of the cases (Table 10). When looking closer at the results

(Tables 8 and 9) we observe that Algorithm 3 achieves better results for the largest sample cases

15



(a) Algorithm 1

−2 −1 0 1 2

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

Y

D
en

si
ty

Posterior Distribution

−2 −1 0 1 2

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

Y

D
en

si
ty

Posterior Distribution

−2 −1 0 1 2

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

Y

D
en

si
ty

Posterior Distribution

(b) Algorithm 3
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Figure 2: True posterior densities (red dashed) and approximated one (solid blue) for Y ∼ N (0, 1) and X|Y ∼

N (y, 1), case N = 5000.

(N = 5000), where, according to the Wilcoxon signed-rank tests, Algorithm 3 outperforms Al-

gorithm 1 for every value of the child variable. In comparison, the cases for which Algorithm 1

outperforms Algorithm 3 are mainly found when dealing with smaller data sets (N = 25, 500).

Note that Algorithm 1 is computationally more costly than Algorithm 3 due to the use of

Algorithm 4 in two steps. From Figure 2 and 3 we also see that Algorithm 3 provides posterior

densities that are almost continuous in the two first simpler models. In the mixture model, however,

the TSE variant of Algorithm 3 outputs MoP approximations of conditional densities which show

strong discontinuities in the form of high peaks. Those errors are due to approximation faults

in the computations of the ratio between the joint and the marginal distributions in step 3 of

Algorithm 3. These errors are not observed using interpolation over Padua points.

Based on the previous observations over the artificial examples as well as the theoretical prop-

erties of the algorithms proposed we suggest that:

• When dealing with small datasets and when requiring continuous densities the use of Algo-

rithm 1 provides better results.

• In case of large datasets, Algorithm 3 using interpolation over Padua point is to be preferred;

it outputs almost continuous MoPs and is generally faster than Algorithm 1.
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(b) Algorithm 3
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Figure 3: True posterior densities (red dashed) and approximated one (solid blue) for Y ∼ Gamma(rate =

10, shape = 10) and X|Y ∼ Exp(y), case N = 5000.

Table 4: Comparison between the true posterior density and the one learned with the MoP approximation obtained

using Algorithm 1. Mean KL and MSE for ten datasets sampled from the BN, where Y ∼ N (0, 1) and X|Y ∼

N (y, 1).

N xobs -1.8103 -1.1867 -0.7377 -0.3554 0.0000 0.3554 0.7377 1.1867 1.8103

25
KL 0.3312 0.2924 0.2696 0.2578 0.2550 0.2592 0.2700 0.2863 0.3038

MSE 0.0152 0.0153 0.0146 0.0138 0.0130 0.0124 0.0118 0.0110 0.0092

500
KL 0.0612 0.0516 0.0329 0.0167 0.0099 0.0154 0.0307 0.0497 0.0634

MSE 0.0013 0.0020 0.0016 0.0008 0.0004 0.0007 0.0015 0.0020 0.0014

2500
KL 0.0115 0.0102 0.0071 0.0031 0.0017 0.0043 0.0092 0.0120 0.0110

MSE 0.0004 0.0003 0.0003 0.0001 0.0001 0.0002 0.0005 0.0004 0.0002

5000
KL 0.0093 0.0089 0.0063 0.0026 0.0011 0.0031 0.0071 0.0096 0.0102

MSE 0.0002 0.0003 0.0004 0.0001 0.0001 0.0002 0.0004 0.0003 0.0003

4. A Comparison with MoTBFs

In this section, we compare the two proposed learning methods with the method described in

Langseth et al.11 for learning conditional MoTBFs from data. The MoTBF-based learning method
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(b) Algorithm 3

−4 −2 0 2 4

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

Y

D
en

si
ty

Posterior Distribution

−4 −2 0 2 4

0.
00

0.
05

0.
10

0.
15

0.
20

0.
25

Y

D
en

si
ty

Posterior Distribution

−4 −2 0 2 4

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

Y

D
en

si
ty

Posterior Distribution

Figure 4: True posterior densities (red dashed) and approximated one (solid blue) for Y ∼ 0.5N (−3, 1)+0.5N (3, 1)

and X|Y ∼ N (y, 1), case N = 5000.

Table 5: Comparison between the true posterior density and the one learned with the MoP approximation obtained

using Algorithm 3 and Lagrange interpolation. Mean KL and MSE for ten datasets sampled from the BN, where

Y ∼ N (0, 1) and X|Y ∼ N (y, 1).

