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Spatiotemporal Facial Super-Pixels for Pain

Detection

Dennis H. Lundtoft, Kamal Nasrollahi, Thomas B. Moeslund, and Sergio
Escalera

Abstract Pain detection using facial images is of critical importance in

many Health applications. Since pain is a spatiotemporal process, recent

works on this topic employ facial spatiotemporal features to detect pain.

These systems extract such features from the entire area of the face. In

this paper, we show that by employing super-pixels we can divide the

face into three regions, in a way that only one of these regions (about

one third of the face) contributes to the pain estimation and the other

two regions can be discarded. The experimental results on the UNBC-

McMaster database show that the proposed system using this single region

outperforms state-of-the-art systems in detecting no-pain scenarios, while

it reaches comparable results in detecting weak and severe pain scenarios.
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1 Introduction

Remote monitoring of e.g. chronically ill patients is an increasing courtesy
of physicians, as it improves quality of life of patients rather than staying
at a hospital. However, remote extraction of data can be limited, as several
measurements rely on direct contact, one such example is pain measurement
using facial images.

Pain, which is a sensation of the body expressing itself to be damaged or
in danger, is rather important for doctors to monitor. In long-durations it can
heavily impact the quality of the life. A popular technique for measuring pain is
patient self-report, however, for babies and for people in some illnesses, such as
dementia, there are cases where the patient is unable to express their pain. To
deal with such scenarios, automatic detection of pain using imaging techniques
is of growing interest. The focus of this paper is therefore to develop a pain
detection system using deformable facial images.

The rest of this paper is organized as follows: the related work in the literature
on pain detection is reviewed in the next section in which the contributions of this
work are also highlighted. Then, in section 3 the proposed system is explained.
The obtained experimental results are reported then in section 4. Finally, the
paper is concluded in section 5.
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2 Related work

The current systems on pain detection can be divided into two groups: the first
group only decides if a given image is of a painful case or not, while the second
group besides clarifying the pain presence determines its level as well.

In the first group, the work of [3] and [14] use a Support Vector Machine
(SVM) classifier that works with eigenfaces to see if there is any sign of pain in a
given face of an infant or not. The work of [3] was then extended by [6], using a
Relevance Vector Machine (RVM) instead of SVM as it introduces a degree of
uncertainty to the estimated pain depending on the posterior probability score.
The work of [11] utilized automatized facial expression analysis, using Gabor
filters on eight different orientations and nine different spatial frequencies, to
find facial Action Units (AU) to distinguish between faked and genuine pain.
Then, these AUs were used to see if the pain was genuine of faked. AUs have also
been used in [4] for defining a rule-based system for detecting the pain/no-pain
case. Active Appearance Models (AAM) have been used in [2] to decouple shape
and appearance parameters from digitized facial images, while in [15] Multiple
Instance Learning (MIL) has been used to handle training data by putting it into
bags, which are labeled as either positive, if the bag contains a positive instance,
or negative, if no positive instances exist in the bag. Then, a Bag of Words (BoW)
approach is used for determining whether a set of frames contains pain or not.

In the second group, where the focus is on determining the level of the pain,
the work of [13], which is an extension of [2], uses facial expression analysis
and 3D head pose to find the level of the pain. In [10], three feature sets of
Facial landmarks (PTS), Discrete Cosine Transform coefficients (DCT) and Local
Binary Patterns (LBP) are extracted from the facial images, and are then fed
to a Relevance Vector Regression (RVR) to estimate the pain intensity. In [7]
canonical appearance of the face using AAM are passed through a set of log-
normal filters to get a discriminative energy-based representation of the facial
expression which is then used to estimate the pain level. Inspired by this work,
in [8] another energy-based system has been developed for pain estimation which
uses spatiotemporal filters.

The proposed system in this paper is inspired by and based on the work of
[8]. The current work treats pain as a spatiotemporal process and hence uses
steerable filters to extract energy released from the face during the pain process.
The main contributions of this paper can be summarized as below:

– As opposed to the work of [8] which uses facial landmarks to divide the face
into three regions, we define our facial regions using super-pixels.

– It is shown in the experimental results that such a division of the face, results
in three regions, similar to [8]. However, from these three regions, only one
of them contributes properly to the pain estimation, as opposed to [8] which
uses all the three regions. The proposed system therefore uses only this single
facial region and the other two regions are discarded.

