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A Novel Approach to Speaker Weight Estimation Using a 
Fusion of the i-vector and NFA Frameworks

Amir Hossein Poorjam, Mohamad Hasan Bahari, and Hugo Van hamme 
 

 
 

Abstract. This paper proposes a novel approach for automatic 
speaker weight estimation from spontaneous telephone speech 
signals. In this method, each utterance is modeled using the i-
vector framework which is based on the factor analysis on 
Gaussian Mixture Model (GMM) mean supervectors, and the 
Non-negative Factor Analysis (NFA) framework which is 
based on a constrained factor analysis on GMM weight 
supervectors. Then, the available information in both Gaussian 
means and Gaussian weights is exploited through a feature-
level fusion of the i-vectors and the NFA vectors. Finally, a 
least-squares support vector regression is employed to 
estimate the weight of speakers from the given utterances.  

The proposed approach is evaluated on spontaneous 
telephone speech signals of National Institute of Standards and 
Technology 2008 and 2010 Speaker Recognition Evaluation 
corpora. To investigate the effectiveness of the proposed 
approach, this method is compared to the i-vector-based 
speaker weight estimation and an alternative fusion scheme, 
namely the score-level fusion. Experimental results over 2339 
utterances show that the correlation coefficients between the 
actual and the estimated weights of female and male speakers 
are 0.49 and 0.56, respectively, which indicate the 
effectiveness of the proposed method in speaker weight 
estimation. 

 

Keywords: I-vector, least-squares support vector regression, 
non-negative factor analysis, speaker weight estimation. 

1. Introduction 
1The voice of a speaker conveys information about 

speaker’s traits and states such as age, gender, body size 
(weight/height) and emotional state [1], [2]. Estimation of 
speaker’s weight (which is considered as a long term trait of a 
speaker and an important parameter in various applications) is 
an interesting and challenging task in forensic, medical and 
commercial applications. In forensic scenarios, body size 
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estimation of suspects from their voices can direct 
investigations to find cues in judicial cases. In service 
customization, automatic weight estimation may help users to 
receive services proportional to their physical conditions.  

The relation between the size of various components of the 
sound production system (such as vocal folds and vocal tract) 
and the body size of a speaker has motivated researchers in the 
field of speaker recognition to look for features of an acoustic 
signal that provide cues to the body size of speakers. For 
instance, authors in [3] found a relationship between formants 
and the length of the vocal tract, based on the source-filter 
theory. Thus, since the vocal tract is a part of speaker’s body, 
this feature can be used to estimate the weight of a speaker [4]. 

However, speaker weight estimation from the voice 
patterns is challenging. For instance, mean fundamental 
frequency (f0) of voice is reported as a feature which has a 
(negative) correlation with body size. That is, females and 
children have higher f0, while in males (who are taller and 
heavier), this value is lower [5]. However, when the relation of 
the fundamental frequency (f0) and weight was investigated 
within male and female speakers, no correlation was found 
between f0 and the weight of adult humans [6], [7]. The lowest 
fundamental frequency of voice (F0

min) is another feature which 
is determined by the mass and length of the vocal folds [6]. By 
investigating this feature, researchers have found no correlation 
between F0

min and weight in adult human speakers [6], [7]. 
Fitch has found formant dispersion (the averaged difference 
between adjacent pair of formant frequencies) a reliable feature 
which has a correlation with both vocal tract length and body 
size in macaques [8]. However, a weak relation between 
formant parameters and weight of human adults is reported in 
study conducted by Gonzalez [9]. This weak correlation may 
be due to the fact that the vocal folds in humans at puberty 
grow independent of the rest of the head and body. This issue 
is more evident in the males than the females [10], [11]. 
Gonzalez studied the correlation between formant frequencies 
and weight in human adults [9]. He calculated the formant 
parameters by means of a long-term average analysis of 
running speech signals uttered by 91 speakers. In this 
experiment, the Pearson correlation coefficients between 
formants and weights for male and female speakers were 
reported to be 0.33 and 0.34, respectively  [9]. In research 
conducted by Van Dommelen and Moxness [12], the ability to 
judge the weight of speakers from their speech samples was 
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investigated. They reported a significant correlation between 
estimated weight (judged by listeners) and actual weight of 
only male speakers. In addition, they performed a regression 
analysis involving several acoustic features such as f0, formant 
frequencies, energy below 1 kHz, and speech rate. The results 
showed that the speech rate was the only parameter which had 
a significant correlation with male speaker’s weight. They 
concluded that speech rate of male speakers is a reliable 
predictor for weight estimation. 

