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Abstract— Stress is a response to time pressure or negative
environmental conditions. If its stimulus iterates or stays for a
long time, it affects health conditions. Thus, stress recognition
is an important issue. Traditional systems for this purpose
are mostly contact-based, i.e., they require a sensor to be in
touch with the body which is not always practical. Contact-free
monitoring of the stress by a camera [1], [2] can be an alternative.
These systems usually utilize only an RGB or a thermal camera to
recognize stress. To the best of our knowledge, the only work on
fusion of these two modalities for stress recognition is [3] which
uses a feature level fusion of the two modalities. The features
in [3] are extracted directly from pixel values. In this paper we
show that extracting the features from super-pixels, followed by
decision level fusion results in a system outperforming [3]. The
experimental results on ANUstressDB database show that our
system achieves 89% classification accuracy.

Keywords— Stress Recognition, Facial Expression, RGB Im-
ages, Thermal Images, Super-pixels.

I. INTRODUCTION

Nowadays stress is a major problem in the human society.
Usually the reason for stress is recognized as time pressure.
For example, when we want to perform a task within a given
period, while we do not have enough time, a set of physio-
logical reactions, like, heartbeat and respiration rates increase,
which indicate a stressful situation [4]. This situation, however,
may not be the same for different people, as stress is subjec-
tive. In other words, stress depends more on changes in specific
physiological signs, not on conditions/events themselves [4].
It is also argued that different people may experience different
conditions or events and hence their physiological signs may
change differently.

Traditional stress recognition systems, which are based on
self-report or measure physiological signals using invasive
sensors have some limitations. For example: these systems
are unable to monitor the subjects instantaneously and con-
tinuously [5]. Some of the systems are based on self-reporting
or saliva test. Self-reporting based systems at times may not
be able to recognize the stress on short duration of time.
As a consequence, to overcome these problems researchers
nowadays tend to measure stress using contact-less sensors
such as RGB and thermal cameras.

Since stress is associated with physical appearance, some
researchers utilized the physical symptoms as clues for stress
detection. For example, in [6], [7] a model for monitoring the

subjects based on deformation of lips, mouth and eyebrows
due to the stress has been presented. Liao et al [1] proposed
an approach to recognize the stress using some visual features
like blinking frequency, average eyes closure speed and per-
centage of saccadic eye movement. In another work [8] authors
detected the stress by tracking 3D facial expressions. In a
recent work, Gao et al [9] presented a contact-less real time
system for detecting stress in vehicle drivers. It functioned
by considering two negative basic facial expressions (anger
and disgust) based on the Ekman theory [10] and applied
Local discrete cosine transform [11] and scale invariant feature
transform [12] as features.

Since physical appearance is not as reliable as physiological
response to stressors, many researchers are interested in em-
ploying these symptoms for stress detection. Recently, imaging
techniques like RGB video recorder or thermal imaging have
been employed for contact-less measuring of physiological
signals, e.g., Hearthbeat rate [13], [14], respiration rate [15],
[16] and muscle fatigue [17] which promise contact-less-based
measuring of the stress as well.

Hyperspectral imaging [5], thermal imaging and RGB Imag-
ing have been used to probe the stress using physiological
features. Pavlidis et al [18], [19] are the first researchers
who measured the stress with a contact-less thermal sensor.
The principle of their work is based on the fact that mental
stress increases the blood flow in the forehead region. Thus,
they applied a contact-less blood flow measurement on 10%
hottest pixel of the ROI for monitoring the stress. To quantify
the stress level, in another interesting work, Shastri et al.
[20] captured thermal imaging based data for measuring the
transient perspiration, which is also known as a physiological
functions. The drawback of this method is that stress cannot
be measured in scenarios, where subjects experience heavy
sweating due to hot environment or during doing exercise.

