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Variational Bayesian Inference of Line Spectra
Mihai-Alin Badiu, Thomas Lundgaard Hansen, and Bernard Henri Fleury

Abstract—In this paper, we address the fundamental problem
of line spectral estimation in a Bayesian framework. We target
model order and parameter estimation via variational inference
in a probabilistic model in which the frequencies are continuous-
valued, i.e., not restricted to a grid; and the coefficients are gov-
erned by a Bernoulli-Gaussian prior model turning model order
selection into binary sequence detection. Unlike earlier works
which retain only point estimates of the frequencies, we undertake
a more complete Bayesian treatment by estimating the posterior
probability density functions (pdfs) of the frequencies and com-
puting expectations over them. Thus, we additionally capture
and operate with the uncertainty of the frequency estimates.
Aiming to maximize the model evidence, variational optimization
provides analytic approximations of the posterior pdfs andalso
gives estimates of the additional parameters. We propose an
accurate representation of the pdfs of the frequencies by mixtures
of von Mises pdfs, which yields closed-form expectations. We
define the algorithm VALSE in which the estimates of the pdfs
and parameters are iteratively updated. VALSE is a gridless,
convergent method, does not require parameter tuning, can easily
include prior knowledge about the frequencies and provides
approximate posterior pdfs based on which the uncertainty in
line spectral estimation can be quantified. Simulation results show
that accounting for the uncertainty of frequency estimates, rather
than computing just point estimates, significantly improves the
performance. The performance of VALSE is superior to that of
state-of-the-art methods and closely approaches the Craḿer-Rao
bound computed for the true model order.

Index Terms—Line spectral estimation, complex sinusoids,
model order selection, Bayesian inference, von Mises distribution,
super-resolution, Bernoulli-Gaussian model, sparse estimation

I. I NTRODUCTION

The problem of line spectral estimation (LSE) [1], i.e.
extracting the parameters of a superposition of complex ex-
ponential functions from noisy measurements is fundamental
in numerous disciplines in engineering, physics, and natural
sciences. To quote a few examples, solutions to this problem
have applications to range and direction estimation in sonar
and radar, channel estimation in wireless communications,
speech analysis, spectroscopy, molecular dynamics, power
electronics, geophysical exploration.

In LSE, the original signalx = (x0, . . . , xN−1)
T ∈ CN is

a superposition ofK complex sinusoids, i.e.,

xn =

K
∑

k=1

αke
jωkn, (1)

whereαk ∈ C andωk ∈ [−π, π) are the complex amplitude
and (angular) frequency, respectively, of thekth component.

This work was supported by the research project VIRTUOSO (funded
by Intel Mobile Communications, Anite, Telenor, Aalborg University, and the
Danish National Advanced Technology Foundation) and the Danish Council
for Independent Research under grant IDs DFF–5054-00212 and DFF–4005-
00549.

The authors are with the Department of Electronic Systems, Aalborg
University, Denmark (e-mail:{mib,tlh,bfl}@es.aau.dk).

We are given the vectory containing M ≤ N noisy
measurements of those components ofx with indices in
M ⊆ {0, . . . , N − 1}, |M| = M . Defining the function
a : [−π, π) → CM , ω → a(ω) = (ejωm | m ∈ M)T and
the vectorǫ representing additive noise, we write

y =

K
∑

k=1

αka(ωk) + ǫ. (2)

The problem of LSE involves estimating the numberK
of sinusoidal components, also referred to as model order
selection, and their associated parametersαk and ωk. Even
if the model orderK is given, LSE is still nontrivial because
of the nonlinear dependency of (2) on the frequencies.1

A. Prior Work

Under the assumption of knownK, theωk’s are traditionally
estimated using the maximum-likelihood (ML) technique or
subspace methods, such as [2], [3]. The ML method involves
the hard task of maximizing a nonconvex function that has a
multimodal shape with a sharp global maximum. The maxi-
mizer is typically searched using iterative algorithms (e.g., [4]–
[6]) which, however, require accurate initialization and,at best,
are guaranteed to converge to a local optimum. Nonetheless,
the performance of the ML technique is superior to that of sub-
space methods, the difference being evident especially when
the sample sizeM or alternatively the signal-to-noise ratio
(SNR) are small. SinceK is typically unknown in practice, the
model order is conventionally selected based on an information
criterion, which comprises a data term representing the fitting
error and a penalty term that increases with the model order
(see [7] and references therein). Assuming a range of potential
model orders, the parameters corresponding to each possible
order are estimated using, e.g., one of the aforementioned
methods. Finally, the tradeoff between fitting error and model
complexity is made by selecting the configuration that mini-
mizes the criterion. Scanning a range of model orders can be
computationally expensive. Also, in non-asymptotic regimes
(particularly limitedM or SNR), information criteria tend to
provide a wrong model order. A comprehensive review of
classical approaches can be found in [1].

A more recent approach to LSE is dictionary-based model
estimation, see [8] and the references therein. In this ap-
proach, nonlinear estimation of the frequencies is avoided
by discretizing the range[−π, π) into a finite set (grid) of
samples that represent the candidate frequency estimates.The
signal model (2) is then approximated with a linear system
comprising a so-called dictionary matrix (whose columns are

1WhenK and the frequencies are given, the complex amplitudes can be
easily estimated with the linear least-squares method.
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given bya(·) evaluated at the grid samples) and a vector of
weights. Thus, the original nonlinear problem is replaced by
a linear inverse problem to which a sparse solution is sought.
The nonzero entries of the sparse estimate of the weight vector
encode the model order and parameter estimates. There is
a plethora of techniques that can be used for sparse signal
representation, see the detailed survey [9]. However, restricting
the candidate frequency estimates to a discrete grid induces
spectral leakage due to the model mismatch. Consequently,x

can admit only an approximately sparse representation (or may
be even incompressible) in a finite dictionary [10], [11]. Onthe
one hand, a denser grid provides a better sparse approximation
and higher accuracy of frequency estimation. On the other
hand, increasing the grid density makes the dictionary columns
highly coherent, which might affect the sparse reconstruction
capability, and boosts the computational complexity. To alle-
viate the mismatch issues, several approaches are conceived,
e.g.: in [11], the concept of structured sparsity is utilized to
inhibit closely-spaced frequency estimates; the method in[12]
starts with a coarse grid and heuristically iterates between
estimating the weights and placing a finer grid around the
location of the non-zero weight estimates; in [13]–[16], a less
fine grid is used as a baseline and the dictionary matrix is
modified to include auxiliary interpolation functions.

In the quest for gridless methods which work directly
with continuously parameterized dictionaries, i.e., dictionaries
whose parameter ranges in[−π, π), several works depart
from using a static dictionary given by a fixed grid. By
including the parameters that dictate the dictionary in the
estimation problem, they obtain dynamic dictionary algorithms
in which the candidate frequencies and hence the dictionary
columns are gradually refined. In [8], two such algorithms are
designed based on theℓp regularized least squares objective by
adding a penalty term to prohibit closely spaced frequencies
and respectively imposing a hard constraint on the minimum
distance between frequencies. The algorithms approximately
solve the involved nonlinear estimation and still require an
initial grid [8]. A different line of works adopts the Bayesian
framework and augments the probabilistic model of sparse
Bayesian learning (SBL) [17], [18] to incorporate the candi-
date frequencies. In SBL, a sparse weight vector is promoted
by selecting a parameterized/hierarchical prior model forits
entries [17], [18]. Estimation in the augmented model is
performed using variational inference methods [19]–[21] or
maximization of the marginalized posterior pdf [22]. Common
to all existing SBL-based approaches is that they restrict to
compute point estimates of the frequencies (i.e., MAP/ML
estimates), which implies nontrivial maximization of highly
multimodal functions (similar to classical ML frequency esti-
mation) in each iteration. The maximization is accomplished
approximately by using a grid followed by refinement with
Newton’s method or interpolation. Another limitation is that,
while providing good reconstruction performance, the SBL-
based methods reportedly overestimate the model order, i.e.,
they consistently output additional spurious components (arti-
facts) of small power [19], [21].

