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Abstract. A method is proposed that extracts a structural representa-
tion of percussive audio in an unsupervised manner. It consists of two
parts: 1) The input signal is segmented into blocks of approximately even
duration, aligned to a metrical grid, using onset and timbre feature ex-
traction, agglomerative single-linkage clustering, metrical regularity cal-
culation and beat detection. 2) The approx. equal length blocks are clus-
tered into k clusters and the resulting cluster sequence is modelled by
transition probabilities between clusters. The Hierarchical Dirichlet Pro-
cess Hidden Markov Model is employed to jointly estimate the optimal
number of sound clusters, to cluster the blocks, and to estimate the tran-
sition probabilities between clusters. The result is a segmentation of the
input into a sequence of symbols (typically corresponding to hits of hi-
hat, snare, bass, cymbal, etc.) that can be evaluated using the Adjusted
Random Index (ARI). As a proof-of-concept, the system segmentation
has been tested using two simple Disco-style drum loops, yielding a an
ARI of 56% for the best stable HDP-HMM parameter setting.

Keywords: unsupervised learning, Hierarchical Dirichlet Process, Hid-
den Markov Model, clustering, musical structure.

1 Introduction

Unsupervised learning of music representation may provide a new paradigm for
music analysis, generative music, music information retrieval, and intelligent mu-
sical human-computer interaction. Based on two cognitively plausible principles
(unsupervised and statistical learning) such an approach may spare excessive
musical annotation e↵orts, with - at the same time- a high degree of flexibility
to learn representations for a multitude of musical styles.

Previous work on music analysis based on Markov models have been pre-
sented by Conklin & Witten [1], Pachet [12], and Hazan et al. [8]. In this paper
the preprocessing by Marchini and Purwins [10] and the use of the Hierarchical
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Dirichlet Process Hidden Markov Model (HDP-HMM) in [11] is combined. Cf.
[2] for details. The Authors would like to thank Marco Marchini and Emily B.
Fox for providing Matlab toolboxes used here and for useful suggestions and
comments.

2 Analysis Chain: Pre-segmentation and HDP-HMM

The first step of the proposed method consists in pre-segmenting the audio signal
into a sequence of blocks, in such a way that each bar contains the same number
(e.g. 8) of blocks of approximately the same duration each. This way we ensure
that blocks on a particular metrical position reoccur after a fixed number of
blocks. This representation helps the subsequent structural analysis (by HDP-
HMM) to account for the metrical structure of the input signal.

Following [10], the pre-segmentation consists of the following stages: 1) the
audio input signal is segmented into blocks at onset positions, 2) from the salient
part (the first 200 ms) of each event, the mean of the MFCCs weighted by the
RMS energy of each frame (512 FFT size, 256 window size) is calculated. 3)
The resulting 13 mean MFCCs are clustered using single linkage clustering. 4)
The clustering threshold yielding the number of event clusters is the one with
highest regularity, where the regularity is the strength of the first side peak of the
autocorrelation of the inter onset histogram ([10] p. 210). 5) based on the most
regular symbol subsequence (skeleton subsequence) the tempo is determined via
a score voting criterion [3] ([10] p. 210-2). 6) The detected tempo pulse is aligned
to the skeleton subsequence, by finding the phase matching the most onsets ([10]
p. 212). 7) Dual subdivision between consecutive pulses are iteratively aligned
to remaining onsets in the input. If no onset is found within a tolerance window
around a pulse the prior symbol will be repeated ([10] p. 212-3).

Starting from the pre-segmented sequence of onsets with roughly equally long
inter-onset times, we train a time series model that on one hand estimates the
number of distinct labels and, on the other hand, estimates the transition prob-
abilities between labels. An HMM is defined as a fixed set of states (in our case
percussion sound clusters), initial and observation probabilities to observe e.g.
a particular set of MFCCs given a particular sound (e.g. hi-hat), and transition
probabilities (e.g. from hi-hat to snare). However, in the HMM we assume a fixed
number of hidden states (i.e. percussive sounds). The HDP-HMM [14, 6] is an
extension of the HMM in which the number of di↵erent states does not need to
be known beforehand and is estimated as well. The Dirichlet Process (DP) is a
model of clustering with an unbound and a priori unknown number of clusters
[5], where a large parameter ↵ favours a higher number of clusters and large
� favours a greater variability of segmentation results. We use the HDP-HMM
Matlab implementation by Fox [4].

3 Experiment

Audio Drum Loops We performed a preliminary evaluation of the unsupervised
segmentation of our model based on two audio drum loop files from the ENST



drum data set [7]. Both audio excerpts follow a simple duple meter and follow
a regular rhythmic structure, composed of a repetition of bass drum (bd) and
snare drum (sd) on strong metrical positions, alternated with open / closed hi-
hats (ohh / chh) on weak metrical positions. Both audio files are provided with
annotations, i.e. pairs of onset times/percussion sound labels (bd, sd, ohh, chh).
We gather annotations occurring within a maximal time tolerance to joint labels
(e.g.bd+chh+sd, bd+ohh) used as the ground truth for evaluation.