In [2] Frédéric et. al. proposed a system based on instanta-
neous pulse rate signal extracted from imaging photoplethys-
mography. The proposed algorithm derives the Heart Rate
Variability (HRV) from a webcam and detects the stress by
analysing the HRV changes due to stress.

Employed vision based systems for stress recognition usu-
ally use only one of the RGB or thermal imaging techniques.
To employ the opportunities of fusing the two modalities, a
recent literature [3] presented a computational model using



the information from both thermal and RGB imaging. They
proposed a new descriptor named Histogram of Dynamic
Thermal Patterns (HDTP). However,they could not achieve
more than 65% accuracy. Nevertheless, such accuracy has been
improved to 85% by combining RGB and thermal imaging
features as input of a Genetic Algorithm (GA)-Support Vector
Machine (SVM) classifier.

In thermal images an unique color is assigned to the pixels
with similar temperature (Figure 1.a). This gives rise to a
formation of regions on the facial block. An advantage of
thermal based face analysis over RGB is that it is less effeced
by noise in the facial parts location detection. Extracting
features in the ub-regions (block-wise) instead of the entire
face (holistic-level) improves the accuracy [21] in RGB im-
ages based face analysis. Generally, a particular block may
cover a facial part or two adjacent blocks may contain a
particular facial part. However, this is not guaranteed for
thermal images as the sub-regions in thermal areas donot
strictly adhere to facial part boundaries. Another reason for
this can be that the if the thermal image is divided into
fixed blocks, it may result into a block containing different
(complete/incomplete) thermal regions, which may not have
any correlation. Furthermore, due to the process of image
capturing a sensor quantizes a natural continous signal (image)
into pixels. Motivated by these obeservations, in this paper
we propose to represent a thermal image as a group of super-
pixels. A super-pixels is a group of adjacent pixels which have
similar characteristic and special information (Figure 1.b).
Super-pixel representation has been used for face recognition
[22]. In the case of thermal images, super-pixels are a group
of pixels with similar color (temperature) which seem like a
more natural representation for thermal images as compared to
dividing images into non-overlapping blocks. This method not
only groups the adjacent pixels with high correlation but also
increases the speed of processing. Our experimental results
show promising outcomes and are in agreement with the state-
of-the-art method of [3].

a b

Fig. 1. A typical facial Region (a) and its corresponding super-pixels (b)

Super-pixels are the results of perceptual grouping of pixels
and involve more information and provide better image align-
ment compared to using a single pixel alone [23]. Mapping
from a pixel grid to super-pixel, holds desirable properties,
like, computational efficiency, perceptual meaningfulness, over
segmentation, and efficient graph representations [24]. Super-
pixels share some properties like texture distribution or color

similarity. Specially, this attribute can be helpful in thermal
image analyzing, because we are interested in temperature of
sub-regions instead of points.

In the recent years, there has been progress in super-pixel
creating algorithms [25] [26]. A detailed procs and cons of
various super-pixel algorithms is presented in [23]. In this
work, for computing super-pixels, Linear Spectral Clustering
(LSC) method [27] is followed. The reason for chosing LSC
is its ability to produce fast compact and uniform super-pixels.

The rest of the paper is organized as follows: Section
II explains the details of the proposed system, Section III
discusses the experimental results, and finally, Section IV
concludes the paper.

II. THE PROPOSED SYSTEM

The block diagram of the proposed system is shown in
Figure 2. The test subjects are filmed by a RGB camera that
is synchronized with a thermal camera in parallel. These two
types of video streams go through three different steps: 1)Face
region detection and quality assessment, 2) Feature extraction,
and 3) Classification and fusion .