Modeling speech utterances with Gaussian mixture model 
(GMM) mean supervectors is demonstrated to be an effective 
approach to speaker recognition [13]. However, GMM mean 
supervectors are high dimensional vectors, and obtaining a 
reliable model is difficult when limited data are available. 
Recently, utterance modeling using the i-vector framework 
[14] has considerably increased the accuracy of the 
classification and regression problems in the field of speaker 
characterization [15], [16], speaker verification [14] and 
language recognition [17], [18]. The i-vector, which is based 
on the factor analysis on GMM mean supervectors, represents 
an utterance in a compact and a low-dimensional feature 
vector. In addition, various studies show that although GMM 
weights convey less information than GMM means, they 
provide complementary information to GMM means [19]–[23]. 
A Non-negative Factor Analysis (NFA) framework [21], which 
is based on a constrained factor analysis for GMM weights, has 
been recently introduced and yields a new low-dimensional 
utterance representation. In [24], we successfully applied a 
score-level fusion of the i-vector and the NFA frameworks to 
simultaneously estimate various characteristics of speakers 
from speech signals. We showed that utilizing information in 
both GMM means and GMM weights through a score-level 
fusion of the i-vector and the NFA frameworks is an effective 
approach to improve the estimation accuracy. However, the 
fusion at score level requires a large development data set to 
train the fusion model, which results in decreasing the number 
of available training data. 

In this study, a new speech-based method for automatic 
weight estimation is proposed in which instead of using raw 
acoustic features, each utterance is modeled using a fusion of 
the i-vector and the NFA frameworks at feature level. In this 
new utterance modeling approach, in addition to exploiting the 
available information in GMM means and GMM weights, the 
need for assigning a considerable amount of training data for 
development set is eliminated and speaker weight estimation is 
performed in one learning phase. To perform function 
approximation, a least-squares support vector regression 
(LSSVR) is utilized in this paper. For the comparison purpose, 
the proposed method is compared to the i-vector-based speaker 
weight estimation and speaker weight estimation using an 
alternative fusion scheme, namely the score-level fusion. The 
proposed approach is evaluated on spontaneous telephone 
speech signals of the NIST 2008 and 2010 SRE corpora. 
Experimental results confirm the effectiveness of the proposed 
approach in automatic speaker weight estimation.  

The rest of the paper is organized as follows. In Section 2 
the problem of automatic weight estimation is formulated and 
different baseline systems for speaker weight estimation are 

described. The proposed approach is elaborated in Section 3. 
Section 4 explains the experimental setup. The evaluation 
results are presented and discussed in Section 5. The paper 
ends with conclusions in Section 6. 

2. Automatic Weight Estimation from Speech Signals 

In this section, the problem of automatic weight estimation 
is formulated and different baseline approaches are described. 

A. Problem Formulation 

In the speaker weight estimation problem, we are given a 

set of training data N
iii yOD 1},{  , where Oi denotes the ith 

utterance and yi ∈  denotes the corresponding weight. 
The goal is to approximate a function g, such that for an 

utterance of an unseen speaker, Otst, the estimated weight, 
ŷ=g(Otst), approximates the actual weight as good as possible. 

B. Baseline Approaches 

For the comparison purpose, the proposed method is 
compared to three baseline approaches, namely the basic 
estimator, the i-vector-based speaker weight estimation [23] 
and speaker weight estimation using score-level fusion of the i-
vector and the NFA frameworks [24]. 

1) Basic Estimation System: 

The output of a basic estimator is the average weight of 
speakers in training data set. The basic estimation system 
provides us a chance level accuracy. 

2) The i-vector-based System: 

In the i-vector-based weight estimation system, each 
utterance is mapped onto a 400 dimensional vector using the i-
vector framework. Then, the extracted i-vectors along with 
their corresponding weight labels are used to train estimator. 
This method is considered as the baseline system in this paper.  

