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Problem and Objective

Recover signal & from the observation y where

r — Ax — vy
For example:

y=Ax+n
« y = sign(Ax)
Assume that

= A is drawn from a known ensemble

= The dimensions of A are LARGE!

Obtain iterative estimation algorithms with

» Low computational complexity

« Good accuracy

Expectation Propagation (EP)
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p(s) = p(x)p(y|z) with s = (x, 2)
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are consistent in the first- and second-moment:
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The Essence of the Issue: "Cavity Variances"

The update of the so-called cavity variances require matrix inversions.

= The exact posterior pdf of s = (x, z) is given by

p(sly, A) o< p(s)d(z — Az)  with  p(s) = p(x)p(y|z).
« EP approximates the exact posterior pdf in the form of
1 vV, O
_1 T - _ [V«
q(8) x p(s)exp ( 55 Vs+p s) with 'V ( 0 Vz)
where {V;;} are called cavity variances.
= The equations of p = (p,, p,) can be expressed by
pX — A(Vznz B pz) _I_ VXnX Wlth (nxv 772) — <($7 Z)>q(w,z) — (nw Anx)
= The equations of cavity variances {V;;} are
1 A+ ATA,A)Y; Nii = [Adii
X Nii + Vi h A(AX + ATAZA)_lAT]jj N\;; = :Az]j]

where x = (., X, ) is the variance of ¢(x, 2).

- EP is accurate but has O(K*) computational complexity (per iteration) due to the update of cavity variances.

Self-Averaging Cavity Variances

Asymptotic freeness transforms the large-system challenges into opportunities.

» We use the concept of asymptotic freeness from random matrix theory to show that EP cavity variances are
self-averaging.

« Specifically, V., ~ oI and V, ~ v,I where

~a(l —vdx,)) 0 — _ Wi _ |
Vy = <XX> & z AXSA( >\Z<XZ>) th A, <Xa>

S 4 denotes the S-transform (in free probability) of the limiting spectrum of Gramian AAT.

a € {x,z}

Ua,

- This self-averaging property reduces the complexity of EP from O(K?) to O(K?).
- E.g. let {A;;} be iid with zero mean and variance 1/, then Sa(z) = 1/(1 + az) with a = dim(y)/dim(x).

Illustrations via 1-bit Compressed Sensing

Signal Model:  y =sign(Ax)  with @~ (1 —p)é(x)+ pN(x|0, 7I).

= Signals are typically sparse in the discrete cosine transform (DCT') domain.

« Hence, we can consider that the rows of A are pseudo-randomly drawn from the K x K DCT matrix.

« In this case, we have SA(Z) =1, 1e v, = <>i>

V.
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Figure 1: Empirical cumulative distribution function of the cav-
ity variances. The dimensions of A are K/3 x K, p = 0.1 and
7 = 1. Blue curves are for K = 1200 and red curves are for
K = 9600. The quantities v, and v, are obtained from the

stable solutions of self-averaging EP.
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Figure 2: Mean-square-error of EP and self-averaging EP
(SAEP) versus number of iterations: 7). (t) denotes the esti-
mate of & computed by an algorithm at iteration number ¢,
the size of A is 1200 x 1200, p = 0.1 and 7 = 1. The re-
ported figures are empirical averages over 100 and 1000 trials
for a € {1/3,1/2} and a = 2/3, respectively. C.l. denotes the

confidence interval in dB.