A different gridless approach that avoids the frequency
discretization issues is based on the atomic norm (equivalently,

the total variation norm), which is the continuous analog ofthe
ℓ1 norm and allows for working with an infinite, continuous
dictionary. In this way, it is shown that for the noiseless case
the frequencies can be perfectly recovered from complete data
(M = N ) [23] or incomplete data (M < N ) [24], as long
as they are well separated. In [25], the atomic norm soft
thresholding (AST) method, which solves a convex program,
is proposed for LSE from noisy, complete data. AST is
generalized to the incomplete data case in [26]. Given that
AST requires knowledge of the noise variance, the grid-based
SPICE method [27] (which minimizes a covariance matrix
fitting criterion) is extended in [26] to gridless SPICE (GLS).
GLS is applicable to both complete and incomplete data cases
without knowledge of the noise power and is equivalent to
atomic-norm-based methods; however, it has the limitations of
frequency splitting and inaccurate model order estimation[26].
To overcome the two drawbacks, a GLS-based framework
is proposed in [26], in which: GLS is used as a method to
estimate the covariance matrix ofy, based on which the model
order is selected using the SORTE algorithm [28] and the
frequencies are estimated with MUSIC [2].

An important limitation of atomic-norm-based techniques is
that they require the frequencies be sufficiently separatedin or-
der to be recovered. Enhanced matrix completion (EMaC) [29]
and reweighted atomic-norm minimization (RAM) [30] are
two recent algorithms that are reported to improve the res-
olution capability of atomic-norm methods.

B. Contribution

In this paper, we propose a method for LSE from the
measurement model (2) by following the approach of sparse
Bayesian inference including estimation of continuous-valued
frequencies. The key development that sets our work apart
from the related methods [19]–[22] is that, instead of re-
taining only point estimates of the frequencies, we seek a
more complete Bayesian treatment by estimating pdfs of the
frequencies and computing expectations over them. Our basic
motivation is that, in general, a fully Bayesian approach is
expected to show benefits, especially in the situations where
sample sizes or SNRs are limited. The fully Bayesian ap-
proach naturally allows for representing and operating with
the uncertainty of the frequency estimates, in addition to only
that of the weights as considered so far. In particular, our
approach involves computing expectations ofejnΘ, rather than
just evaluating the phasor at a certain point estimate. The
uncertainty impacts all other estimates and also the criterion
for accepting a component in the estimated model (through
the estimates involved) and therefore the model order esti-
mate. Our results show that accounting for the uncertainty of
frequency estimates with the fully Bayesian approach proves
to be essential for improving model estimation performance.
A second distinction from related works is that we employ
a Bernoulli-Gaussian hierarchical model for the weights [31]
instead of the typical SBL prior model [17], [18]. By analyzing
the component-acceptance criteria induced by the two models,
we observe that the Bernoulli-Gaussian model is more resilient
to insertion of small spurious components.
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We provide our probabilistic formulation of LSE in Section
II. Since exact inference in the proposed model requires com-
putations that do not admit closed-form analytical expressions,
we take the variational approach2 to: compute approximate
posterior pdfs of the frequencies and weights; attempt MAP
detection of the binary vector of the hierarchical model; and
target ML estimation of the noise variance and parameters
of the Bernoulli-Gaussian model. The variational optimization
problem consists in maximizing a lower bound on the model
evidence over the pdfs and parameters of interest. In Section
III, we derive implicit expressions for local maximizers, which
are to be updated iteratively. To enable closed-form expecta-
tions over the approximate pdfs of the frequencies, we show
in Section IV that these pdfs can be very well represented
by mixtures of von Mises pdfs (see also Appendices B and
C). In Section V, we propose a specific initialization and
schedule of iterations that define the variational LSE (VALSE)
algorithm. VALSE has several attractive features: it is fully
automated (i.e., does not include parameters to be tuned,
as all necessary parameters are learned from the data); it
converges because each step increases the lower bound on the
model evidence; it has the ability to easily incorporate prior
knowledge about the frequencies (through a von Mises pdf or a
mixture of such pdfs); it provides posterior distributionsbased
on which uncertainty in LSE can be quantified. In Section VI
the performance of VALSE is evaluated and compared against
state-of-art methods through computer simulations. Finally,
Section VII concludes the paper.

II. BAYESIAN FORMULATION AND VARIATIONAL

APPROACH

Given the difficulty of not knowing the model orderK
in (2), for the design of our Bayesian estimator we propose a
probabilistic model consisting of a superposition ofN (i.e. the
dimension of the original signalx in (1)) complex sinusoids
that have random frequencies and weights. Since we want that
eventually onlyK of those components have nonzero weights,
we use a sparsity-promoting prior model for the weights.
Inference in the following model ideally would recover theK
true frequencies and corresponding nonzero weights and yield
zero weights for the excessiveN−K components. Concretely,
we assume that the measurement vectory is a realization of
a random process described by

Y =

N
∑

i=1

Wia(Θi) +U . (3)

The complex weightsW = [W1, . . . ,WN ]T are governed by
independent Bernoulli variablesS = [S1, . . . , SN ]T such that
the elements ofW | S are independent and(Si,Wi) has a
Bernoulli-Gaussian distribution. That is,

pWi|Si
(wi | si; τ) = (1− si)δ(wi) + sifCN(wi; 0, τ) (4)

2Variational methods are deterministic inference techniques which pro-
vide analytical approximations of posterior pdfs, unlike the stochastic method
of Markov chain Monte Carlo (MCMC) sampling. The convergence of MCMC
methods can be prohibitively slow and difficult to diagnose.MCMC sampling
has been previously used for LSE, see [32] and the referencestherein.

and pSi(si) = ρsi(1 − ρ)(1−si). Since Si = 0 implies
that Wi = 0, the probability ρ controls how likely it is
for the ith component to be “active” (i.e. its weight to be
nonzero). In (4),Wi | Si = 1 has a zero-mean Gaussian
pdf with varianceτ .3 In this paper,fCN(·;µ,Σ) denotes the
complex univariate/multivariate Gaussian pdf with meanµ and
covarianceΣ. The frequenciesΘ = [Θ1, . . . ,ΘN ]T have the
prior pdf pΘ(θ) =

∏

i pΘi(θi). As justified in Section IV,pΘi

is a von Mises pdf, or a mixture of such pdfs if one wants to
model a more sophisticated, possibly multimodal distribution;
the lack of prior knowledge can be represented by setting the
concentration parameter of the von Mises pdf to zero. We
assume that the components of the noiseU are iid complex
Gaussian with mean zero and varianceν, which gives the
likelihood

pY |Θ,W (y | θ,w; ν) = fCN(y;
∑

i

wia(θi), νI). (5)

The model parameters are collectively denoted byβ =
{ν, ρ, τ}.

We can relate model (3) to a sparse approximation prob-
lem in which, given the frequenciesΘ = θ, A(θ) =
[a(θ1) . . . a(θN )] is the dictionary matrix and we need to
infer the weightsW from M ≤ N data samples. Using
sparsity-promoting hierarchical models forW is a common
Bayesian approach to find sparse solutions to ill-posed prob-
lems in compressed sensing. While the Bayesian treatment of
LSE [19]–[22] typically uses the SBL prior model [17], [18],
the Bernoulli-Gaussian model [31], [33] has not been used
in the LSE context before. In the Bernoulli-Gaussian model,
the binary vectorS = [S1, . . . , SN ]T represents the support
of the weightsW . Contrary to the standard sparse estimation
problem, in our context the dictionary is parameterized by the
frequencies that are to be inferred as well.