3) The Score-Level Fusion System: 

The fusion of the i-vector and the NFA frameworks is an 
effective approach to exploit the available information in both 
GMM means and GMM weights and consequently to enhance 
the estimation accuracy. In this method, each utterance is 
converted to an i-vector and an NFA vector. Then, the obtained 
vectors of the train set are employed to train the i-vector-based 
and the NFA-based models. In the next step, the i-vectors and 
the NFA vectors of development set are applied to the trained 
models. The outputs are then concatenated to form 2-
dimensional vectors and along with the corresponding weight 
labels are used to train the fusion model. This system, which is 
labeled as the score-level fusion system in this paper, is 
presented to investigate the effect of different fusion schemes 
in speaker weight estimation. 

3. System Description 

A. Utterance Modeling 

By fitting a GMM to acoustic features extracted from each 
speech signal, a variable-duration speech signal is converted 
into a fixed-dimensional vector which is suitable for regression 
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algorithms. The parameters of the obtained GMM characterize 
the corresponding utterance. Due to limited data, we are not 
able to accurately fit a separate GMM for a short utterance, 
especially in the case of GMMs with a high number of 
Gaussian components. Thus, for adapting a universal 
background model (UBM) to characteristics of utterances in 
training and testing databases, parametric utterance adaptation 
techniques are applied. In this paper, the i-vector and the NFA 
frameworks are applied to adapt UBM means and weights, 
respectively. 

1) Universal Background Model and Adaptation:  

Consider a UBM with the following likelihood function of 
data O={o1, . . . , ot , . . . , oT }. 

  



C

c

cctct pp
1

,|)|( Σoo  

  ccc Σ,,   Cc ,,1,   

where ot is the acoustic vector at time t, πc is the mixture 
weight for the cth mixture component, p(ot |μc ,Σc) is a Gaussian 
probability density function with mean μc and covariance 
matrix Σc, and C is the total number of Gaussian components 
in the mixture. The parameters of the UBM –γ– are estimated 
on a large amount of training data. 

2) The i-vector Framework:  

One effective method for speaker weight estimation 
involves adapting UBM means to the speech characteristics of 
the utterance. Then, the adapted GMM means are extracted and 
concatenated to form Gaussian mean supervectors. However, 
since Gaussian components of the UBM model are adapted 
independent of each other, some components are not updated 
in the case of limited training samples [25]. This problem can 
be alleviated by linking the Gaussian components together 
using the Joint Factor Analysis (JFA) framework [26]. 

In the JFA framework, each utterance is represented by a 
supervector M which is a speaker- and channel-dependent 
vector of dimension (C.F), where C is the total number of the 
mixture components in a feature space of dimension F. In the 
JFA framework, it is assumed that M can be decomposed into 
two supervectors: 

 csM   

where s = u + Vq + Dr is a speaker-dependent supervector and 
c = Up is a channel-dependent supervector. s and c are 
independent and possess normal distributions. u is the speaker- 
and channel-independent supervector, V defines a lower 
dimensional speaker subspace, U is a lower dimensional 
channel subspace, and D defines a speaker subspace. q and r 
are factors in speaker subspace, and p is a channel-dependent 
factor in channel subspace. The vectors p, q and r are random 
variables with standard normal distributions N (0, I) which are 
jointly estimated. 

In the JFA framework, the channel factor contains some 
information about speakers, which can be utilized in speaker 
identification. This fact resulted in proposing a new utterance 
modeling approach, referred to as the i-vector framework or the 

total variability modeling [27]. This method comprises both 
speaker variability and channel variability. Channel 
compensation procedures such as within-class covariance 
normalization can be further applied to compensate the residual 
channel effects in the speaker factor space [28].  

The i-vector framework assumes that each utterance 
possesses a speaker- and channel-dependent GMM supervector 
which its mean, M, can be decomposed as 

 TvuM   

where u is the mean supervector of the UBM, and T spans a 
low-dimensional subspace (400 dimensions in this work). In 
the i-vector framework, T and v are estimated using the 
Expectation-Maximization (EM) algorithm. In the E-step, T is 
supposed to be known, and v is updated. In the M-step, v is 
assumed to be known, and T is updated. The subspace vector v 
is treated as a hidden variable with the standard normal prior 
and the i-vector is its maximum-a-posteriori (MAP) point 
estimate which is calculated by maximization of the following 
auxiliary function over v. 

