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 

Abstract— In this paper, an economic dispatch problem for 

total operation cost minimization in DC microgrids is formulated. 

An operating cost is associated with each generator in the 

microgrid, including the utility grid, combining the cost-efficiency 

of the system with demand response requirements of the utility. 

The power flow model is included in the optimization problem, 

thus the transmission losses can be considered for generation 

dispatch. By considering the primary (local) control of the 

grid-forming converters of a microgrid, optimal parameters can 

be directly applied to this control level, thus achieving higher 

control accuracy and faster response. The optimization problem is 

solved in a heuristic method. In order to test the proposed 

algorithm, a six-bus droop-controlled DC microgrid is used in the 

case studies. Simulation results show that under variable 

renewable energy generation, load consumption and electricity 

prices, the proposed method can successfully reduce the operating 

cost by dispatching economically the resources in the microgrid.  

Index Terms— DC microgrids, demand response, economics, 

optimal power flow, genetic algorithm 

NOMENCLATURE 

Microgrid Centralized Controller 

 Distributed Generation unit 

ESS Energy Storage System 

Operating cost of the power from utility 

Operating cost of the storage system 

Operating cost of the fuel cell 

Cost of the transmission power losses 

Total operating cost of the microgrid 

Real-time utility electricity price 

Price of the electricity sold to the utility 
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Power exchanged with the utility 

Power exchanged by the storage system 

Power from renewable energy sources 

Generating power by the i-th unit 

Consumed power by the i-th unit 

Transmission power losses 

PGi(DC) Power generated by the i-th unit 

Pi(DC) Injection power by the i-th unit 

Number of optimization cycles in an hour 

Efficiency during charging mode 

, Linear coefficients of charge mode 

Efficiency during discharging mode 

, Linear coefficients of discharge mode 

, , Coefficients of the fuel cell operating cost 

IGi(DC) DC current to DC source 

Ii(DC) DC injection current in bus i 

Number of dispatchable DG buses in DC microgrid 

Number of P buses in DC microgrid 

Virtual resistance in DC microgrid 

Line resistance for line ij 

Vi(DC) Voltage magnitude in bus i 

VGi(DC) Output voltage to DC source 

VG0i(DC) Nominal output voltage to DC source 

Yij(DC) Admittance between the bus i and bus j 

I. INTRODUCTION 

NOWADAYS, with awakened increasing awareness of the 

environmental problems, Distributed Generators (DG) based 

on renewable energy sources are gaining more and more 

popularity. With anticipated high penetration of DGs, the 

traditional power system architecture consisting of large 

generation plants, transmission and distribution networks will 

be replaced by several microgrids in an intergrid scenario 

[1]-[3]. In this revolution, power electronic technology plays a 

fundamental role to match the different DGs output 

characteristics according to utility and customers’ requirements. 

This issue becomes more salient when more and more modern 

loads, such as LEDs and power electronics devices, are 

installed in the building sector characterized by commercial 
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centres, data centres, residential communities and other similar 

facilities. To enhance system efficiency, considering the 

increasing energy demand to be supplied to more sophisticated 

appliances, DC distribution systems are proposed to 

interconnect DGs with modern loads, most of which are 

originally in DC. Previous research activities point out that 

using a common DC bus to supply different sources provides a 

simple structure with high efficiency, control and more reliable 

protections [4]-[6].  

The DC microgrid, which will represent the fundamental 

element of the future intergrid, is expected to supply the loads 

at two DC voltage levels: a high-voltage bus and a low-voltage 

bus [7]-[10]. Low-voltage level operates at 48 V to meet the 

requirements of the majority of low voltage appliances, e.g. 

standard Telecom Communication (TLC) applications, 

portable computers, low power consumer electronics and 

light-emitting diode (LED) lighting. On the other hand, high 

power loads in commercial or residential buildings are supplied 

by a high-voltage bus operating between 360 V and 400 V DC, 

in order to reduce power losses. The rated voltage of 380 V DC 

is set to supply a huge amount of energy and comply with the 

voltage level in data centers [11]. This voltage level can be 

taken as the distribution voltage level in an intergrid based on 

DC microgrids. Fig. 1 shows a schematic of a DC grid operated 

at 380 V DC. The main components are represented by DGs 

based on renewable sources like solar and wind, battery Energy 

Storage Systems (ESS) and fuel cells. All these devices require 

a power converter to exchange energy within the microgrid. 