Since the data collected by the two types of cameras are
different in nature, the applied algorithms in the first two
steps are different. For RBG images, recognizing stress is
similar to [1], that is, first facial region is detected by the
Viola Jones (VJ) face detector. Then, the face regions with
less correlation are removed using a face quality assessment
algorithm. Finally, Local Binary Patterns (LBP) [28] are
extracted from the remaining facial regions and are used as
feature points. However for detecting the face area in the
thermal images, we use a template matcher for face region
detection as proposed in [31]. Then, we compute the LSC
super-pixel algorithm, instead of directly computing a facial
descriptor. Further, the mean values of the generated super-
pixels are used as the facial features. Having extracted the
facial features from two types of inputs, we use a support
vector machine (SVM) classifier for producing classification
scores for each type of input. These scores are finally fused at
decision level to recognize the stress. These steps are explained
in detail in the following subsections.

A. Step 1: face detection and quality assessment

1) RGB Data: The first step of stress recognition in RGB
videos is cropping the face region. We used the VJ face
detection algorithm [29] for this purpose. In order to decrease
the error of the algorithm, if it can not find a face in the current
frame, we use the position of the frame in the previous frame
as the position of the face in the current frame. Considering
the fact that in our employed database (discussed later) the
subjects’ face does not have considerable head pose changes
and movements within short period of time, this method seems
working and reducing the error of the face detection algorithm,
when it fails to detect faces. Furthermore, if there are more
than one region detected as face, we utilize the information



Fig. 2. The block diagram of proposed bimodal system

about the setup (discussed later in III) to keep only the one
which is closest in size to v × w. The values of v and w
are determined experimentally, based on the distance of the
subjects from camera.

Finally, we employ a face quality assessment technique for
detecting the frames with incorrect face region (Figure 3. To
do so, we use the first detected face in the first frame as a
reference face and discard all the other faces that are not
similar enough to this reference face (less than 80%). The
similarity is calculated using the following correlation:

SRBG =

∑M
m

∑N
n

(
Amn − Ā)

(
Bmn − B̄)√∑M

m

∑N
n (Amn − Ā)2.

∑M
m

∑N
n (Bmn − B̄)2

×100%
(1)

in which, A is the template/reference face, Ā is the average
grey level in the reference image, B is the face in the current
frame, B̄ is the average grey level of the face in the current
frame, and M & N are the number of rows and columns of
frames, respectively, (template image size = columns × rows).

Figure 3.a shows a correlation curve obtained by the above
formula for the entire faces of a video sequence and two faces.
The first face (Figure 3.b) has been discarded while the second
one (Figure 3.c) has been kept.

It should be mentioned that when we discard a frame/face in
RGB video sequence, it’s corresponding frame in the thermal
video sequence should also be discarded. It is an essential

a

b c

Fig. 3. Quality assessment, a. Correlation of the frames with a chosen
template for all the frames in subject 1 video sequence, b. a frame with
correlation less than 80% c. a frame with correlation larger than 80%

condition to keep the synchronization between the modalities.
2) Thermal Data: Before applying the LSC super-pixel

algorithm on the thermal images, face localization in the
thermal images is required. Since the VJ algorithm, which
were applied on the RGB frames, is not useful in this case,
we used a template matcher [30]. The template is created
manually for each thermal video sequence. The facial region
on one frame (the reference frame) is cropped and then used
to find the facial regions in the rest of the frames using the Yue
Wu algorithm of in [30] which is based on correlation. Figure
4.b shows the correlation values between the template and the
face region in the current frame (Figure 4.a). The brightest
point on the correlation map (Figure 4.b) indicates center of
the face region that should be cropped. Figure 4.c shows the
detected and cropped face region.

B. Step 2: Feature extraction

1) Extracting features from RGB data: It is discussed in
[21] that for RGB images it is be better to extract facial
features from individual non-overlapping blocks than at the
holistic level. In this work, similar to [3] in each frame the
facial region is segmented into a grid of 3 × 3 blocks. Next,
LBP features are computed for each block [28]. LBP has been
successfully utilized in many facial analysis systems, like [31]
[32] Figure 5.a and 5.b show an input image divided into 3
by 3 blocks and their corresponding LBP counterparts.