– Though the proposed system’s performance in determining the level of the
weak and severe pain is on average about 6% lower than the performance of
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[8], its performance in determining the no-pain scenarios is about 15% better
than the performance of [8]. These are further explained in the experimental
results sections.

3 The Proposed System

The block diagram of the proposed system is shown in Figure 1. Having an
input video sequence, for each frame, first, the face region will be detected and
segmented from the background. Then, using Procrustes analysis, warping, and
image registration the facial images found in the video sequence are aligned.
Then, super-pixels are formed for each face image. These super-pixels are used
to define the region of interest from which spatiotemporal released energies are
found and used for detecting pain. These steps are explained in the following
sub-sections.

Figure 1. The block diagram of the proposed system

3.1 Face Detection

Since the database employed in the experimental results, UNBC-MacMaster
[12], already provides the positions of 66 facial landmarks in each frame, these
landmark positions are used to detect the face. To do so, a Delauney triangulation
is applied to the positions of the landmarks 2(a), which spans a facial mask as
seen in Figure 2(b). This mask is used to segment the face from the rest of the
image 2(c).

3.2 Facial Image Alignment

The segmented facial regions from the previous step, need to be aligned as they
might have been displaced due to other sources of motion that are not directly
related to pain, such as eye blinking and speaking motions. To do so, following [8],
we utilize Procrustes analysis on the facial landmarks, followed by a piece-wise
affine warping, and an inpainting step.
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Figure 2. Segmenting the face area and obtaining super-pixels: a) Delauney triangula-

tion of facial landmarks, b) the spanned mask by the triangulation, c) the segmented

face, d) and its SLIC super-pixel labels.

3.3 Super-Pixel Regions

Having aligned the facial images, for each face, we form a set of super-pixels. The
super-pixels are determined using the spatial proximity and the color similarity
between pixels. We use SLIC super-pixel algorithm of [1] for this purpose. SLIC
super-pixels are clustered in a five-dimensional [labxy] space, where [lab] is a color
vector in CIELAB color space and [xy] is the pixel position. The SLIC algorithm
uses two parameters: the first, the desired number of approximately equally sized
super-pixels in the image K, meaning the approximate size of each super-pixels
in an image with N pixels is N

K pixels, the second, cluster centers at every grid
interval S =

√
N
K . The onset super-pixel centers Ck = [lkakbkxkyx]T is initially

set at the regular grid intervals S. Since the spatial extent of a super-pixel is S2,
it is assumed that pixels associated with a cluster center lie within a 2S ×2S area
of the center on the xy plane, which is the spatial search area of pixels associated
to the cluster center. We use the same distance measure of [1] to calculate the
distance between the pixels and centers of the clusters.

In order to locating center of a super-pixel on the edge of the super-pixel, and
to reduce the chance of choosing a noisy pixel as the center, a gradient descent
algorithm in a 3×3 neighborhood is performed from the initial position of the
centers. The gradient of the image is calculated using both the color and intensity
information as:

G(x, y) = ∥I(x + 1, y) − I(x − 1, y)∥2 + ∥I(x, y + 1) − I(x, y − 1)∥2 (1)

where I(x, y) is the lab vector at pixel position (x, y) and ∥, ∥ is the L2 norm.
The search radius around a cluster center is 2S ×2S. Pixels are initially associated
with the nearest cluster center, and then a new cluster center is calculated using
the average labxy vector of all pixels belonging to the cluster. This is performed
iteratively until a convergence is met. Lastly, connectivity is ensured by relabeling
unconnected labels to largest neighboring cluster. The resulted super-pixels by
the SLIC algorithm applied a detected face from 2(c) can be seen in Figure 2(d).

Having found the super-pixels, the next step is to use them to form some
facial regions and use only those super-pixels/regions that are contributing to
the pain detection and estimation. The state-of-the-art works of [8] and [9] use
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facial landmarks positions to divide facial area into three regions: region 1) eyes
and eyebrows, region 2) nose and the cheeks, and region 3) mouth and lower
part of the face (Figure 3). The super-pixels are therefore grouped in a way that
three such regions are formed.

Figure 3. The three different regions formed on the facial image, Left: Region1 consisting

of eyes and upper face. Middle: Region2 consisting of nasal area and cheeks. Right:

Region3 consisting of mouth and lower face.