The necessary interfaced converters to connect different 

sources and loads are listed in Table I. Besides the electrical 

connections, a hierarchical communication control with 

low-speed data exchange is needed. By gathering the necessary 

information, like real-time electricity prices and load profiles, 

the energy manager can optimize the renewable energy 

utilization and increase system efficiency by means of 

economic dispatch.  

II. SYSTEM OPERATION COST COMPOSITION 

A typical DC microgrid consists of a point of common 

coupling connected to the utility, and various DGs, such as 

battery ESS, fuel cells, wind power and PV systems. By 

neglecting the maintenance cost of these components, the 

correspondent operating costs can be identified as follows. 

A. Utility Power Cost 

By considering the utility grid as a generation unit, its 

operating cost can be assessed according to the market price. 

With the development of “smart grid ready” technologies, 

including smart meters and technologies for bidirectional 

communications, customers can have access to real-time 

electricity prices and be involved more proactively with the 

power supplier in order to minimize the electricity cost [23]. 

Real-time pricing is one of the new forms of agreement 

between the customers and the supplier, which allows real-time 

demand response [24]. In this way, the operating cost of the 

power supplied by the utility in a corresponding control period 

( utilityC ) can be modelled as: 
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where buy  is the real-time utility electricity price, and 
sell  is 

the price of electricity sold by the microgrid to the utility. Since 

the price here considered is hourly based, the optimization 

interval must be shorter than one hour, and thus the specific 

cost in one optimization interval is calculated by dividing for 

T , where T  is the number of optimization cycles in an 

hour. 

B. Energy Storage Cost 

In this work, the operating cost of the ESS is modelled 

 
Fig. 1.  Schematic of a DC microgrid operating at 380 V DC 

TABLE I 

INTERFACED RENEWABLE ENERGY SOURCES TYPOLOGIES 

Table 1 Interfaced renewable energy sources typologies 

Conversion Classification Converter Type 

DC bus to low voltage DC load DC-DC buck converter 

Wind power to DC bus AC-DC rectifier 

Fuel cell to DC bus DC-DC boost converter 

DC bus to/from ESS DC-DC buck-boost converter 

PV cell to DC bus DC-DC boost converter 
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according to system efficiency. The major factors that influence 

its efficiency are the charging rate and the State of Charge 

(SOC), which can be modelled with the following linear 

relationship [16]: 

 
ch ch ch ESSa b P     (2) 

where ch  is the charging efficiency, cha  and chb  are the linear 

coefficients of charging mode, and ESSP  is the measured power 

flow from the DC microgrid to the ESS at its output terminals. 

This approximation considers only the charging rate, which is 

reasonable when dispatching is performed in a 

quasi-instantaneous way, since it has a large impact on the 

efficiency. On the other hand, during discharging mode, the 

efficiency in (2) can be rewritten as: 

 
dis dis dis ESSa b P     (3) 

where dis  is the discharging efficiency, disa  and disb  are the 

linear coefficients of discharging mode. The operating cost can 

now be calculated depending on the charging (PESS>0) or 

discharging (PESS<0) mode as follows:   
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  (4) 

where ESSC  is the operating cost of the ESS.  

C. Fuel cell costs 

The fuel consumed by the fuel cell generators can be 

modelled according to a quadratic relationship of the output 

power [25]. Hence, the operating cost of this device can be 

modelled as follows: 

 
2

FC FC FC FC FC
FC

a P b P c
C

T

 



  (5) 

where FCa , FCb , FCc  are all constant coefficients. 

D. Renewable Energy Cost 

The fuel cost of renewable energy is free. To maximize the 

renewable energy generation, the operating cost of them in this 

study is set to zero, due to its negligible value compared to the 

fuel cost associated to traditional generators. Notice here that 

the cost occurred by maintenance is not considered in the 

optimization.  