Adjusted Rand index Whereas either accuracy nor f-measure are valid methods
to evaluate classification outcomes, an evaluation of clustering needs to account
for the problem of assigning annotation labels to clusters found by the clustering
and for situations such as when two annotated labels are contained in one single
cluster. The Rand index [13] is the quotient of item pairs clustered consistently
w.r.t. the annotations divided by the number of all item pairs. The adjusted Rand
index (ARI) [9] normalizes the Rand index R with respect to the expected Rand
index E(R) of a random clustering/annotation configuration and the maximal

possible rand index max(R): ARI = R�E(R)
max(R)�E(R) with ARI  1 [15].

Evaluation Procedure We use Gibbs sampling to estimate the structural segmen-
tation. For each parameter setting, we perform 10 trials each of 1200 iterations
of the HDP-HMM inference sampler. Each iteration results in a state sequence
(structural segmentation). Of the 1200 iterations we discard the first 200 itera-
tions (burnout stage). From the remaining 1000 state sequences, we select the
most frequent state sequence. The ARI of this latter sequence and the ground
truth annotation is then calculated. Then the ARI for the 10 runs for a partic-
ular parameter setting is averaged providing this particular configuration of the
HDP-HMM with a performance value.

4 Results

We will compare the performance of the system with respect to the parameters
↵ and � of the HDP-HMM and with respect to an additional processing step of
dimension reduction using Principle Component Analysis (PCA). We evaluate
the performance (via ARI) when representing each segment either by the first two
MFCCs or by the scores on the two first principal components after applying
PCA to the first 13 MFCCs. We observed that a high � yield more variable
segmentation results for di↵erent runs. Figure 1 displays ARI results depending
on the parameter value pairs (↵, �)=(0.1,1.0),(1.5,1.5),(3.0,3.0),(10.0,1.0) and
MFCCs with/without PCA. Although ↵ = � = 1.5 yields the best average
ARI=0.58, when using PCA the standard deviation is high (0.16), whereas the
results for ↵ = � = 3.0 are slightly lower (ARI=0.56), the ARI is the same
for MFCC and for PCA with 0 standard deviation, yielding more stable results
across di↵erent runs and configurations (with/without PCA).



MFCC PCA
↵ � mean(std) mean(std)

0.1 1.0 0.04(0.08) 0.02 (0.05)

1.5 1.5 0.55(0.14) 0.58 (0.16)

3.0 3.0 0.56(0.00) 0.56 (0.00)

10.0 1.0 0.31(0.08) 0.34 (0.06)

Fig. 1: Average ARI results using
di↵erent initial parameters ↵ and
� for the HDP-HMM inference al-
gorithm, with and without PCA
following MFCC. Higher values of
ARI represent more accurate clus-
terings.

Example: Simple Disco Drum Loop The pre-
segmentation process results in 33 almost
equal length blocks, 8 for each bar consisting
of twice the sequence bass, hi-hat, snare, hi-
hat. In the experiment, we observe an increase
in number of clusters when increasing ↵ and �.
In Fig. 2, for events no. 26, 28, and 33, cluster-
ing and annotation do not match. The cluster
indices, predicted by the HDP-HMM for those
events are a continuation of the previous bass,
hi-hat, snare, hi-hat pattern. It appears that
the high learned transition probabilities be-
tween states overrun the low probability of
observing such a change. In that sense, the
HPD-HMM corrects artifacts from the previ-
ous pre-segmentation process. For parameter
settings ↵ = � = 3, the HDP-HMM yields 4
clusters with a maximum ARI= 65%, where

the hi-hat cluster from the ↵ = 1, � = 0.1 setting splits into two clusters, cor-
responding to the two alternating metrical positions 1+, 3+, vs 2+, 4+ of the
hi-hat occurrences.

5 Conclusion

In this paper, we gave a proof-of-concept of a method that extracts a struc-
tural representation of percussive audio in an unsupervised manner. The audio
is represented with reference to a metrical grid. The number of sound classes is
identified and musical style is modelled via transition probabilites between sound

Fig. 2: Most frequently estimated block pattern (left, top) when using the 2 principle
components and HDP-HMM parameters ↵ = 1, � = 1. The event annotations are
shown bottom, left. Di↵erent colors indicate di↵erent clusters (top) and annotations
(bottom). The scatter plot on the right displays the events in the space spanned by
the first two principal components of the MFCCs, where the di↵erently colored shapes
indicate di↵erent estimated clusters. Also, the centers of the 6 event groups each with
a particular annotated joint label (ohh, bd+chh, bd+chh+sd, etc.) are indicated.



classes, using the HDP-HMM. We also demonstrated how a change in the pa-
rameterization of our model is able to generate reasonably scaled representations
(e.g. gathering or segregating open /closed hi-hats). Our model currently does
not work for rhythmically complex sequences or very inaccurate onset detection
and it assumes an approximately constant tempo. In the future, testing on a
larger database is neeed, metrical alignment should align to micro tempo varia-
tions (e.g. ritardando) and parameters (↵, �) should be learned during training.
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