We would like to compute mean and circular mean estimates
of W andΘ, respectively, based on the posterior pdf

pΘ,W ,S|Y (θ,w, s | y;β) = pY ,Θ,W ,S(y, θ,w, s;β)

pY (y;β)
. (6)

In (6), the joint pdf in the numerator is the likelihood (5) times
the prior pdfs defined above, i.e.

pY ,Θ,W ,S(y, θ,w, s;β)

= pY |Θ,W (y | θ,w; ν)

N
∏

i=1

pΘi(θi)pWi|Si
(wi | si)pSi(si),

(7)

while the denominatorpY (y;β), called the model evidence
(or marginal likelihood ofβ), is the marginal of the joint
pdf and acts as a normalizing constant. Fig.1 illustrates the
factor graph representation of (7). The sought estimates unfor-
tunately require operations (high-dimensional integrals, sum-
mation over2N possible values ofs) that cannot be performed
analytically. Therefore we use variational inference to compute

3While pWi|Si
(wi | si = 1) should model some prior knowledge about

the amplitudes, for the design of our estimator we select a zero-mean Gaussian
pdf mainly for computational convenience (see Sec. III-B).In fact, in the
simulation experiments we generate the complex amplitudesin (1) from a
distribution different than Gaussian.
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Fig. 1. Factor graph representation of the joint pdf (7).

a surrogate pdfqΘ,W ,S|Y that should approximate (6) well
and at the same time enable tractable estimation.

The variational approach builds on the fact that, for any
postulated pdfqΘ,W ,S|Y , the log model evidence can be
expressed as [34, Ch. 10]

ln pY (y;β) = DKL (qΘ,W ,S|Y ||pΘ,W ,S|Y ) + L(qΘ,W ,S|Y ).
(8)

The first term in (8) is the Kullback-Leibler divergence of
pΘ,W ,S|Y from qΘ,W ,S|Y ,4 while the functionalL reads

L(qΘ,W ,S|Y ) = EqΘ,W ,S|Y

[

ln
pY ,Θ,W ,S(y,Θ,W ,S;β)

qΘ,W ,S|Y (Θ,W ,S | y)

]

.

(9)
Given thatpY (y;β) is constant w.r.t.qΘ,W ,S|Y andDKL ≥ 0,
minimizing the divergence is equivalent to maximizingL and
tightening it as a lower bound to the log model evidence. The
KL divergence vanishes only whenqΘ,W ,S|Y = pΘ,W ,S|Y ,
in which caseL attains its maximum value,ln pY (y;β).
Nonetheless, as we already mentioned, working with the
posterior pdf (6) is intractable so we have to restrict the family
of candidate pdfs.

We postulate thatqΘ,W ,S|Y factors as

qΘ,W ,S|Y (θ,w, s | y)

=
N
∏

i=1

qΘi|Y (θi | y) qW |Y ,S(w | y, s) qS|Y (s | y). (10)

That is, we assume that the frequencies area posteriori
independent (mutually and of the other variables).5 Further-
more, we consider thatqS|Y has all its mass at̂s, i.e.,
qS|Y (s | y) = δ(s − ŝ), where the functionδ equals1 when
s = ŝ and 0 otherwise. The simplifying restrictions define a
family of pdfs and our goal is to search for the member which
maximizes the lower boundL.

The estimates of interest are computed fromqΘ,W ,S|Y as
follows. SinceΘi is an angle, its estimatêθi is defined so as
to give the mean direction ofejΘi [35]:

θ̂i = arg
(

EqΘi|Y
[ejΘi ]

)

, i ∈ {1, . . . , N}. (11)

The estimatesEqΘi|Y
[ejnΘi ], n ∈ {0, . . . , N − 1} are central

in this work. Their magnitudes are≤ 1 with equality if, and

4The KL divergence of a pdfp from a pdfq (both defined on some set
X ) is DKL (q||p) =

∫
X q(x) ln

q(x)
p(x)

dx.
5The assumed factorization ofqΘ|Y is also referred to as a naı̈ve mean

field approximation.

only if qΘi|Y is the Dirac delta distribution. A broadqΘi|Y

signifying high uncertainty gives a small magnitude, and vice
versa. Those estimates with indices inM give the elements
of âi = EqΘi|Y

[a(Θi)]; similarly, ‖âi‖22 ≤M . The mean and
covariance estimates of the weights are defined as

ŵ = EqW |Y
[W ] andĈ = EqW |Y

[

WWH
]

− ŵŵH. (12)

Given thatqS|Y = δ(s − ŝ), the posterior pdf ofW is

qW |Y (w | y) = qW |Y ,S(w | y, ŝ). (13)

Intuitively, the closerqΘ,W ,S|Y is topΘ,W ,S|Y , the better the
estimates (11) and (12) approximate the estimates which we
would have computed from (6), if we could. The forms of the
pdfs and the support estimateŝ in the r.h.s. of (10) result from
maximizing the lower boundL. When the parameters inβ are
unknown, we target their ML estimates also by maximizing
the lower bound to the log marginal likelihoodln pY (y;β).

Finally, based on̂θ and ŵ, we define the estimates of the
quantities in the original superposition (1). LetS be the set
of indices of the non-zero components ofs, i.e.

S = {i | 1 ≤ i ≤ N, si = 1}.

Analogously, we defineŜ based on̂s. The estimate of the
model order is the cardinality of̂S:

K̂ = |Ŝ|. (14)

We define the reconstructed signalx̂ , (x̂1, . . . , x̂N )T as
the expectation of the signal part in the r.h.s. of (3) over
qΘ,W ,S|Y , which gives

x̂n =
∑

i∈Ŝ

ŵi EqΘi|Y
[ejnΘi ], n ∈ {1, . . . , N}. (15)

The components of̂θ and ŵ with indices in Ŝ give the
estimates of the frequencies and amplitudes in (1).

III. SOLUTION TO THE VARIATIONAL OPTIMIZATION

PROBLEM

We now turn to maximizing the lower boundL(qΘ,W ,S|Y )
in (9) with qΘ,W ,S|Y of the form (10). Except for restrict-
ing qS|Y to give probability one to some sequenceŝ, we
do not impose any constraints on the forms of the factors
in (10). That is, the forms of the approximate posterior pdfs
result from variational optimization and are dictated by the
likelihood (5) and prior pdfs. As maximizingL over all
factors simultaneously is not viable, we perform alternating
optimization:L is maximized over each of the factorsqW ,S|Y ,
qΘi|Y , i = 1, . . . , N , in turn while keeping the others fixed.
Consequently, the form of each factor is implicit because it
depends on the other factors.

Upon their initialization, we iteratively cycle through the
factors and replace them one by one with a revised expression.
Such a scheme is guaranteed to converge to some local
maximum ofL [34, Ch. 10]. In the following we derive the
factor expressions that correspond to the fixed-point of the
scheme. A specific initialization and scheduling of updates
are proposed in Sec. V.
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A. Inferring the frequencies Θ

For eachi = 1, . . . , N , maximizingL in (9) w.r.t. the factor
qΘi|Y gives [34, Ch. 10, p. 466]

ln qΘi|Y (θi | y) = E∼θi [ln pY ,Θ,W ,S(y, θi,Θ∼i,W ,S;β)]

+ const.

where the expectation is taken overqW ,S|Y

∏

j 6=i qΘj |Y , the
joint pdf pY ,Θ,W ,S is given by (7) and the constant ensures
normalization of the pdf. We further write only the terms that
depend onθi, i.e.

ln qΘi|Y (θi | y) = E∼θi

[

ln pY |Θ,W (y | θi,Θ∼i,W ; ν)
]

+ ln pΘi(θi) + const.