E. Transmission Power Losses Cost 

The transmission power losses do not belong to any 

generation unit. In fact, they are the result of how power is 

dispatched, which is actually incorporated explicitly in the 

utility cost, since an accurate power flow model is added as a 

constraint. To underline this issue, the following equation can 

be added to the system cost model: 

 
buy loss

loss

P
C

T





  (6) 

being lossP  the transmission power losses. The exact 

transmission power losses can be calculated by running the 

power flow algorithm, which is further explained in the next 

section. 

III. POWER FLOW FOR DC MICROGRID  

Power flow is an important tool not only for optimal 

planning but also to assure optimal operation [26]. In DC 

microgrid power flow modelling, two types of buses can be 

defined. All the loads and non-dispatchable DG units can be 

labelled as P buses. On the other hand, dispatchable DG units 

can be represented by dispatchable DG buses, which are 

assumed to work in droop control mode during normal 

operation. 

Compared to AC microgrids, this droop control algorithm is 

not directly based on the generated power, but it is realized by 

feeding back the output current through a virtual resistance [1], 

[27], [28]. In AC microgrids, the virtual impedance is adopted 

to change the output impedance of the converter to cancel out 

the effect of active and reactive power coupling, as well as 

providing proper current sharing between power converters 

modules in case of line unbalance. On the other hand, in DC 

microgrids, virtual impedance is employed directly for power 

sharing, which is responsible for droop control.  

In case of dispatchable DG buses, the concept of droop 

control using virtual resistance can be simplified as shown in 

Fig. 2. This regulation is expressed by [29], [30]: 

 (DC) (DC) 0 (DC) (DC) (DC)i Gi i vi GiV V V R I     (7) 

where (DC)GiV is the output voltage of a DC source, which is 

also the bus voltage in bus i, 0 (DC)iV is the nominal voltage, 

(DC)GiI is the output current, and (DC)viR is the virtual 

resistance in the dispatchable DG unit i. (DC)GiI can be written 

as: 

 
(DC)

(DC)

(DC)

Gi

Gi

i

P
I

V
   (8) 

where (DC)GiP is the power generated by unit i. 

The network of DC microgrids can be considered as pure 

resistive in the steady-state model. According to Kirchhoff's 

current law, the network equation for both types of buses can 

thus be written as follows: 

 (DC) (DC) (DC) (DC)

1

( )
n

i ij i j

j
j i

I Y V V



    (9) 

where (DC)iI is the DC injection current in bus i, (DC)ijY  is the 

Controllable DG unit i in AC microgrid

Virtual resistance 

DC Bus i DC Bus i+1
vR lineR

line
I

+-

0 (DC)iV (DC)iV 1(DC)iV 

 
Fig. 2 Virtual resistance control concept in DC microgrids  
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admittance between bus i and bus j, and (DC)iV is the voltage 

magnitude in bus i. In a unipolar DC microgrid, the injection 

power has the following relationship with the injection current: 

 (DC) (DC) (DC)i i iP V I   (10) 

Thus, (10) can also be written as: 

 
(DC) (DC) (DC) (DC) (DC)

1

(V )
n

i i ij i j

j
j i

P V Y V



    (11) 

For similarity, the non-dispatchable DG units can be 

interpreted as negative loads. Considering the real power 

balance of the system, the whole mathematical model can be 

formulated as follows: 

 
(DC)

0 (DC) (DC) (DC)

(DC)

0
Gi

i vi i

i

P
V R V

V
     (12) 

 (DC) (DC) (DC) 0Gi Di iP P P     (13) 

The number of total mismatch functions is (DC)N ,as 

expressed in: 

 (DC) (DC) (DC)2 g pN N N     (14) 

where (DC)gN is the number of dispatchable DG buses, and 

(DC)pN  is the number of P buses. The number of unknown 

variables should be equal to the number of mismatch functions 

in the model; in this way the power flow has a unique solution. 

The unknown variables include the voltage at each bus and the 

power generated from each dispatchable DG unit. Therefore, 

the system can be solved by trust-region dogleg algorithms, like 

for AC microgrids [22][31].  

How different control parameters affect the whole system 

can be obtained by solving the equations of the power flow 

model. Finally, power transmission losses can be calculated by 

running the power flow. 