N xobs -1.8103 -1.1867 -0.7377 -0.3554 0.0000 0.3554 0.7377 1.1867 1.8103

25
KL 0.3199 0.2873 0.2752 0.2666 0.2584 0.2631 0.2662 0.2737 0.2937

MSE 0.0147 0.0151 0.0154 0.0148 0.0131 0.0125 0.0117 0.0108 0.0090

500
KL 0.0586 0.0587 0.0379 0.0163 0.0084 0.0175 0.0395 0.0580 0.0596

MSE 0.0013 0.0023 0.0019 0.0008 0.0003 0.0008 0.0019 0.0025 0.0012

2500
KL 0.0098 0.0112 0.0081 0.0034 0.0012 0.0031 0.0075 0.0102 0.0087

MSE 0.0003 0.0003 0.0004 0.0002 0.0001 0.0002 0.0004 0.0003 0.0002

5000
KL 0.0072 0.0080 0.0062 0.0027 0.0010 0.0026 0.0060 0.0081 0.0076

MSE 0.0002 0.0003 0.0004 0.0002 0.0001 0.0001 0.0003 0.0002 0.0002

relies on a kernel density estimate representation of the data, which is subsequently translated

into an MoTBF-representation. In the limit it can be shown that the learned/translated MoTBF

parameters converge to the maximum likelihood parameters.

Figure 5 shows the MoTBFs of the conditional (a) and the posterior (c,d,e) densities approx-
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Table 6: Comparison between the true posterior density and the one learned with the MoP approximation obtained

using Algorithm 1. Mean KL and MSE for ten datasets sampled from the BN, where Y ∼ Gamma(rate =

10, shape = 10) and X|Y ∼ Exp(y).

N xobs 0.1063 0.2261 0.3638 0.5247 0.7187 0.9599 1.2817 1.7495 2.5946

25
KL 0.1275 0.1215 0.1157 0.1099 0.1041 0.0988 0.0946 0.0935 0.1123

MSE 0.1149 0.1135 0.1123 0.1112 0.1100 0.1089 0.1080 0.1083 0.1243

500
KL 0.0125 0.0108 0.0098 0.0096 0.0102 0.0117 0.0139 0.0155 0.0240

MSE 0.0102 0.0088 0.0078 0.0072 0.0072 0.0081 0.0100 0.0134 0.0243

2500
KL 0.0075 0.0060 0.0047 0.0039 0.0038 0.0046 0.0060 0.0048 0.0081

MSE 0.0067 0.0054 0.0044 0.0038 0.0037 0.0044 0.0054 0.0048 0.0115

5000
KL 0.0038 0.0031 0.0026 0.0024 0.0024 0.0025 0.0026 0.0031 0.0083

MSE 0.0044 0.0037 0.0032 0.0029 0.0027 0.0027 0.0028 0.0045 0.0111

Table 7: Comparison between the true posterior density and the one learned with the MoP approximation obtained

using Algorithm 3 with Lagrange interpolation. Mean KL and MSE for ten datasets sampled from the BN, where

Y ∼ Gamma(rate = 10, shape = 10) and X|Y ∼ Exp(y).

N xobs 0.1063 0.2261 0.3638 0.5247 0.7187 0.9599 1.2817 1.7495 2.5946

25
KL 0.1368 0.1307 0.1239 0.1164 0.1086 0.1013 0.0962 0.0976 0.1124

MSE 0.1226 0.1207 0.1185 0.1160 0.1132 0.1106 0.1094 0.1132 0.1215

500
KL 0.0135 0.0119 0.0108 0.0104 0.0111 0.0139 0.0177 0.0172 0.0256

MSE 0.0078 0.0075 0.0071 0.0068 0.0071 0.0093 0.0133 0.0143 0.0261

2500
KL 0.0079 0.0067 0.0057 0.0049 0.0047 0.0056 0.0073 0.0060 0.0115

MSE 0.0056 0.0051 0.0047 0.0042 0.0042 0.0050 0.0065 0.0047 0.0143

5000
KL 0.0054 0.0047 0.0038 0.0033 0.0032 0.0036 0.0045 0.0039 0.0103

MSE 0.0042 0.0039 0.0034 0.0030 0.0029 0.0034 0.0044 0.0048 0.0150

imated using the first data described in Section 3.4. The conditional MoTBF has 6 pieces and