Plugging the Gaussian form of the likelihood (5) in the above
expression and carrying out the required expectations, we
finally obtain

qΘi|Y (θi | y) ∝ pΘi(θi) exp
{

ℜ
(

ηH
i a(θi)

)}

(16)

where the complex vectorηi is given by

ηi =
2

ν



y −
∑

l∈Ŝ\{i}

ŵlâl



 ŵ∗
i −

2

ν

∑

l∈Ŝ\{i}

Ĉl,iâl (17)

when i ∈ Ŝ, and ηi = 0 otherwise. The second factor
in the r.h.s. of (16) is an approximation of the marginal
likelihood of θi; it is an extremely multimodal function, see
Sec. IV. According to (17), the likelihood favors values ofθi
for which the angle between̂wia(θi) and the residual signal
(after canceling the interference from the other components)
is small.6 Interestingly, the likelihood corresponds to coherent
estimation ofΘi from the residual signal when the weight
is fixed to ŵi. At the same time, it penalizes (to an extent
given by the cross-variance of the weights) values that result
in small angle betweena(θi) and âl of the other components
in the model. Naturally, wheni /∈ Ŝ (i.e. ŝi = 0), only the
prior information comes into play in (16).

The pdf (16) does not yield analytic expressions for
EqΘi|Y

[a(Θi)]. In Section IV, we show thatqΘi|Y in (16)
is well approximated by a mixture of von Mises pdfs, which
gives a closed-form approximation ofEqΘi|Y

[a(Θi)].

B. Inferring the weights W and support S

We next maximizeL w.r.t. qW ,S|Y (w, s | y) whenqΘi|Y ,
i = 1, . . . , N , are kept fixed. SinceqW ,S|Y (w, s | y) is
restricted in (10) to give the marginal pmfqS|Y (s | y) =
δ(s− ŝ), we cannot anymore use the factor-update expression
corresponding to free-form optimization [34, Ch. 10, p. 466].
So we will explicitly carry out the maximization ofL.

Plugging the postulated pdf (10) in (9) we obtain

L(qW |Y ,S , ŝ) = const.− EqW |Y ,S

{

ln qW |Y ,S(W | y, ŝ)

− EqΘ|Y
[ln pY ,Θ,W ,S(y,Θ,W , ŝ;β)]

}

.

6The angleφ between two complex vectorsu andv satisfiescos(φ) =
ℜ(uH

v)
‖u‖‖v‖

.

Let us introduce the pdf

t(w; ŝ) =
1

Z (̂s)
exp

{

EqΘ|Y
[ln pY ,Θ,W ,S(y,Θ,w, ŝ;β)]

}

wherepY ,Θ,W ,S is given by (7) andZ (̂s) is the normalizing
constant obtained by integrating the exponential overw. We
can now write

L(qW |Y ,S , ŝ) = −DKL (qW |Y ,S ||t) + lnZ (̂s) + const. (18)

Inspecting (18), for anŷs the maximum ofL over qW |Y ,S

is attained when the KL divergence vanishes. Thus,L has its
maximum at

qW |Y ,S(w | y, ŝ) = t(w; ŝ) and ŝ = argmax
s

lnZ(s).

(19)
To computeEqΘ|Y

[ln pY ,Θ,W ,S(y,Θ,w, s;β)] required for
t(w; ŝ) andZ(s) in (19), we use (7), together with (5) and (4),
and obtain an expression that is quadratic inw, given that all
pWi|Si

(wi | si = 1) are Gaussian. We define the matrixJ with
elementsJii = M and Jij = âHi âj , i, j = 1, . . . , N , j 6= i,
and the vectorh =

[

âH1 y, . . . , â
H
Ny
]T

. From (13) and (19),
we obtain

qW |Y (w | y) = fCN

(

wŜ ; ŵŜ , ĈŜ

)

∏

i/∈Ŝ

δ(wi),

where the mean and covariance matrix of the Gaussian poste-
rior pdf of WŜ are

ŵŜ = ν−1ĈŜhŜ and ĈŜ = ν
(

JŜ +
ν

τ
I
)−1

. (20)

The mean is the LMMSE estimate ofWŜ assumings = ŝ. For
i /∈ Ŝ, the measurements are noninformative and, conveniently,
qWi|Y (wi | y) = pWi|Si

(wi | si = 0) = δ(wi), i.e., ŵi = 0.
From (19), the sequencês (which determinesŜ) is the

maximizer of

lnZ(s) = ln det
(

JS +
ν

τ
I
)−1

+
1

ν
hH
S

(

JS +
ν

τ
I
)−1

hS

+ ‖s‖0 ln
ρν

(1− ρ)τ
+ const. (21)

Since maximizing the nonlinear function (21) is NP-hard, in
Appendix A we propose a suboptimal procedure which is
guaranteed to converge to a local maximum oflnZ(s).

According to Appendix A, a sinusoidal component (we drop
the indexi for the moment) is admitted only if the posterior
meanŵ and varianceĈ of its weight (for ŝ = 1) satisfy

|ŵ|2
Ĉ

> ln
(

τ/Ĉ
)

+ ln
1− ρ

ρ
. (22)

It is interesting to relate (22) to the test|w̃|2/C̃ > 1 obtained
in [36] for the SBL prior model of the weights [17], [18],
where w̃ and C̃ are the mean and variance of the posterior
divided by the prior. The SBL prior model is often used
for estimating superimposed signals [19]–[22] and, reportedly,
the resulting estimators output additional spurious components
(artifacts) of small power. Since|w̃|2/C̃ can be viewed as
an SNR of the component, the threshold can be heuristically
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Fig. 2. Activation thresholds vs. weight variance for: the Bernoulli-Gaussian
model (solid curves) withτ = 1 and different values ofρ, and for the SBL
prior model (dashed line). The activation test is satisfied by the points lying
above the given curve.

increased such that a higher SNR is required [19], [36]. For
the Bernoulli-Gaussian prior model we express (22) as

|w̃|2
C̃

>
(

1 + C̃/τ
)

ln

[

(

1 + τ/C̃
) 1− ρ

ρ

]

(23)

where we usedpW |S(w | s = 1) = fCN(w; 0, τ), which
gives Ĉ−1 = C̃−1 + τ−1 and Ĉ−1ŵ = C̃−1w̃. Thus, the
threshold (23) is not constant but depends onρ, τ and also
C̃. The latter dependence makes the method more resilient to
insertion of artifacts, because, as shown in Fig. 2, the threshold
increases with smaller variance, unlike for the SBL model
where it stays the same.

C. Estimating the model parameters

The noise varianceν is often unknown in practice. Also,
it might be unclear how to set the parametersρ andτ of the
Bernoulli-Gaussian prior model. We show that learning the
parameters can be easily included in the variational approach.

The lower bound (9) now additionally depends onβ =
{ν, ρ, τ}. We alternate between maximizingL(qΘ,W ,S|Y ,β)

over qΘ,W ,S|Y for β fixed to β̂ (according to the previous
subsections) and overβ for fixed qΘ,W ,S|Y . In the latter step,

L(β) = EqΘ,W ,S|Y
[ln pY ,Θ,W ,S(y,Θ,W ,S;β)] + const.

where we write only the term depending onβ. The joint pdf
and the approximate posterior pdf are given by (7) and (10),
respectively. Based on the forms of the likelihood (5) and prior
pdfs defined in Sec. II, we obtain

L(β) = 1

ν

[

2ℜ
(

ŵH
Ŝ
hŜ

)

− ŵH
Ŝ
JŜŵŜ − yHy − tr

(

JŜĈŜ

)]

−M ln ν − 1

τ

[

ŵH
Ŝ
ŵŜ + tr

(

ĈŜ

)]

− ‖ŝ‖0 ln τ
+ ‖ŝ‖0 ln ρ+ (N − ‖ŝ‖0) ln(1− ρ) + const.