 
 


T

t

C

c

cctctc Np
1 1

c, )( ],[|log),( vΣvTov   

where N(v) denotes the standard normal distribution of v, Tc 
are the rows of the subspace matrix T, which correspond to the 
cth Gaussian mean, and θc,t is the occupation count for the cth 
mixture component and tth frame. The occupation count is 
calculated as follows: 


) ,|(

) ,|(

c1

c
,

Σo

Σo

 


C

c ctc

ctc
tc

p

p




  

In the E-step, the posterior distribution of v is Gaussian with 
the following mean vµ and covariance matrices vσ [29]: 



1

1












 

c

cccc TΣTIv   

   







 

c t

cttccc )(,
1 moΣTvv   

where I denotes an identity matrix of appropriate size, mc and 

c are adapted mean and covariance of the cth Gaussian, which 

are updated during each EM iteration starting from UBM 

parameters, and   represents the transpose operator. 
In the M-step, the subspace matrix T is estimated via 

maximization of the following auxiliary function over T. 

 
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
N

i

T

t

C

c

icicciticitc p
1 1 1

,,,,, ],[|log),(
~

ΣvToT   

An efficient procedure for training T and for MAP 
adaptation of the i-vectors can be found in [29]. In the total 
variability modeling approach, the i-vector is the low-
dimensional representation of an audio recording that can be 
used for classification and estimation purposes. 
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3) The Non-negative Factor Analysis (NFA) Framework:  

The NFA is a new framework for adaptation and 
decomposition of GMM weights based on a constrained factor 
analysis [21]. The basic assumption of this method is that for a 
given utterance, the adapted GMM weight supervector can be 
decomposed as follows: 

 w = π + Lr,  

where π is the UBM weight supervector (2048 dimensional 
vector in this study). L is a matrix of dimension C×ρ spanning 
a low-dimensional subspace (300 dimensions in this work). r is 
a low-dimensional subspace vector obtained through a 
constrained maximum likelihood estimation criterion. 

In this framework, the adapted weights are obtained by 
maximizing the following objective function over wc . 

  
 


T

t

C

c

cctctc pw
1 1

, ,|log),( Σor   

Substituting wc by (πc+Lcr) in the Eq. 10, and given an 
utterance O, a maximum likelihood estimation of r is obtained 
by solving the following constrained optimization problem: 

    )log()(max),(max Lrπr
rr

  O  

Subject to 








0

1)(

Lrπ

Lrπ1
 

where 1 is a row vector of dimension C with all elements equal 

to one, and  
t tCtO ]...[)( ,,1  .  

In this framework, neither the subspace matrix L nor the 
subspace vector r is constrained to be non-negative. However, 
unlike the i-vector framework, the applied factor analysis for 
estimating the subspace matrix L and the subspace vector r is 
constrained such that the adapted GMM weights are non-
negative and sum up to one. The procedure of calculating L 
and r involves a two-stage algorithm similar to EM and can be 
found in [21]. The subspace matrix L is estimated over a large 
training dataset. It is then used to extract a subspace vector r 
for each utterance in train and test datasets.  

This new low-dimensional utterance representation 
approach was successfully applied to speaker characterization 
[23], [24] and language/dialect recognition [21] tasks. 

4) Feature-Level Fusion of the i-vectors and NFA Vectors: 

Previous studies show that although GMM weight 
supervectors contain less information than GMM means, they 
provide complementary information to GMM means [22]. 
Feature-level fusion and score-level fusion are considered as 
effective approaches to exploit available information in both 
GMM means and weights [22], [24]. Score-level fusion, in 
which the outputs of different estimators are fused, requires a 
development data set to train the fusion model, which results in 
decreasing the number of training data. However, fusion at 
feature level, in which various features are normalized and 
concatenated, eliminates the need for assigning a considerable 
amount of available training data for development set, and 
estimation can be performed in one learning phase.  

In this paper, a feature-level fusion of the i-vectors and the 
NFA vectors is considered to improve the estimation accuracy. 
As illustrated in Fig. 1, the extracted i-vectors and the NFA 
vectors are length normalized by having mapped onto a low-
dimensional space using linear discriminant analysis (LDA) 
[30]. Then, the obtained low-dimensional vectors are 
concatenated to form a longer vector.  