IV. SYSTEM OPERATION COST COMPOSITION 

A. Objective function  

The objective of this study is to minimize the total operating 

cost in one optimization cycle in the context of real-time 

pricing. Accordingly, renewable energy resources, ESS and 

backup generation systems are coordinated in a highly efficient 

way, while still achieving demand response. Considering a 

microgrid in which each type of generation system has only one 

unit, the total cost can be calculated through (1) − (6) as: 

 total utility ESS FC lossC C C C C      (15) 

In this way the economic benefits of the microgrid owner can 

be maximized. This objective can be written as: 

 (x )
Minimize

total iC   (16) 

where x i  indicates the optimization variables which are also 

the control variables of dispatchable units. Although nominal 

voltage 0 (DC)iV can also be controlled to achieve power 

regulation. Here the virtual impedance (DC)viR  of the grid 

forming unit is taken as the optimization variable, leading to the 

following problem formulation: 

 (u, )
Minimize

total viC R   (17) 

where u are, in general, the unknown state variables of the 

system, which can be calculated in the power flow analysis 

discussed in last section.  

B. Constraints  

The constraints of the optimization problem include the 

system constraints and those from each generation system. The 

first system constraint is the overall power flow balance, which 

can be written as: 

 0renewable utility FC ESS load lossP P P P P P        (18) 

This equation is satisfied by the convergence of the power 

flow algorithm using the method provided in [22]. The second 

system constraint considers the life cycle of the ESS. This 

component is not allowed to operate in discharging mode while 

energy is flowing from microgrid into the utility grid. The main 

reason is because it reduces the ESS efficiency if the energy 

flows through the batteries twice. Moreover, according to 

present normative in different countries, it is not allowed to 

discharge energy from batteries into the grid.  

Additional constraints including droop control equation (12) 

and power balance equation (13), with the boundaries for 
viR  

and the DC voltage at each node (DC)iV  are: 

 ,max0 vi viR R    (19) 

 (DC),min (DC) (DC),maxV V Vi i i    (20) 

For each dispatchable unit, the power delivered should be 

maintained within their respective capacity limits, which can be 

expressed as:  

 ,min ,maxutility utility utilityP P P    (21) 

 ,min ,maxESS ESS ESSP P P    (22) 

 ,max0 FC FCP P    (23) 

All the inequality constraints are included in the model by 

adding a large value to the objective function as penalty 

whenever a bound is violated.  

C. Heuristic optimization based on GA 

Genetic Algorithm is chosen for optimization in this work. 

Compared to other similar optimization algorithms, some main 

advantages of GA can be identified [32][33]: i) the computation 

of the derivative of the objective function is not required, i.e. 

the opposite compared to optimization algorithms based on 

gradient method; ii) the risk to be trapped in local optimum is 

reduced; iii) a large number of variables can be processed while 

still providing a list of optimum solutions. 

The basic idea of the algorithm is that better individuals of a 

population get higher chances to survive, which probability is 

proportional to a fitness function, strictly related to the 

objective function of the problem. Two main search operators 

known as crossover and mutation allow the algorithm to 

privilege exploration and exploitation, respectively. Crossover 

selects randomly a point on two binary strings (parents), 

splitting them at this crossover point. Children are then created 

by exchanging tails. On the other hand, mutation alters gene 
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independently according to a pre-defined probability. In Fig.3 a 

flow chart representation of the main steps involved in the 

optimization algorithm is reported. 

V.  CASE STUDY 

A. Input Data 

The proposed methodology is applied to minimize the 

operating cost of a 380 V six-bus DC microgrid as shown in 

Fig. 4. The test case consists of one P bus with renewable 

energy sources based on wind turbines and PV panels (Bus 1), 

three dispatchable DG buses interfaced with ESS (Bus 2), 

utility (Bus 3) and fuel cell (Bus 6), and two other P buses 

feeding the load (Bus 4 and 5). In this work the distributed 

generators and its interfaced converter are considered as a 

single component. Instead of using a traditional radial 

topology, the network adopts a meshed configuration to 

increase system reliability. Network data are given as listed in 

Table II. The capacity constraints of the DGs are reported in 

Table III.  