2) Extracting features from thermal data : To extract
features from thermal images, we first apply the super-pixel
technique of [27] to segment the face regions to small none-
overlapping pieces. This technique divides the facial region
to some sub-regions (Figure1.b) that unlike blocked RGB im-
ages (Figure5.a), each sub-region includes pixels with mostly



a b

c d

Fig. 4. Template matching process for detecting facial region in thermal
images: a. a frame from the ANU StressDB database, b. Template, c.
correlation map, d. the detected Facial region

a b

Fig. 5. Facial sub-regions in a. RGB frames, b. Corresponding LBP features

similar color (hence similar temperature in this case). Such
property, in addition to the fact that the stress has direct
correlation with skins temperature, made it possible to consider
the mean temperature of each super-pixel as feature of the
corresponding sub-region. The region of each super-pixel is
determined using a matrix named Label with the size equal to
the size of a face. Label assigns an integer to each super-pixel
such that:

Label =
K⋃

k=1

k.Ik (2)

in which:

Ik =

{
1, if Pi,j = k

0, Otherwise
(3)

The thermal feature Fm for each frame is given by:

Fm,k =
Tr(Tm × ITk,m)∑∑

Ik,m
(4)

where, Fm,k is kth element of the feature vector of mth

frame, Tm is mth thermal frame, ITk,m is transport matrix of
kth super-pixel in frame m, Pi,j is a pixel on the thermal
image of Tm with coordinate i, j,

⋃
is a union function, and

Tr is Trace function.

Similar to RGB modality we apply a quality assessment
to thermal modality. The quality assessment is however not
applied to the thermal images, but to their features, as these
features are one dimensional (average of blocks) and are much
easier to process than the images. To do so, we use the corre-
lation scores obtained by Equation 5. The difference between
this correlation and the one used for the RGB modality is that
we here have replaced gray levels with the mean of super-
pixels. In addition, since the applied features (temperature)
involves values with small variation, an exponential function
and with a factor of α has been considered to depict the frames
with less quality with decreasing their corresponding scores
more faster than high quality frames, as in:

ST = exp

α× (

∑N−1
i=0 (xi − x̄)( yi − ȳ)√∑N−1

i=0 (xi − x̄)2.
∑N−1

i=0 (yi − ȳ)2
− 1)


×100

(5)

where, x is the feature vector of the template frame, x̄ is
the average of template feature vector, y is the feature vector
of source frame, ȳ is the average of source features vector,
and N is the size of feature vector. The value of ST varies
within 0 and 100, such that larger values of ”ST ” represent a
strong relationship between the two images. The features (also
frames) with score (ST ) less than 94% were removed. Figure
6.a illustrates the score of a video sequence. Figures 6.b and
6.c show corresponding frames of the spots marked on figure
6.a. It can be seen that the frame with a score less than 94%
is not correctly matching with the template.

a

b c

Fig. 6. Quality assessment of thermal images, a. Similarity of a thermal
segment for subject 1, b. detected face region with score 89%, c. detected
face region with score 95% .



C. Fusing and classification

Motivated by the successful application of SVM in different
vision algorithms [33], [34], we have decided to use it for
classifying our features. Two separate SVMs have been used
for the classification of the features extracted from the different
modalities. The output of these SVMs need to be fused to
make a decision if the test subjects are in stress in the current
RGB and its corresponding thermal frames or not. Since stress
is a continues phenomenon and cannot vary abruptly, we
have assumed that the level of the stress does not change
in short periods (here experimentally obtained period of four
seconds has been used). To reflect this temporal period, we
have applied a median and then a mean filter to the output
of each SVM. The median filter removes the outlier scores of
the SVMs, while the mean filter (moving average) aggregates
the scores over temporal period of the stress. To apply the
moving average, the outputs of median filter are windowed
with length of N and an overlapping factor of N-1. Finally, the
output of moving average filter is weighted and fused using
the following equation:

SModal = tanh(γ.(ω1.SRGB + ω2.ST + Threshold)) (6)

where, SRGB is output of RGB SVM modal, ST is output of
thermal SVM modal, SModal is the final output after fusion, ω1

and ω2 are weight coefficients of RGB and thermal inputs of
the fusion, and Threshold is a threshold for making decision
if the frame is stressful or not. Frames with corresponding
value less than threshold are stressful frame and those larger
than threshold are non-stressful.