We can carry outargmaxβ L(β) independently over each
parameter. Equating the partial derivatives to zero gives unique

solutions that correspond to the global maximum (the second-
order derivatives are strictly negative). Specifically, weobtain

ν̂ =
1

M
‖y −

∑

i∈Ŝ

ŵiâi‖22 +
1

M
tr
(

JŜĈŜ

)

+
∑

i∈Ŝ

|ŵi|2
(

1− ‖âi‖22/M
)

. (24)

Thus, ν̂ takes into account not only the fitting error, but also
the uncertainty of weight estimation (througĥCŜ) and of
frequency estimation (viâai). Regarding the latter, the sharper
qΘi|Y , the closer‖âi‖22 is to M and therefore the smaller the
contribution toν̂. For ρ andτ we obtain the estimates

ρ̂ =
‖ŝ‖0
N

and τ̂ =
ŵH

Ŝ
ŵŜ + tr

(

ĈŜ

)

‖ŝ‖0
. (25)

Naturally, ρ̂ is given by the number of nonzero components
of ŝ and τ̂ is the averaged second-moment of the weights
corresponding to those components.

IV. A PPROXIMATING qΘi|Y BY A MIXTURE OF VON M ISES

PDFS

In this section, after providing some background on the
von Mises distribution, we show that any pdf of the form
exp

(

ℜ
(

ηHa(θ)
))

, such asqΘi|Y in (16), can be well repre-
sented by a mixture of von Mises pdfs (MVM). The proposed
approximation enables easy computation of expectations over
such pdfs. We exploit the MVM approximation in the initial-
ization of our algorithm as well, since the exponential of the
periodogram also has the said form.

A. The von Mises distribution

Among the distributions on the unit circle, the von Mises
(VM) distribution is of significant importance, its role being
similar to that of the Gaussian distribution on the line [35].
The pdf of the VM distribution of a random angleΘ is

fVM (θ;µ, κ) =
1

2πI0(κ)
eκ cos(θ−µ).

The parametersµ andκ are the mean direction and concentra-
tion parameter, respectively, andIp(·) is the modified Bessel
function of the first kind and orderp. The pdf is symmetrical
about its single mode, which is atΘ = µ. The VM pdf can
also be parameterized in terms ofη = κejµ:

fVM (θ; η) =
1

2πI0(|η|)
exp

(

ℜ{η∗ejθ}
)

.

The properties of circular distributions are completely deter-
mined by the characteristic function,ϕp , E[ejpΘ], p ∈
Z [35]. The characteristic function of the VM distribution is

ϕp = ejpµ
Ip(κ)

I0(κ)
, p ∈ Z. (26)

The moments of circular distributions are the moments ofejΘ,
i.e., values of the characteristic function. The first moment of
the VM distribution,ϕ1 = ejµA(κ), gives the mean direction
µ and the mean resultant lengthA(κ) = I1(κ)/I0(κ).
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The multiplication of two VM pdfs gives

fVM (θ; η1)fVM (θ; η2) ∝ fVM (θ; η) (27)

with η = η1+η2. That is, the result is proportional to a VM pdf
with mean directionarg(η1 + η2) and concentration|η1 + η2|.
Thus, the family of VM pdfs is closed under multiplication.

B. The proposed MVM approximation

In the following, we drop the frequency indexi for conve-
nience. We write (16) as

qΘ|Y (θ | y) ∝ pΘ(θ)
∏

m∈M

exp
(

ℜ{η∗mejmθ}
)

, (28)

where the entries ofη have the polar formηm = κm ejµm .
When 0 ∈ M the factor in (28) corresponding tom = 0 is
a constant, so we can just remove this index fromM. Also,
when1 ∈ M, the factor indexed bym = 1 has the form of a
von Mises (VM) pdffVM (θ; η1) with mean directionµ1 and
concentrationκ1. Furthermore, the factors indexed bym > 1
have the form ofm-fold wrapped VM pdfs. Thus, we can
write (28) as

qΘ|Y (θ | y) ∝ pΘ(θ)
∏

m∈M

fVM (mθ; ηm). (29)

In Appendix B we show that a wrapped VM pdf can be
very well approximated by an appropriate MVM obtained
by matching their characteristic functions. Employing the
result (52), we approximate each of them-fold wrapped VM
pdfs in (29) by a mixture ofm VM pdfs, i.e.,

fVM (mθ; ηm) ≃
m−1
∑

r=0

1

m
fVM (θ; η̃m,r), (30)

where η̃m,r = κ̃mejµ̃m,r . The m components of the MVM
have equal amplitudes and concentrations. The valueκ̃m of
the latter is the solution to

Im(κ̃m)

I0(κ̃m)
=

I1(κm)

I0(κm)
(31)

whereIp(·) is the modified Bessel function of the first kind and
orderp. We show in Appendix B that an approximate solution
to the transcendental equation (31) can be easily found. The
meansµ̃m,r, r = 0, . . . ,m− 1, are given by

µ̃m,r =
µm + 2πr

m
, (32)

i.e., they are evenly distributed around the circle,2π/m apart.
The higher the concentration parameter of the wrapped VM
pdf, the better its approximation (30). As illustrated in Fig. 3,
the approximation is very tight even for moderate values of
the concentration and still good for small concentrations.

The proposed approximation enables us to exploit the fact
that the family of VM pdfs is closed under multiplication.
To that end, we conveniently choose the prior pdf ofΘ to
be pΘ(θ) = fVM (θ; ηa), with ηa = κae

jµa.7,8 Replacing (30)

7When we do not have any prior information aboutΘ, we can set the
concentrationκa = 0, in which case the prior pdf becomes the uniform
circular pdfpΘ(θ) = 1/(2π).

8Alternatively, we can select an MVM prior, if we wish to use a
multimodal distribution.
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Fig. 3. Illustration of the approximation (30). The pdffVM (3θ; κ ej·0) of a 3-
fold wrapped VM distribution (dashed curve) is approximated by a mixture of
3 von Mises pdfs (solid curve); in (a)κ = 10 for which (31) gives̃κ ≈ 85.78;
in (b) κ = 2 for which (31) givesκ̃ ≈ 13.02.

in (29) we obtain thatqΘ|Y (θ | y) is an MVM. Specifically,
let us writeM = {m1,m2, . . . ,mM} ⊆ {1, . . . , N − 1} and
defineR = {1, . . . ,m1}×. . .×{1, . . . ,mM}. Using the multi-
index r = (r1, . . . , rM ) ∈ R, we have

qΘ|Y (θ | y) = 1

Zθ

∑

r∈R

exp
{

ℜ
(

ξ∗
r
ejθ
)}

(33)

with
ξr = ηa + η̃m1,r1 + . . .+ η̃mM ,rM (34)

and the normalizing constantZθ = 2π
∑

r∈R I0(|ξr|). We
explicitly express (33) as an MVM where the amplitude, mean
and concentration of each of the mixture’s components are
given by the corresponding parameterξr:

qΘ|Y (θ | y) =
∑

r∈R

2πI0(|ξr|)
Zθ

fVM (θ; ξr). (35)

The numberm1 × . . . × mM of components in (35) can be
intractable. For the component with indexr to have an impor-
tant contribution to (35), its amplitude and concentrationmust
be high, i.e.,|ξr| be large. Based on the observation that only
a small fraction of them contribute significantly to the mass
of qΘ|Y , in the following we propose two heuristic methods
for representing (35) by a limited number of components.