Though three regions have been formed, as discussed in Section 4, when
looking at the calculated spatiotemporal energy released from the different
regions (discussed in the following subsection) it could be seen that region 2 was
by far the most dominant and stable region when it came to pain detection, and
that the other two regions often contributed a large amount of noise compared
to the pain responses coming from them, hence it was decided to only use the
second region, i.e., the nasal and cheek region, as a singular region of interest.

3.4 Spatiotemporal Features

Having detected the facial region of interest, we need to extract the features by
which we detect the presence or absence of the pain and estimate its intensity.
For this purpose, following [8,?] we use spatiotemporal energy released by the
pixels. These are extracted by steerable filters. A steerable filter is an orientation-
selective convolution kernel, which can be expressed by a linear combination of
a set of rotated versions of itself. Such an oriented filter can be synthesized at
any given angle, which is called steering. The steerable and separable filters are
separated into basis filter banks, splitting them up into several sub-filters of lower
complexity (i.e. separable). Once they are split up, the filters are multiplied by
a set of gain maps, which adaptively control the orientation of the filters (i.e.
steerable).

These filters have been proposed for extraction of spatiotemporal data in [5]
in which the second derivative Gaussian filter G2 and the Hilbert transform H2
of the second derivative Gaussian are used. It is applied to a sequence of 2D
images, utilizing the spatial domain xandy as well as the temporal domain t. The
formulas for a two dimensional Gaussian G(x, y) and its second derivative with
regard to x is as:

G(x, y) = e−(x2+y2)G2(x, y) = ∂2G

∂x2 = (4x2 − 2)e−(x2+y2) (2)
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The Hilbert transform of the second derivative Gaussian is defined as:

H2(x, y) = (−2.254x + x3)e−(x2+y2) (3)

The second derivative Gaussian and Hilbert transform functions are then
separated into basis functions, splitting the complexity of the functions up into
fewer dimensions. For the second derivative Gaussian function six basis functions
are needed for its separable set, as it has a 2nd order polynomial. The Hilbert
transform requires 10 basis functions, as its polynomial is of 3rd order. The
amount of basis functions required in the basis set is M ≥ (N+1)(N+2)

2 where N
is the order of the polynomial.

Next step is then to filter the image sequence I(x, y, t) by G2 and H2 at the
orientations (α, β, γ)i, which are found using the spherical coordinate orientation
(θ, ϕ = π

2 , ρ = 1):

α = cos(θ)sin(ϕ), β = sin(θ)sin(ϕ), γ = cos(ϕ) (4)

In this work θ takes the value of the four main directions θ = [0, 90, 180, 270].
Filtering the image sequences at these orientations with the G2 and H2 filters
provides a local energy measure as:

E(x, y, t, θ) = [G2(θ) ∗ I(x, y, t)]2 + [H2(θ) ∗ I(x, y, t)]2 (5)

which is normalized by the sum of the consort response, by:

Ê(x, y, t, θ) = E(x, y, t, θ)∑
j E(x, y, t, θj) + ϵ

(6)

where θj is all directions and ϵ is a bias constant to prevent numerical
instability at small energy levels. Finally, the measured energy is filtered from
too small values to remove likely noise, by:

Ė(x, y, t, θ) = Ê(x, y, t, θ) · z(x, y, t, θ) (7)

where Zθ is a constant to threshold low energy values and equals to one if
Ê(x, y, t, θ) > Zθ, otherwise it is zero.

The measured energy is the spatiotemporal features of the images, which can
be used to determine the pain index. The calculated pixel-based energy is then
collected in oriented histograms over the region of interest, using:

H(t, θj) =
∑

E(x, y, t, θj) (8)

where H is the histogram of each respective direction θj which accumulates
all the released energy.

Since muscles always move back to their resting position after exertion, the
complimentary orientation histograms are combined. This means that histograms
represent vertical or horizontal energy instead of a direction, by merging the
histograms from complementary orientations together. We have observed that
the the vertical motion is more active during pain expression while the horizontal
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motion of muscles were fairly docile. This indicates that horizontal motion is weak
at determining pain, thus this work will only utilizes the histogram representing
vertical motions.