each piece defines an MoP with at most six parameters; polynomial basis functions are used in

all the experiments. MoTBF approximations of conditional densities are obtained by discretizing

the parent variables and fitting a one-dimensional MoTBF for each hyperrectangle defined by the

split-points of the parents. Compared with the two learning methods proposed in Algorithms 1

and 3, the method in Langseth et al.11 therefore captures the correlation between the parent

variables and the child variable through the hyperrectangles instead of directly in the functional

polynomial expressions. The selection of split-points and number of basis functions is guided by

a greedy search strategy that optimizes the BIC score of the model by iteratively evaluating the

BIC-gain of bisecting an existing candidate hyperrectangle and relearning the number of basis

functions.
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Table 8: Comparison between the true posterior density and the one learned with the MoP approximation obtained

using Algorithm 1 . Mean KL and MSE for ten datasets sampled from the BN, where Y ∼ 0.5N (−3, 1)+0.5N (3, 1)

and X|Y ∼ N (y, 1).

N xobs -4.2244 -3.3719 -2.6362 -1.7662 0.0000 1.7662 2.6362 3.3719 4.2244

25
KL 0.3947 0.4395 0.6016 0.8949 1.1297 0.9143 0.6482 0.4991 0.4242

MSE 0.0088 0.0120 0.0173 0.0239 0.0152 0.0233 0.0173 0.0129 0.0091

500
KL 0.2875 0.2118 0.2311 0.3779 0.6586 0.3962 0.2374 0.2187 0.2882

MSE 0.0061 0.0048 0.0062 0.0105 0.0092 0.0110 0.0065 0.0053 0.0061

2500
KL 0.0773 0.0638 0.0780 0.0687 0.2389 0.0604 0.0802 0.0735 0.0810

MSE 0.0015 0.0013 0.0022 0.0018 0.0038 0.0015 0.0022 0.0016 0.0016

5000
KL 0.0185 0.0221 0.0212 0.0693 0.1337 0.0649 0.0245 0.0215 0.0237

MSE 0.0003 0.0007 0.0007 0.0023 0.0020 0.0021 0.0008 0.0007 0.0004

Table 9: Comparison between the true posterior density and the one learned with the MoP approximation obtained

using Algorithm 3 with Lagrange interpolation. Mean KL and MSE for ten datasets sampled from the BN, where

Y ∼ 0.5N (−3, 1) + 0.5N (3, 1) and X|Y ∼ N (y, 1).

N xobs -4.2244 -3.3719 -2.6362 -1.7662 0.0000 1.7662 2.6362 3.3719 4.2244

25
KL 0.4322 0.4919 0.6442 0.8876 6.7282 0.9882 0.6942 0.5356 0.4336

MSE 0.0097 0.0138 0.0205 0.0259 0.2251 0.0245 0.0183 0.0146 0.0100

500
KL 0.2552 0.2185 0.2612 0.3952 0.6440 0.4053 0.2484 0.2187 0.2925

MSE 0.0049 0.0052 0.0073 0.0109 0.0091 0.0116 0.0072 0.0052 0.0059

2500
KL 0.0712 0.0526 0.0739 0.0895 0.1881 0.0875 0.0802 0.0590 0.0773

MSE 0.0016 0.0008 0.0019 0.0026 0.0029 0.0025 0.0020 0.0010 0.0017

5000
KL 0.0063 0.0138 0.0110 0.0463 0.0663 0.0408 0.0106 0.0128 0.0080

MSE 0.0001 0.0004 0.0004 0.0016 0.0009 0.0014 0.0004 0.0005 0.0001

If there is a weak correlation between the child and parent variables, then the conditional

MoTBF approach is expected to yield approximations with few pieces. On the other hand, as

the variables become more strongly correlated, additional subintervals will be introduced by the

learning algorithm. The MoTBF learning algorithm does not rely on a discretization of the

child variable, but it rather approximates the density using a higher-order polynomial/exponential

function. In contrast, Algorithms 1 and 3 yield conditional MoPs with more pieces because the

domain of approximation ΩX,Y is split into hyperrectangles in all the dimensions. However, with

the finer-grained division of the domain into hyperrectangles, the polynomial functions of the

conditional MoPs will usually also have a lower order.