C. Heuristic 1

The first heuristic is a greedy procedure aiming to find and
representqΘ|Y by only the D most dominant components
in (35). The idea is to progressively construct an approxi-
mation of (28) by sweeping through the index setM and
including in the approximation one additional index in each
step. In stepp, 1 ≤ p ≤M , we have a “partial” posterior pdf
given by the factors in (28) with indices{m1, . . . ,mp}, i.e.,
only p measurements are taken into account. The partial pdf
is an MVM with m1× . . .×mp components parameterized by
ηa+ η̃m1,r1 + . . .+ η̃mp,rp . As outlined in Algorithm 1, in each
step the heuristic procedure retains from the “partial” posterior
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Algorithm 1 Heuristic 1
Input: M, η, η0 andD
Output: ξ

1: Compute allη̃m,r = κ̃mejµ̃m,r in (31) and (32)
2: ξ(1) ← (ηa + η̃m1,r | 0 ≤ r ≤ m1 − 1)
3: for p = 2 to M do
4: ξ(p) ← D elements of

{

ξ
(p−1)
d + η̃mp,r

}

d,r
with

largest magnitudes9

5: end for
6: return ξ = ξ(M)

(at most)D components having the highest concentration pa-
rameters. The complexity of the greedy search isO(DMN).
The algorithm outputs theD parameters inξ which give

qΘ|Y (θ | y) ≈
D
∑

d=1

2πI0(|ξd|)
Z̃θ

fVM (θ; ξd) (36)

whereZ̃θ = 2π
∑D

d=1 I0(|ξd|). Now we can compute expec-
tations in closed-form. Using (36) and (26), we obtain

â =
2π

Z̃θ

D
∑

d=1

diag (Im1(|ξd|), . . . , ImM (|ξd|)) a(arg(ξd)).

Similarly, the frequency estimatêθ defined in (11) is given by

θ̂ = arg

(

2π

Z̃θ

D
∑

d=1

I1(|ξd|)ej arg(ξd)
)

.

D. Heuristic 2

The second approach is to search for the most domi-
nant component of the mixture (35), i.e., that with index
argmaxr∈R |ξr|. Then, we represent (35) by a single von
Mises pdf based on a second-order Taylor approximation
around the mean̄θ of that component. The intuition is that,
with sufficient SNR and numberM of measurements, the
pdf (35) would peak somewhere in the neighborhood ofθ̄.

Given that for eachm, |η̃m,r| does not depend onr, see (30),
to maximize |ξr| we have to look for thatr for which the
phases of the terms of (34) are best aligned. Such an alignment
is searched in a greedy way by Algorithm 2 whose complexity
isO(MN). Without loss of generality we assumem1 > . . . >
mM . The algorithm maintains a numberm1 of candidates and
proceeds in a progressive manner. In stepp, the lth candidate
ξ
(p)
l , 1 ≤ l ≤ m1, is obtained by adding the term whose phase

is closest to that ofξ(p−1)
l , i.e., having the index

r
(p)
l = argmax

0≤r≤mp−1

∣

∣

∣ξ
(p−1)
l + κ̃mp exp

(

j
µmp+2πr

mp

)∣

∣

∣ .

The closed-form update is given by lines5 and 6 of Al-
gorithm 2 where[·] is the nearest-integer function. We set
θ̄ = arg ξ

(M)
l⋆ with l⋆ = argmax1≤l≤m1

|ξ(M)
l |. Denoting the

exponent of (28) byf(θ) = ℜ
(

η∗a e
jθ +

∑

m∈M η∗m ejmθ
)

,
we make a second-order Taylor approximation off(θ) around

9ξ(p) has less thanD components whenm1 × . . .×mp < D.

Algorithm 2 Heuristic 2
Input: M, η andη0
Output: θ̂ and κ̂

1: Compute allη̃m,r = κ̃mejµ̃m,r in (31) and (32)
2: ξ(1) ← (ηa + η̃m1,r | 0 ≤ r ≤ m1 − 1)
3: for p = 2 to M do
4: for l = 1 to m1 do

5: r
(p)
l =

[

mp arg
(

ξ
(p−1)
l

)

−µmp

2π

]

6: ξ
(p)
l ← ξ

(p−1)
l + κ̃mp exp

(

j
µmp+2πr

(p)
l

mp

)

7: end for
8: end for
9: Determinel⋆ = argmaxl |ξ(M)

l | and setθ̄ = arg ξ
(M)
l⋆

10: return θ̂ = θ̄ − f ′(θ̄)

f ′′(θ̄)
and κ̂ = A−1

(

exp
(

0.5/f ′′(θ̄)
))

θ̄. Then we use the properties of the wrapped normal dis-
tribution [35, p. 50] and its similarity to the von Mises
distribution [35, p. 38] to arrive at

qΘ|Y (θ | y) ≈ fVM (θ; η̂)

with η̂ = κ̂ejθ̂, θ̂ = θ̄ − f ′(θ̄)

f ′′(θ̄)
and κ̂ = A−1

(

e0.5/f
′′(θ̄)
)

.

A useful approximation of the inverse of the functionA(·) =
I1(·)/I0(·) is given in [35, pp. 85–86]. Finally, we can easily
obtain the expected value ofa(Θ),

â = diag
(

Im1 (κ̂)

I0(κ̂)
, . . . ,

ImM
(κ̂)

I0(κ̂)

)

a(θ̂).

E. Illustrative examples

To illustrate the effectiveness of the proposed approxima-
tion, we give a few simple examples where exact pdfs ofΘ
of the formexp

{

ℜ
(

ηHa(θ)
)}

, i.e., as in (16), occur.
1) Coherent estimation: Let us consider the estimation of

the frequency of a single sinusoid when we know its weight
w. In this case, the posterior pdf is

pΘ|Y ,W (θ | y, w) ∝ exp

{

ℜ
(

2

ν
wyHa(θ)

)}

. (37)

Fig. 4a and 4b display snapshots of the pdf (37) and its
approximations for different settings ofM and SNR. When
the number of measurements and SNR are low (Fig. 4a top),
the pdf is spread across its domain. The MVM approxima-
tion (35) has1×2 = 2 components; Heuristic 1 follows closely
the exact pdf by keeping both components of the mixture,
while the single VM pdf given by Heuristic 2 captures the
dominant mode. Increasing the SNR (Fig. 4a bottom) makes
the pdf more concentrated and both approximations are tight
(in Heuristic 1, one component of the MVM has amplitude
almost one and therefore the other is irrelevant). The pdf
becomes more concentrated also by increasing the number of
measurements, even though the SNR is low (Fig. 4b top). Even
though the approximation (35) has10! components, among
the D = 1000 components output by Heuristic 1 only one
is relevant. In the case of incomplete data (Fig. 4b bottom),
the pdf (37) can have several significant modes. Among the



9

−2 0 2
0

0.5

1

θ (rad)

p Θ
|Y

,W

 

 
Exact
Heuristic #1
Heuristic #2

−2 0 2
0

2

4

6

θ (rad)

p Θ
|Y

,W

(a)

−2 0 2
0

5

10

15

θ (rad)

p
Θ
|Y

,W

 

 

−2 0 2
0

1

2

3

4

θ (rad)

p
Θ
|Y

,W

(b)

−2 0 2
0

2

4

6

8

θ (rad)

p Θ
|Y

 

 

−2 0 2

0

10

20

θ (rad)

|y
H
a
(θ
)|
2
/M

(c)

Fig. 4. (a) Snapshot of the pdf (37) and its approximations for θ = 0.5, M = {1, 2} and SNR= 0 dB (top), SNR= 10 dB (bottom). (b) Snapshot of the
pdf (37) and its approximations forθ = 0.5, SNR= 0 dB andM = {1, . . . , 10} (top), M = {1, 7, 10} (bottom). (c) Snapshot ofpΘ|Y in (38) and its
approximations forK = 3, θ1 = −2.28, θ2 = −0.04, θ3 = 1.39, M = {0, . . . , 9}, SNR= 3 dB (top); using a log scale (bottom).