III. EXPERIMENTAL RESULTS AND DISCUSSION

This proposed system, has been tested on the only database
for stress recognition that contains images of both RGB and
thermal modalities, ANUStressDB. This database has been
collected at Australian National University (ANU) [3] and
involves 35 subjects, composed of 22 males and 13 females,
between 23 and 39 years old. The thermal and RGB modalities
were captured by a FLIR infrared camera and a Microsoft
webcam, respectively. Both cameras were working at 30 frame
per second at a 640x480 pixels resolution. We set the values
of v and w (of section II-A.1) to 110 pixels each.

Instructors played a film with a collection of negative and
positive clips as stress stimulator. The clips are separated by
displaying 5 seconds blank screen in-between the clips in
order to neutralize the participants’ emotion (state of mind)
before displaying the next movie. Therefor, in the ground truth
data, we assigned all the frames as ”stressed/unstressed” when
the label of the film is ”stressed/unstressed”.At the end of
the experiment, participants were asked to fill a questionnaire
survey for the validation of the experiment.

For classifying the extracted features using SVM, 60% of
the samples from each modality were selected for training,
and the rest for testing. Since the stress is a temporal process,

besides considering the SVM scores directly, we have consid-
ered applying some temporal post-processing technique which
consider a kind of history for the current frame to be involved
in the decision making about the current frame to be classified
as stress or not. For this purpose, we have simply looked into
mean and median filters. In other words, to decide whether
or not the current frame is of a stressful situation, besides
looking into the SVM score of the current frame, we apply
once a mean and once a median filter to the SVM scores of
the frames located within a neighborhood of the current frame.

Table 1 shows the results obtained by SVMs for each
modality without any post-processing (the second column),
with mean and median filters applied to the results of the SVM
(third and fourth columns, respectively), and after fusing the
post-processed (mean-filtered) results of both modalities (fifth
column).

Table 1. Comparing improvement of the results in each step of post
processing filters and fusing

Modal SVM Median Moving Average Fusion
RGB 60% 60% 62% 89%Thermal 82% 84% 86%

Figure 7 shows the results of the proposed system aganist
the ground thruth after fusing the scores coming from both
modalities.

Fig. 7. Comparing the ground truth with final result after fusing the
modalalities

Table 2 shows the results of comparison of the modality
fusion of the proposed system against those of [3]. It can be
seen from this figure that the proposed system outperforms
Sharma et. al’s approach [3] by more than 4% accuracy.

Table 2. Comparing the proposed system against the state-of-the-art system
of [3]. Bars number I to V represent, respectively, (VLBP + TLBP ) with
SVM classifier, (VLBP + TLBP ) with Genetic Algorithm SVM classifier
(GASVM), (VLBP + THDTP ) with SVM classifier, (VLBP + THDTP )

with GASVM classifier, and the proposed system.

methods I II III IV V
Accuracy 61% 79% 76% 85% 89%



IV. CONCLUSION

Stress recognition using computer vision techniques is of
great importance as it does not need any contact with users,
which is unavoidable in traditional methods. To this end, in this
paper we proposed a system that uses facial images of different
modalities, including RGB and thermal to make a decision if
a user in a current frame is in a stressful situation or not.
From RGB and thermal modalities, LBP and temperature of
super-pixels have been used as features that are fed to a SVM
classifier. The SVM results of the two different modalities are
then combined using a score level fusion. The experimental
results, showed that the purposed fusion results in a system
that outperform the state-of-the-art stress recognition system.
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