We empirically compared Algorithm 1 and Algorithm 3 (using both TSE and LI) to the method

proposed in Langseth et al.11 by employing the greedy search strategy in Section 3.3 and using
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Table 10: Results of the Wilcoxon signed-rank test: (black) results for KL, (red) results for MSE.

(a) Y ∼ N (0, 1) and X|Y ∼ N (y, 1)

↓ outperforms → Alg 1 Alg 3 TSE Alg 3 LI

Alg 1 2 3 2 2

Alg 3 TSE 5 1 0 0

Alg 3 LI 4 1 0 0

(b) Y ∼ Gamma(rate = 10, shape = 10) and X|Y ∼ Exp(y)

↓ outperforms → Alg 1 Alg 3 TSE Alg 3 LI

Alg 1 1 2 6 0

Alg 3 TSE 1 1 1 0

Alg 3 LI 0 0 0 0

(c) Y ∼ 0.5N (−3, 1) + 0.5N (3, 1) and X|Y ∼ N (y, 1)

↓ outperforms → Alg 1 Alg 3 TSE Alg 3 LI

Alg 1 5 4 2 6

Alg 3 TSE 10 10 3 2

Alg 3 LI 11 10 3 3

the three data sets described in Section 3.4.

Tables 11, 12, and 13 show the mean Kullback-Leibler divergences and MSEs between the MoPs

and the true posterior densities Y |X for three values of X in the ten repetitions. We applied a

paired Wilcoxon signed-rank test and report statistically significant differences at a significance

level α = 0.05. The null hypothesis is that the two methods perform similarly. The alternative

hypothesis is that the algorithm in the column outperforms the algorithm shown with a symbol:

∗ for Algorithm 1, † for Algorithm 3 with TSE, ‡ for Algorithm 3 with LI, and ⋆ for conditional

MoTBFs. For instance, a ⋆ in the column corresponding to Algorithm 1 in Table 11 shows that

Algorithm 1 significantly outperforms MoTBFs for the corresponding values for N and X. From

the Gamma-Exponential distribution (Table 12) we see that the models produced by Algorithms 1

and 3 are generally comparable to or slightly worse than those learned using the MoTBF-based

method. However, when considering Table 11 we see that Algorithm 3 significantly outperforms

the MoTBF-based method, especially for the larger data sets. When further analyzing the models

learned for the data sets with 5000 observations, we find that the learned MoTBF models contain at

most six pieces each holding an MoP with at most six parameters (hence a total of 36 parameters,

not counting the parameters defining the pieces). In comparison, Algorithm 3 produce models with

256 parameters(16 pieces each holding a polynomial of degree 3 in each variable) and Algorithm 1

outputs models with 49 parameters(7 = 4+4− 1 parameters for each dimension). Thus, for these

21



0.0

0.1

0.2

0.3

0.4

−3 −2 −1 0 1 2 3
−2

−1

0

1

2

(a) Conditional MoTBF of X|Y

X

Y

0.0

0.1

0.2

0.3

0.4

−3 −2 −1 0 1 2 3
−2

−1

0

1

2

(b) True conditional density of X|Y

X

Y

−2 −1 0 1 2

0.
0

0.
2

0.
4

0.
6

(c) MoTBF posterior density Y|X=−1.81

Y

D
en

si
ty

−2 −1 0 1 2

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

(d) MoTBF posterior density Y|X=0

Y

D
en

si
ty

−2 −1 0 1 2

0.
0

0.
2

0.
4

0.
6

(e) MoTBF posterior density Y|X=1.81

Y

D
en

si
ty

Figure 5: Example of Y ∼ N (0, 1) and X|Y ∼ N (y, 1), case N = 5000. (a) Conditional MoTBF of X|Y learned

with the approach in11. (b) True conditional density of X|Y ∼ N (y, 1). (c,d,e) MoTBF approximations (solid)

and true posterior densities (dashed) of Y |X for three values of X.

data sets the proposed learning algorithms seem to allow more complex models to be learned than

when using the MoTBF approach. With respect to the mixture model (Table 13) we observe

that the proposed algorithms outperform the MoTBF-based method both in the small data sets

(Algorithm 1), both in the larger data sets (Algorithm 3).

5. A Real-World Example in Neuroanatomy

As a real-world example we build a MoP model over some variables describing neurons by

their morphological features. We use the database studied in Guerra et al.24, which addresses the

problem of classifying a neuron based on its morphological features. The database is made up of 327

observations concerning 52 variables describing morphological and spatial neuron characteristics.