To test the effectiveness of the algorithm in the context of 

time changing price, simulation tests are repeatedly conducted 

in a 24-hour span. The real-time data are taken from the website 

of the regional transmission organization PMJ [34], and the 

renewable generation data are obtained from Open Energy 

Information (OpenEI) [35]. The generation profiles of the wind 

turbines and solar panels at bus 2 and the load profiles at bus 4 
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Fig. 3.  Flow chart of the problem 

 
Fig. 4  Single line diagram of an example DC microgrid 
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TABLE II 

LINES IMPEDANCE OF THE NETWORK 

Line 

No.  

From 

Bus 

To 

Bus  

R (pu) Length (m) 

1 1 2 0.0058 200 

2 1 4 0.0087 300 

3 2 4 0.004 140 

4 4 5 0.0058 200 

5 5 6 0.0029 100 

6 3 6 0.0043 150 

7 2 3 0.0049 170 

 

TABLE III 

CAPACITY LIMITS OF EACH GENERATION UNIT 

Generation Unit Utility Energy Storage Fuel Cell 

Capacity limits (KW) (-30,30) (-30,30) (0,30) 

 

 
Fig. 5.  Load and renewable generation profile  
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Fig. 6.  Real-time price profile 
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TABLE IV 

GENETIC ALGORITHM PARAMETERS 

Parameter  

Number of population 12 

Max number of generation 25 

Mutation rate 0.2 

Selection rate 0.5 

Initialized R1/R2/R3 0.01/0.3/0.3Ω 
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and 5 are shown in Appendix, and in Fig. 5 and Fig. 6. 

Parameters related to GA for optimization are listed in Table 4. 

These parameters are chosen as a trade-off between 

optimization accuracy and computational time effort. 

B. Results and discussion 

Firstly, to test the performance of GA algorithm, 

optimization for a single hour is conducted based on the input 

data from the 22th hour. Fig. 7 shows the convergence trace of 

the proposed GA for optimal power flow algorithm. It can be 

seen that, after 25 generations, the total cost starts to converge. 

The daily total operating cost using optimization is compared 

with the one without optimization, as shown in Fig. 8, in which 

the virtual impedance for utility, fuel cell, and energy storage is 

initially set at 0.1 Ω, 0.3 Ω and 0.3 Ω respectively. The 

comparison shows that by dispatching optimally the resources, 

the total operating cost is considerably reduced. The dispatch 

results of each hour in a day are shown in Fig. 9, where no 

violation of the power constraints is observed. Fig. 10 and Fig 

11 illustrate the voltage profile of each bus and current 

magnitude of each transmission line in these 24 scenarios, 

respectively. It can be seen that the voltage vacillation is within 

the allowable range and the current shows no violation either.  

VI.   CONCLUSIONS 

In order to improve the system efficiency of a 380 V DC 

microgrid network while participating in demand response, an 

optimal power flow problem is formulated. The cost function 

represents not only the operating cost within the microgrid 
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Fig. 8.  Total operation cost comparison. 
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Fig. 7.  Convergence trace of the optimization algorithm for the 22th hour 
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Fig. 9  Optimal generation dispatch results  
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Fig. 10.  Voltage profile of optimization results 
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Fig. 11.  Current profile of optimization results 
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incurred by the fuel and efficiency of the components and the 

power flows in the transmission line, but also the demand 

response requirements from the utility by considering real-time 

pricing. The proposed algorithm is implemented by means of a 

heuristic method based on GA. A six-bus DC microgrid is 

tested to verify the proposed algorithm in a 24-hour span. Test 

results show that GA can find the optimal control parameters to 

optimally manage the dispatchable resources. Finally, the 

proposed algorithm successfully reduces the operating cost 

compared to the case study in which the system is managed 

without optimization.  

APPENDIX 

Table 5 shows the renewable generation, load profile, and 

real-time price profile [34][35]. The residential load data is 

calibrated according to the real data from OpenEI, and the 

renewable generation data is combining both the solar and wind 

generation according to the data got also from OpenEI, and the 

price data are referred to the real data from PJM Market Price 

Information 
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