B. Function Approximation Using LSSVR 

Support vector regression (SVR) is a function 
approximation approach developed as a regression version of 
the widely known Support Vector Machines (SVM) classifier. 
Using nonlinear transformations, SVMs map the input data 
onto a higher dimensional space in which a linear solution can 
be calculated. They also keep a subset of the samples which are 
the most relevant data for the solution and discard the rest. This 
makes the solution as sparse as possible. While SVMs perform 
the classification task by determining the maximum margin 
separation hyperplane between classes, SVR carries out the 
regression task by finding the optimal regression hyperplane in 
which most of training samples lie within an ε-margin around 
this hyperplane [31]. 

In this study, we use the least squares version of support 
vector regression. While an SVR solves a quadratic 
programming with linear inequality constraints, which results 
in high algorithmic complexity and memory requirement, an 
LSSVR involves solving a set of linear equations by 
considering equality constraints instead of inequalities for 
classical SVR [31], which speeds up the calculations.  

In a regression problem, we are given a training dataset

)},(,),,(,),,{( 11 NNnn
tr yyyD ooo  , where on and yn 

denote a vector of observed features of the nth data item and its 
corresponding output, respectively. The goal is to determine a 
function h(o) such that the outputs are predicted accurately. In 
primal form of LSSVR, h(o) is considered as 

 ch   )()( oo   

A least squares loss function is applied instead of Vapnik's 
ε-insensitive loss function in LSSVR to simplify the 
formulations to minimize 

 



N

n
ne

1

22

2

1

2

1
  

subject to 

 nn ecy   )(o  

where β is an error cost factor and en ∈  are error variables. 
 
 

 

Fig. 1.  Block diagram of the utterance modeling in feature-level fusion. 
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This optimization problem can be solved more efficiently 
for high dimensional data by using the Lagrangian variables ν 
and minimizing the following dual cost function [31].  
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This minimization problem can be solved directly by taking 
the partial derivative of Ω with respect to  , c, e and ν and 
setting the results to zero. This results in solving a linear 
system of equations. Inserting the obtained results to (12) leads 
to the regression function 

 



N

n
nn

N

n
nn cKch

11

),()(),()( ooooo  

where K(on , o) denotes the kernel function and c and ν are the 
solution to optimization problem (15). 

One drawback of the applied simplification in LSSVR 
formulation is the loss of sparseness. Therefore, all samples 
contribute to the model, and consequently, the model often 
becomes unnecessarily large. 

C. Training and Testing 

The block diagram of the proposed weight estimation 
approach is shown in Fig. 2. During the training phase, each 
utterance in the training data set is mapped to a high 
dimensional vector using the feature-level fusion utterance 
modeling described in Section 3.A.4. Then, the obtained 
vectors along with their corresponding weight labels are used 
to train an estimator for approximating function g. During the 
testing phase, the same utterance modeling approach applied in 
training phase is used to extract a high dimensional vector from 
a test utterance. Then, the estimated weight is obtained using 
the trained estimator. 

4. Experimental Setup 

A. Database 

The National Institute for Standard and Technology (NIST) has 
held annual or biannual speaker recognition evaluations (SRE) 
for the past two decades. With each SRE, a large corpus of 
telephone (and more recently microphone) conversations is 
released. Conversations typically last 5 minutes and originate 
from a large number of speakers for whom additional meta-
data is recorded. 

The NIST databases were chosen for this work due to the 
large number of speakers and because the total variability 
subspace requires a considerable amount of development data 
for training. The development data set used to train the total 
variability subspace and UBM includes over 30,000 speech 
recordings and was sourced from the NIST 2004-2006 SRE 
databases, LDC releases of Switchboard 2 phase III and 
Switchboard Cellular (parts 1 and 2). 

For the purpose of automatic speaker weight estimation, 
telephone recordings from the common protocols of the recent 
NIST 2008 and 2010 SRE databases are pooled together to 

create a dataset of 8241 utterances uttered by 1333 speakers. 
Then, it is divided to two disjoint parts such that 80% and 20% 
of all speakers are used for training and testing sets, 
respectively. Thus, of all 8241 utterances, 5902 utterances are 
considered for training set and 2339 utterances are considered 
for testing set. Fig. 3 shows the weight histograms of training 
and testing datasets for male and female speakers. 