We select the variable relative distance to pia as the parent variable Y , and the variable area of the

dendrite’s convex hull as the child X. The relative distance to pia is the ratio of the straight-line
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Table 11: Mean Kullback-Leibler divergences and MSE between the approximations and the true posterior densities

for ten datasets sampled from the BN, where Y ∼ N (0, 1) and X|Y ∼ N (y, 1). The best results for each sample

size are highlighted in bold. Statistically significant differences at α = 0.05 are shown with symbols ∗, †, ‡, ⋆.

KL MSE

N Y |X = x Alg. 1 (∗) Alg. 3 TSE

(†)

Alg. 3 LI

(‡)

MoTBF (⋆) Alg. 1 (∗) Alg. 3 TSE

(†)

Alg. 3 LI

(‡)

MoTBF (⋆)

25

X =-1.81 0.3312 ⋆ 0.3275 ⋆ 0.3199 ⋆ 0.6139 0.0152 ⋆ 0.0155 ⋆ 0.0147 ⋆ 0.0598

X =0.00 0.2550 0.2592 0.2584 0.0553 ∗ ‡ 0.0130 0.0131 0.0131 0.0048 ∗ †

‡

X =1.81 0.3038 ⋆ 0.2895 ⋆ 0.2937 ⋆ 0.6349 0.0092 ⋆ 0.0090 ⋆ 0.0090 ⋆ 0.0608

500

X =-1.81 0.0612 ⋆ 0.0569 ⋆ 0.0586 ⋆ 0.1588 0.0013 ⋆ 0.0012 ⋆ 0.0013 ⋆ 0.0174

X =0.00 0.0099 ⋆ 0.0086 ⋆ 0.0084 ⋆ 0.0666 0.0004 ⋆ 0.0003 ⋆ 0.0003 ⋆ 0.0047

X =1.81 0.0634 ⋆ 0.0567 ⋆ 0.0596 ⋆ 0.1540 0.0014 ⋆ 0.0012 ⋆ 0.0012 ⋆ 0.0161

2500

X =-1.81 0.0115 ⋆ 0.0099 ⋆ 0.0098 ⋆ 0.0731 0.0004 ⋆ 0.0003 ⋆ 0.0003 ⋆ 0.0078

X =0.00 0.0017 ⋆ 0.0015 ⋆ 0.0012 ⋆ 0.0273 0.0001 ⋆ 0.0001 ⋆ 0.0001 ⋆ 0.0016

X =1.81 0.0110 ⋆ 0.0085 ∗ ⋆ 0.0087 ⋆ 0.0596 0.0002 ⋆ 0.0002 ⋆ 0.0002 ⋆ 0.0058

5000

X =-1.81 0.0093 ⋆ 0.0075 ⋆ 0.0072 ⋆ 0.1110 0.0002 ⋆ 0.0002 ⋆ 0.0002 ⋆ 0.0098

X =0.00 0.0011 ⋆ 0.0010 ⋆ 0.0010 ⋆ 0.0301 0.0001 ⋆ 0.0001 ⋆ 0.0001 ⋆ 0.0017

X =1.81 0.0102 ⋆ 0.0080 ∗ ⋆ 0.0076 ∗ ⋆ 0.1055 0.0003 ⋆ 0.0003 ⋆ 0.0002 ∗ ⋆ 0.0086

Table 12: Mean Kullback-Leibler divergences and MSE between the approximations and the true posterior densities

for ten datasets sampled from the BN, where Y ∼ Gamma(rate = 10, shape = 10) and X|Y ∼ Exp(y). The best

results for each sample size are highlighted in bold. Statistically significant differences at α = 0.05 are shown with

symbols ∗, †, ‡, ⋆.