3.5 Pain Intensity Estimation

Since in this work we only utilize one facial region (compared to [8] which uses
all the three facial regions), and since we consider only vertical muscle (compared
to [8] which considers both vertical and horizontal motion), the pain index is
calculated as:

PI =
n∑

t=1
UDt (9)

where n is the number of frames and UDt is the histogram of the vertical
muscle motion. Several post-processing steps are then used on the pain index,
this includes smoothing it using a moving average filter and normalizing it to the
ground truth. Furthermore, the estimated pain index using Eq.9 often has issues
with negative values before and after a pain episode, resulting in lower values
overall in the pain episode as it often starts from a negative value. In order to
compensate for this discrepancy, we simply "lift" the pain episode by the most
negative number before the pain episode, ensuring that it starts at 0 when the
pain index starts ascending.

4 Experimental Results

In this section we first give the details of the employed database, then, we show
why keeping only region 2 of Figure 3 is enough for detecting the pain. Finally, we
represent the obtained results and compare them against state-of-the-art similar
systems.

4.1 The Employed Database

The proposed system, which has been implemented in MATLAB 2014b, has
been tested on the UNBC-MacMaster shoulder pain database [12]. This public
benchmark database consists of 25 different subjects, with varying gender and
age, having shoulder pain performing both active and passive movements while
being filmed. It consists of in total 200 video sequences, each with ground truth
pain intensity values and positions of facial landmarks for each frame of the video
sequences. From the 200 video sequences 79 consisted of sequences containing
pain according to the ground truth. Therefore, only these 79 pain sequences
were used when testing the system. The ground truth pain intensity values were
calculated using the Facial Action Coding System (FACS) metric, which considers
the severity of movement of key facial action units, from which a pain intensity
is calculated on a scale of 0-16.
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4.2 Why Only Region 2?

When looking at the calculated spatiotemporal energy released from the different
regions, it could be seen that region 2 is by far the most dominant and stable
region when it comes to pain detection, and that the other two regions often
contributed a large amount of noise compared to the pain responses coming from
them. Figure 4 shows an example where the first and third regions contained
large amounts of noise along with the relevant frames, while the second region
had less noise and mainly contained energy at the relevant frames indicated
by the red lines. First frame is an example of where a frame results in noise
due to non-pain related eye movement. Second frame is a "neutral" face and
last showcased frame displays the subject’s facial expression during pain. The
drawback of only using region 2 is that people are vastly different, which also
meant that the pain expression vary throughout the subjects. While some subjects
mainly used cheeks/nasal area others expressed their pain by tightly closing their
eyes or widely opening their mouth. This work chose to focus more on being
autonomous, thus not requiring manual interaction to determine which region
should be used which meant only the most stable region of interest is used, while
this has been done manually in [8]. Hence, it was decided to only use the second
region, i.e., the nasal and chin region, as a singular region of interest.

Figure 4. The results of the proposed system from the three different facial regions

(top) against the ground truth (bottom) for a pain sequence. The x and y axises of the

plots show the time and the pain index, respectively.

4.3 Results

Figure 5 shows the pain indexes obtained by the proposed system against the
ground truth provided in the database for a simple (right) and a challenging (left)
pain sequence. It can be seen from these figures that there are generally good
agreement between the results of the proposed system and the ground truth.

The results of the proposed system are compared against two state-of-the-art
pain detection systems of [7] and [8]. Following these two works, the obtained
pain index of section 3.5, is classified into three different categories of no pain
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Figure 5. The results of the proposed system against the ground truth for a simple

(right) and a challenging (left) pain sequence.

(if the pain index is zero), weak pain (if the pain index is either 1 or 2), severe
pain (if the pain index is larger than or equal three). The results using the
UNBC-McMaster database is shown in Table 1. It can be seen from this table,
that our system is not as good as [8] (on average about 6% lower) in detecting
the weak and severe pain, but it is much better this system in detecting no-pain
cases (about 15% better on average).

System No pain [%] Weak pain [%] Severe Pain [%]

The proposed system 91.70 55.75 63.4

[7] 65 36 70

[8] 77 62 70

Table 1. The results of the proposed system against two systems of [7] and [8] using

the UNBC-McMaster database.

5 Conclusion

This paper proposed a spatiotemporal approach for detecting pain from facial
images using steerable filters. To discard parts of the face which contribute
negatively to the pain estimation process, we divided the face into three regions
using super-pixels. Then, only of the region that contributes properly to the pain
estimation has been kept and used. The experimental results on public bench-
mark database of UNBC-McMaster show that the proposed system outperforms
state-of-the-art similar systems in detecting no-pain scenarios, while it produces
comparable results in detecting weak and severe pains.
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