B. Performance Metric 

In order to evaluate the effectiveness of the proposed 
method, the mean-absolute-error (MAE) of the estimated 
weight and the Pearson correlation coefficient (CC) between 
the actual and estimated weights are used. MAE is defined as: 

 
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ii yy
N
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1

ˆ
1

 

where ŷi is the ith estimated weight, yi is the ith actual weight, 
and N is the total number of test samples. 

The Pearson correlation coefficient is computed as: 
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Fig. 2.  Block diagram of the proposed speaker weight estimation approach in 
training and testing phases. 

 

 

Fig. 3.  The weight histograms of telephone speech utterances of training and 
testing datasets for male and female speakers. 
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where μy and σy denote the mean and standard deviation of the 
actual speakers’ weight respectively, and μŷ and σŷ are 
respectively the mean and standard deviation of the estimated 
weights. 

5. Results and Discussion 

In this section, the evaluation results of the baseline 
systems as well as the proposed speaker weight estimation 
approach are presented. The acoustic feature vector is a           
60-dimensional vector consists of 20 Mel-Frequency Cepstrum 
Coefficients (MFCCs) including energy appended with their 
first and second order derivatives.  This type of feature is very 
common in the i-vector-based speaker recognition systems. 
Wiener filtering, feature warping [32] and voice activity 
detection [33] have also been considered in the front-end 
processing to obtain more reliable features. 

In this study, an LSSVR with a linear kernel has been 
employed to perform weight estimation, which is implemented 
using LS-SVMlab1.8 Toolbox [34] in Matlab environment.  

A. Results of the Basic Estimation System  

When an utterance of an unseen speaker is applied to a 
basic estimator, its output is the average weight of speakers in 
training data set. The basic estimation system provides us a 
chance level accuracy. The results of speaker weight estimation 
using a basic estimator are reported in the first row of Table I. 
Besides providing a reference level for speaker weight 
estimation systems, the basic estimator highlights a limitation 
of using mean-absolute-error (MAE) as a performance metric 
for weight estimation problem. The MAE is limited in some 
respects, specially, in the case of a test set with a skewed 
distribution which is the case in this task. When a test data set 
with a skewed distribution is applied to a basic estimator, the 
MAE might be in an acceptable range, based on the variance of 
the data. For instance, when the database described in Section 
IV-A was applied to the basic estimator, the MAE for male and 
female speakers were 12.93 kg and 9.76 kg, respectively. 
However, the measured CC for males and females were equal 
to zero. For this reason, the correlation coefficient is a 
preferred performance metric in this task, which reflects the 
performance of the estimators in a more sensible way. 

B. Results of the i-vector-Based System 

In the i-vector-based system, each utterance in training set 
is mapped onto a 400 dimensional vector using the i-vector 
framework. Then, the extracted i-vectors along with their 
corresponding weight labels are used to train estimator. The 
results of employing an LSSVR as an estimator, and using the 
i-vector framework for utterance modeling are presented in the 
second row of Table I. Comparing the i-vector-based system to 
the basic estimator shows the effectiveness of the i-vectors in 
automatic speaker weight estimation.  

C. The Results of the Score-Level Fusion System 

In score-level fusion, in which the outputs of different 
estimators are fused, we need to allocate a portion of training 
data for development set to train the fusion model. In this 
study, the development set consists of utterances of 20% of 

speakers in training set. In this approach, as illustrated in Fig. 
4, each utterance of train, development and test sets are 
converted to 400 dimensional i-vectors and 300 dimensional 
NFA vectors. Then, the obtained i-vectors and NFA vectors of 
the train set are employed to train the i-vector-based and the 
NFA-based models, respectively. In the next step, the i-vectors 
and the NFA vectors of development set are applied to the 
trained models. The outputs are then concatenated to form 2-
dimensional vectors and along with the corresponding weight 
labels are used to train the fusion model. The fusion model is a 
single hidden layer feedforward neural network with 5 hidden 
units. Logistic and linear activation functions are considered 
for the hidden and output neurons, respectively. The network is 
trained using the one step secant back-propagation algorithm 
[35] which is implemented using Neural Network Toolbox [36] 
in Matlab environment. 