KL MSE

N Y |X = x Alg. 1 (∗) Alg. 3 TSE

(†)

Alg. 3 LI

(‡)

MoTBF (⋆) Alg. 1 (∗) Alg. 3 TSE

(†)

Alg. 3 LI

(‡)

MoTBF (⋆)

25

X =0.1063 0.1275 0.1370 0.1368 0.0078 ∗ † ‡ 0.1149 0.1225 0.1226 0.0155 ∗ † ‡

X =0.7187 0.1041 0.1083 0.1086 0.1048 0.1100 0.1142 0.1132 0.3302

X =2.5946 0.1123 0.1097 0.1124 0.0866 ∗ † ‡ 0.1243 0.1188 0.1215 0.1746 ∗

500

X =0.1063 0.0125 0.0121 0.0135 0.0048 ∗ † ‡ 0.0102 0.0078 0.0078 0.0080

X =0.7187 0.0102 0.0099 0.0111 0.0001 ∗ † ‡ 0.0072 0.0068 0.0071 0.0010 ∗ † ‡

X =2.5946 0.0240 ⋆ 0.0193 ∗ ⋆ 0.0256 ‡ ⋆ 0.0706 0.0243 ⋆ 0.0187 ∗ ‡ ⋆ 0.0261 ⋆ 0.1144

2500

X =0.1063 0.0075 0.0071 0.0079 0.0039 ∗ † ‡ 0.0067 0.0054 0.0056 0.0074

X =0.7187 0.0038 ‡ 0.0041 0.0047 0.0001 ∗ † ‡ 0.0037 0.0040 0.0042 0.0002 ∗ † ‡

X =2.5946 0.0081 ⋆ 0.0092 ⋆ 0.0115 ⋆ 0.0602 0.0115 ⋆ 0.0128 ⋆ 0.0143 ⋆ 0.1077

5000

X =0.1063 0.0038 0.0047 0.0054 0.0038 0.0044 ⋆ 0.0041 ⋆ 0.0042 ⋆ 0.0073

X =0.7187 0.0024 ‡ 0.0029 0.0032 0.0001 ∗ † ‡ 0.0027 0.0032 0.0029 0.0002 ∗ † ‡

X =2.5946 0.0083 ⋆ 0.0084 ⋆ 0.0103 ⋆ 0.0585 0.0111 ‡ ⋆ 0.0134 ⋆ 0.0150 ⋆ 0.1078

distance from soma to pia and the straight-line distance from white matter to pia. Thus, a value

close to 0 (resp. 1) corresponds to a soma in a superficial (resp. deep) layer. Convex hull analysis

draws a two-dimensional convex shape around the dendrites. The area (µm2) of this shape is

then calculated. Before applying our MoP approximations to X|Y , the data are divided by their

sample standard deviation. Also, only 96% of the central values of the transformed data have

been maintained; the remaining values have been discarded.

Since the dataset considered is quite small and continuous densities are desirable for this

particular domain, we apply Algorithm 1 for learning the MoP representations, cf. the discussion

in subsection 3.4. The results are shown in Figure 6.

The conditional MoP of X|Y on the top figure shows that for small values of the distance to pia

the dendrite areas are mostly concentrated around small values, whereas for larger distances the

areas spread over more values, i.e., dendrite areas present a higher dispersion when the neurons
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Table 13: Mean Kullback-Leibler divergences and MSE between the approximations and the true posterior densities

for ten datasets sampled from the BN, where Y ∼ 0.5N (−3, 1) + 0.5N (3, 1) and X|Y ∼ N (y, 1). The best results

for each sample size are highlighted in bold. Statistically significant differences at α = 0.05 are shown with symbols

∗, †, ‡, ⋆.

KL MSE

N Y |X = x Alg. 1 (∗) Alg. 3 TSE

(†)

Alg. 3 LI

(‡)

MoTBF (⋆) Alg. 1 (∗) Alg. 3 TSE

(†)

Alg. 3 LI

(‡)

MoTBF (⋆)