D = 1 × 7 × 10 = 70 components provided by Heuristic 1
(with this setting ofD, all components in (35) are kept), only
12 have amplitudes larger than10−3. Heuristic 2 captures the
largest mode and misses the mass containing the trueθ.

2) Noncoherent estimation: Without knowing the weight
of the sinusoid, we can marginalizepΘ,W |Y and, assuming an
improper “flat” prior ofW , obtain

pΘ|Y (θ | y) =
∫

fCN(y;wa(θ), ν) dw ∝ exp

( |yHa(θ)|2
νM

)

.

(38)
The exponent of (38) is in fact the periodogram scaled by1/ν.
We write (38) in a form favorable for the MVM approximation.
First, let us defineM′ = {m− n | m,n ∈ M,m > n} with
cardinalityM ′ and the vector-valued functiona′ : [−π, π)→
CM ′

, ω → a′(ω) , (ejωm | m ∈ M′)T. By simply
developing|yHa(θ)|2 we arrive at

pΘ|Y (θ | y) ∝ exp
(

ℜ
(

2
νγ

Ha′(θ)
))

(39)

where, for eacht = 1, . . . ,M ′, γt = 1
M

∑

(k,l)∈Tt
yky

∗
l with

Tt = {(k, l) | 1 ≤ k, l ≤M,mk −ml = t}.10 Given (39), we
can approximatepΘ|Y as an MVM (35). In the log domain the
approximation provides a representation of the periodogram.

As an illustration, we takeK = 3 and plot a snapshot of
pΘ|Y (Fig. 4c top) and the log ofpΘ|Y scaled so as to give
the periodogram (Fig. 4c bottom). We can see again the good
agreement between the approximations and the exact curves.
The three lobes corresponding to each of the sinusoids are very
well represented by Heuristic 1 while Heuristic 2 picks up the
highest lobe. Due to the exponentiation,pΘ|Y is significant
only at the values ofθ for which a(θ) is well aligned withy.

10Actually, γ is the sample autocovariance ofy.

V. THE VALSE ALGORITHM

We define a schedule for iteratively updating the factors
of qΘ,W ,S|Y and estimateŝν, ρ̂, τ̂ derived in Sec. III,
and propose an initialization of the scheme.11 The resulting
algorithm, which we dub variational line spectral estimation
(VALSE), is outlined in Algorithm 3. Since each step increases
the lower bound (9), the algorithm converges to some local
maximum ofL. The stopping criterion can be defined in terms
of the relative change of some quantity (e.g.,x̂) from one
iteration to the next or a maximum number of iterations.

Algorithm 3 Outline of the VALSE algorithm
Input: Signal vectory, setM of measurement indices
Output: Model order estimateK̂, frequency and amplitude

estimates{(ω̂k, α̂k)}K̂k=1, reconstructed signal̂x
1: Initialize ν̂, ρ̂, τ̂ andqΘi|Y , i ∈ {1, . . . , N}; computeâi
2: repeat
3: Updateŝ, ŵŜ andĈŜ (Algorithm 4)
4: Updateν̂ (24), ρ̂ and τ̂ (25)
5: For all i ∈ Ŝ, updateηi (17) andâi (Sec. IV)
6: until stopping criterion
7: return ‖ŝ‖0, θ̂Ŝ , ŵŜ and x̂ (15)

While several initialization schemes can be imagined, we
choose to initialize{qΘi|Y }Ni=1 in a sequential manner. In the
first step, we assignqΘ1|Y the noncoherent pdf form (38) and
initialize the parameter estimates. For the latter, we useγ

in (39) (whose entries are estimates of the autocovariane func-
tion) to build a Toeplitz estimate ofE[yyH]. Then, we initialize
ν̂ with the average of the lower quarter of the eigenvalues of

11The alternating minimization scheme generates sequences of factors and
estimates which, for notational convenience, we will not index with iteration
numbers. It is to be understood that the update of one quantity depends on
the most recent updates of the rest of the quantities.
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that matrix. Given thatE[yHy]/M = ρNτ+ν, we setρ̂ = 0.5
and let τ̂ = (yHy/M − ν̂)/(ρ̂N). Then, in stepi, when we
have initialized the firsti− 1 pdfs, we compute the estimates
{ŵk}i−1

k=1 and the residualzi−1 = y−∑i−1
k=1 ŵkâk. Initializing

qΘi|Y ∝ exp
{

|zHi−1a(θ)|2/(νM)
}

, we can representqΘi|Y as
an MVM (see (38) and (39)) and computeâi.12

The complexity per iteration is dominated by the maximiza-
tion of lnZ(s) needed in line 3 (realized by Algorithm 4) and
the approximation of{qΘi|Y }i∈Ŝ by mixtures of von Mises
pdfs required in line 5 (using Algorithm 1 or Algorithm 2).
According to the analysis in Appendix A, the maximization
has complexityO(NK̂3) (actually, O(NK̂2) during most
of the iterations of VALSE). As indicated in Sec. IV, the
complexity of the MVM approximation isO(DMN) with
Heuristic 1 andO(MN) with Heuristic 2; thus, the update of
the pdfs of all frequencies with indices in̂S has complexity
O(K̂DMN), respectivelyO(K̂MN).

VI. SIMULATION EXPERIMENTS

In this section, we use computer simulations to assess
the performance of the VALSE algorithm and state-of-the-art
methods under different scenarios.

A. Setup, metrics and algorithms

Referring to (1), theK values {ωk}Kk=1 of the angular
frequencies are generated one-by-one:ωk is drawn from
U(−π, π) until a minimum (wrap-around) distance∆ω is
ensured betweenωk and each of thek − 1 previously gener-
ated values. The complex amplitudes{αk}Kk=1 are generated
randomly by drawing their magnitudes fromN (1, 0.1) and
phases fromU(−π, π). The noise samples contaminating
the observations (2) are independent and zero-mean complex
Gaussian distributed.

The following metrics are evaluated by averaging from 500
independent trials: the normalized mean square error of signal
reconstruction,E[‖x̂ − x‖22/‖x‖22]; the success rate, which
we compute as the empirical probability of̂K = K; and
frequency estimation error. For a given simulation point, the
frequency estimation error is evaluated only for the algorithms
that provide a success rate≥ 0.1 by averaging only the trials in
which all those algorithms output̂K = K. The assignment of
estimated components to the true ones is performed according
to the Munkres’ (or Hungarian) algorithm [37] with the cost
being the squared error of frequency estimates. We also
report the runtime per trial for different problem sizes as an
indicator of the complexity of the methods. The Cramér-Rao
lower bounds (CRLB) on the reconstruction and frequency
estimation errors are computed by assumingK is known.

We present the results for VALSE using Heuristic 2 to
compute the estimates{âi} in line 5 of Algorithm 3. In
general, we obtain very similar performances with Heuristic 1
and Heuristic 2, the latter being significantly faster. Even
though in the tough conditions of low SNR and/or few

12In the initialization we use Heuristic 2 to compute theâi’s because,
when the sinusoidal components have similar powers, Heuristic 1 will capture
contributions from the signal components that are not yet initialized, while
Heuristic 2 picks up the strongest one (see Fig. 4c).

measurements Heuristic 1 provides better representation of
the pdfs (see Fig. 4), we observed that in those conditions
Heuristic 1 has the tendency to underestimateK and provide
slightly lower success rate than Heuristic 2. We assume no
prior information about the frequencies is available, so we
set pΘi(θi) = 1/(2π), i = 1, . . . , N . Algorithm 3 stops at
iterationt if ‖x̂(t)− x̂(t−1)‖/‖x̂(t−1)‖ < 10−6 or the number
of iterations reaches 5000.