The results of the proposed score-level fusion system for 
speaker weight estimation are presented in the third row of 
Table 1. Comparing to the results of the i-vector-based 
estimator, it can be concluded that fusion of the outputs of two 
subsystems can slightly improve the estimation accuracy which 
indicates that GMM weights carry complementary information 
to GMM means. The achieved relative improvements in CC by 
the proposed fusion scheme compared to the i-vector-based 
estimator for male and female speakers are 2.32% and 6.25%, 
respectively. 

 

 

Fig. 4.  Block diagram of the score-level fusion speaker weight estimation 
system (U. M. stands for utterance modeling). 

D. Results of the Proposed Approach 

To improve the estimation accuracy of the i-vector-based 
weight estimation, a feature-level fusion of the i-vectors and 
the NFA vectors is considered in this paper. In the proposed 
method, the extracted i-vectors and NFA vectors are length 
normalized and concatenated to form a longer vector. The 
obtained vector, along with the corresponding weight label is 
then used to train estimator. The last row of Table 1 contains 
the results of the proposed weight estimation approach using a 
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fusion of the i-vectors and the NFA vectors. The obtained 
results indicate that the accuracy of weight estimation increases 
after feature-level fusion compared to the estimation using the 
i-vector-based estimator, which again shows that GMM 
weights provide complementary information to GMM means. 

The achieved relative improvements in CC by the proposed 
feature-level fusion scheme compared to the i-vector-based 
estimator for male and female speakers are 25% and 38.77%, 
respectively. Comparing the results of these two fusion 
schemes reveals that fusion of the i-vector and the NFA 
frameworks at feature level is more effective in speaker weight 
estimation. In addition, fusion at feature level eliminates the 
need for assigning a considerable amount of training data for 
development set, and speaker weight estimation is performed 
in one learning phase. 

The reported CC for speaker weight estimation based on 
the formant parameters of the running speech signals uttered by 
91 speakers are 0.33 and 0.34 for male and female speakers, 
respectively [9]. The results obtained from our proposed 
speaker weight estimation system seem reasonable, considering 
the fact that the applied testing dataset in this study consists of 
spontaneous speech signals and the number of speakers in test 
set is considerably larger than that of in [9]. It can be 
concluded that automatic speaker weight estimation using a 
fusion of the i-vector and the NFA frameworks is more 
efficient compared to the estimation based on the raw acoustic 
features. 

Table 1. The MAE (in kg) and CC of the proposed speaker weight estimation 
systems, compared to the basic and i-vector-based systems. 

Speaker Weight Estimation 
System 

MALE FEMALE 

CC MAE CC MAE 

Basic estimator 0 12.93 0 9.76 
i-vector-based system 0.42 12.17 0.30 9.70 
Score-level fusion subsystems 0.43 11.98 0.32 9.30 
Feature-level fusion system 0.56 11.16 0.49 7.79 

 

6. Conclusion 

In this paper a novel approach for automatic speaker weight 
estimation from spontaneous telephone speech signals was 
proposed. In this method, each utterance was modeled using a 
fusion of the i-vector and the NFA frameworks at feature level. 
Using this new utterance modeling approach, the available 
information in both GMM means and GMM weights was 
utilized. Then, an LSSVR was employed to estimate the weight 
of a speaker from a given utterance. The proposed method was 
trained and tested on the telephone conversations of NIST 2008 
and 2010 SRE corpora. Evaluation results over 2339 utterances 
show that the correlation coefficients between the actual and 
the estimated weights of male and female speakers after 
feature-level fusion are 0.56 and 0.49, respectively, which 
indicate that the fusion of the i-vectors and the NFA vectors at 
feature level improves the performance of the state-of-the-art i-
vector framework. Utilizing information in Gaussian weights 
in conjunction with that of in Gaussian means through a fusion 
of the i-vector and the NFA frameworks resulted in achieving 
25% and 38.77% relative improvements in CC compared to the 

i-vector-based weight estimation system. It also indicates the 
effectiveness of the proposed method in automatic speaker 
weight estimation compared to the estimation based on the raw 
acoustic features.  
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