25

X =-4.22 0.3947 ⋆ ‡ 0.4163 ⋆ ‡ 0.4322 ⋆ 0.6859 0.0088 ⋆ 0.0096 ⋆ ‡ 0.0097 ⋆ 0.0163

X =0.00 1.1297 ⋆ 3.5644 6.7282 2.1171 0.0152 ⋆ 0.0191 0.2251 0.0258

X =4.22 0.4242 ⋆ 0.4541 ⋆ 0.4336 ⋆ 0.5720 0.0091 ⋆ 0.0103 ⋆ 0.0100 ⋆ 0.0142

500

X =-4.22 0.2875 0.2384 0.2552 0.2212 0.0061 0.0056 ⋆ 0.0049 ⋆ 0.0079

X =0.00 0.6586 1.1011 0.6440 0.6904 0.0092 ⋆ 0.0127 0.0091 ⋆ 0.0120

X =4.22 0.2882 0.2423 0.2925 0.2134 0.0061 0.0056 ⋆ 0.0059 0.0079

2500

X =-4.22 0.0773 0.0692⋆ 0.0712 ⋆ 0.0843 0.0015 ⋆ 0.0015 ⋆ 0.0016 ⋆ 0.0029

X =0.00 0.2389 ⋆ 0.3264 0.1881 ⋆ ∗ 0.4593 0.0038 ⋆ 0.0036 ⋆ 0.0029 ⋆ ∗ † 0.0102

X =4.22 0.0810 0.0763 0.0773 0.0961 0.0016 ⋆ 0.0017 ⋆ 0.0017 ⋆ 0.0035

5000

X =-4.22 0.0185 ⋆ 0.0066 ⋆ ∗ 0.0063 ⋆ ∗ 0.0618 0.0003 ⋆ 0.0001 ⋆ ∗ 0.0001 ⋆ ∗ † 0.0021

X =0.00 0.1337 ⋆ 0.0668 ⋆ ∗ 0.0663 ⋆ ∗ 0.3331 0.0020 ⋆ 0.0009 ⋆ ∗ 0.0009 ⋆ ∗ 0.0081

X =4.22 0.0237 ⋆ 0.0090 ⋆ ∗ 0.0080 ⋆ ∗ 0.0489 0.0004 ⋆ 0.0002 ⋆ ∗ 0.0001 ⋆ ∗ 0.0012

are further away from the pia. This MoP has LX = 4 and LY = 2 pieces for X and Y , respectively,

each one with order 3. For the posterior distributions Y |X in the bottom figures, for area x = 0.38

(left) the distance to pia is asymmetrically distributed with a mode close to 1, whereas for x = 1.50

(right) the density is rather symmetric with a mode close to 2.

6. Conclusion

In this paper, we have considered two methods for learning MoP approximations of conditional

densities X|Y from data. The initializing step in both methods involves estimating the joint

density φX,Y(x,y) and the marginal density of the parents φY(y). In the first method, we use

the two learned densities to obtain a sample from the quotient φX,Y(x,y)/φY(y) based on which

an unnormalized conditional MoP is learned. Proper normalization of the learned MoP is not

feasible since the resulting potential would be outside the MoP model class, hence we instead

resort to a partial normalization. Although the models obtained from the partial normalization

can provide good accuracy results, it is difficult to control the quality of the approximation. This

shortcoming has motivated the second learning algorithm, where a conditional MoP is obtained

using multidimensional interpolation based on the quotient φX,Y(x,y)/φY(y) obtained from the

initial step of the algorithm; for the actual estimation we have considered multidimensional Taylor

series expansion and Lagrange interpolation.

The proposed methods have been empirically analyzed and evaluated using data sampled from

three different statistical models, one corresponding to a two-dimensional Gaussian distribution

an other involving an exponentially distributed variable with a rate parameter following a Gamma

distribution, and lastly a model with a Gaussian distribution with mean parameter following a

mixture of two Gaussian distributions. From the experimental results we have observed that
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Figure 6: Conditional density (top) and posterior densities (x = 0.38 left; x = 0.79 middle; x = 1.50 right) learned

with Algorithm 1 in neuronal morphological data.

both methods yield good approximations (low KL and MSE values) of the true conditional den-

sities. The observations from these studies were supplemented with an analysis of a real-world

neuroanatomy dataset. For comparison, we have analyzed the proposed methods relative to the

MoTBF learning method described by Langseth et al.11,12 using the previously generated artifi-

cial datasets. From the results we observed that although the three methods yield comparable

results for the Gamma-Exponential distributed data, we also found that the proposed algorithms

significantly outperformed the MoTBF-based algorithm on the Gaussian data sets and on the

mixture-model datasets.

In this paper, equal-width intervals [ϵi, ξi] are assumed in each dimension, and the hyperrectan-

gles Al have the same size. In the future, we would like to further study how to automatically find

appropriate values for the limits [ϵi, ξi]. For a given configuration of the model parameters, the

computational complexity is dominated by the algorithm for learning the joint and the marginal

densities. We would like to investigate methods for improving the computational complexity of

this particular step of the algorithm as well as methods for improving the overall runtime of the

algorithm. Finally, we intend to use these approaches to learn more complex BNs, which also in-

volves adapting the learned potentials to support efficient inference and considering BN structure
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