We also introduce a variant of our algorithm, called
“VALSE-pt”, which operates with point estimates of the
frequencies (as in the traditional approach). VALSE-pt addi-
tionally assumes thatqΘi|Y (θi | y) = δ(θi − θ̂i) for all i,
which gives that̂θi is the maximizer of (16) and̂ai = a(θ̂i).
We obtainθ̂i = argmaxℜ

(

ηH
i a(θi)

)

numerically. Except for
the computation of̂ai in line 5 of Algorithm 3, all the other
steps and settings of VALSE-pt and VALSE are identical.

For comparison, we evaluate the following state-of-the-
art methods described in the Introduction: atomic-norm soft-
thresholding13 (AST) [25]—only applicable in the complete
data case, the gridless-SPICE-based framework14 (GLS) [26],
enhanced matrix completion15 (EMaC) [29] and reweighted
atomic-norm minimization16 (RAM) [30]. To configure
algorithm-specific parameters, AST, EMaC and RAM require
knowledge of the noise power. For each of these three methods
we use the noise-variance estimation in [25], which computes
ν̂ by averaging a lower part of the eigenvalues of an estimate
of E[yyH]. EMaC and RAM require an upper bound on the
ℓ2 norm of the noise vector in order to search only among
candidate solutions whose distances to the measurementy are

less than the bound; we set this bound to
√

(M + 2
√
M)ν̂,

as suggested in [30].

B. Estimation from complete data

Fig. 5 displays the results of estimatingK = 5 sinusoidal
components fromM = N = 21 measurements at different
SNR values. The distance between any two frequencies is at
least ∆ω = 2π

N radians. VALSE outperforms the reference
methods at all SNR values and shows excellent performance
at SNR ≥ 10 dB, where the reconstruction and frequency
estimation errors are very close to the CRLB and the success
rate is almost one. AST and GLS estimate the model order
accurately as well in high SNR, but their success rates decrease
earlier. The success rate of AST seems to saturate at a value
slightly below one and degrades faster than that of GLS when
the SNR decreases. In Fig. 5a, the gap between AST and
VALSE increases for SNR≥ 10 dB, while GLS maintains
a constant gap of about0.5 dB. A similar behavior can be
also observed for the frequency estimation error in Fig. 5c.

13The software is available at https://github.com/badrinarayan/astlinespec.
We used the implementation via ADMM.

14The software was provided by the authors of [26]. We used the
implementation via ADMM [26].

15We used the software available at http://www2.ece.ohio-state.edu/∼chi/
research.html. The implementation uses the SDPT3 solver. Based on the
“cleaned” signal output by EMaC, we perform model order and parameter
estimation using Root-MUSIC and Akaike information criterion.

16The software was provided by the authors of [30]. The implementation
uses the SDPT3 solver.
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We have also evaluated the EMaC and RAM algorithms.
Since they did not provide significant improvements over AST
and for the clarity of the figures, we do not show those results.
In fact, we observed that EMaC and RAM perform well only at
high SNR (above20-25 dB) where their success rates approach
one; still, in this SNR regime, EMaC shows worse signal re-
construction and frequency estimation than AST, while RAM
provides slight improvement over AST. For SNR< 20 dB,
both EMaC and RAM are outperformed by AST in all metrics.
Our explanation for their not so good performance in the low-
to-moderate SNR region is that, according to our observations,
their performance is quite sensitive to the setting of the upper
bound on theℓ2 norm of the noise vector and therefore to the
accuracy of the noise variance estimate.

The gap between the success rates of VALSE-pt and VALSE
is due to the former’s tendency to overestimateK more
heavily. For example, at SNR= 15 dB, VALSE outputs
K̂ = 6 in 5 out of the500 simulation trials, while VALSE-pt
outputsK̂ = 6, 7 and10 components in53, 7 and respectively
1 trials. The discrepancy between their performance comes
from the way in whicĥai is computed in line 5 of Algorithm 3,
since this is the only difference between the two algorithms.
VALSE computesâi = EqΘi|Y

[a(Θi)], which involves the
expectations of the phasorsejnΘi . The more concentrated
qΘi|Y , the closer|EqΘi|Y

[ejnΘi ]| is to one and‖âi‖2 to
√
M .

Therefore, the uncertainty in frequency estimation captured by
qΘi|Y is reflected in̂ai. Consequently, the uncertainty impacts
all the other estimates, which in turn determine the component-
acceptance criterion, and therefore influences the model order
estimate. On contrary, VALSE-pt assignsâi = a(θ̂i) and thus
puts full certainty on the phasors’ estimates. Loosely speaking,
VALSE-pt might include excessive components because it
“overtrusts” them—this is what we also observe experimen-
tally.

C. Estimation from incomplete data

We now study the performance when the measurement data
is incomplete, i.e.,M < N . We consider the estimation of
K = 3 sinusoids whenN = 20 and SNR= 10 dB. The
frequencies are separated by at least∆ω = 2π

N . Based on the
previous analysis, in the comparison we include only the GLS
method. The results in Fig. 6a and 6b show that, forM ≥
14, VALSE estimatesx very accurately (close to the CRLB)
and selects the correct model order with a rate close to one.
On contrary, the reconstruction errors of GLS and VALSE-pt
are 1–2 dB larger in that range ofM . GLS provides a good
estimation ofK, although the success rate is always lower
than that of VALSE and decreases earlier when reducingM .
VALSE-pt shows a significantly lower success rate (again due
to overestimation). When the algorithms estimateK correctly,
both VALSE and VALSE-pt provide very accurate frequency
estimation, while GLS has larger errors.

D. Resolution capability

Next, we evaluate the performance of resolvingK = 2
sinusoids that are closely-spaced in frequency. We drawω1

from U(−π, π) and setω2 = ω1 + ∆ω (i.e., we impose an
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Fig. 8. Scaling of the runtime with the problem size. The simulation
points correspond to the following(N,M,K) triples:(25, 15, 2), (51, 30, 4),
(75, 45, 6), (100, 60, 8) and (200, 120, 16).

exact separation of∆ω, and not a minimum one as in the
previous experiments). Fig. 7 shows results forM = N = 51,
SNR = 10 dB and0.1 × 2π

N ≤ ∆ω ≤ 2 × 2π
N . We observe

that, for ∆ω > 0.5 × 2π
N , VALSE and GLS reconstruct the

signal similarly well and estimate the correct model order
with high probability (the success rate of VALSE seems to
cap at about 0.95 while that of GLS comes very close to 1).
When the two frequencies are separated by less than0.5× 2π

N ,
VALSE shows a significantly higher success rate compared
to GLS; the reconstruction performance of the latter also
degrades considerably. Fig. 7c shows that VALSE estimates
the frequencies accurately in the whole range of∆ω. AST,
EMaC and RAM provide significantly lower performance in
reconstructing the signal and selecting the model order, which
is inline with our observations in the first experiment.

E. Scaling with the problem size

To obtain an indication of how the complexity of VALSE
scales with the dimension of the problem, we evaluate the
runtime for different sizesN . We consider an incomplete-
data scenario in which the numberM of measurements
and model orderK scale with N and SNR = 20 dB.
The following (N,M,K) triples are investigated:(25, 15, 2),
(51, 30, 4), (75, 45, 6), (100, 60, 8) and (200, 120, 16). The
results in Fig. 8 clearly show that VALSE is computationally
advantageous compared to the benchmark methods. While
RAM’s runtime becomes quickly prohibitive, followed by
EMaC and GLS, VALSE is about10 times faster than GLS
whenN increases.

VII. C ONCLUSIONS

In this paper, we treated line spectral estimation (LSE) as
Bayesian inference in a probabilistic model of the frequencies
and coefficients. The latter were modeled by a Bernoulli-
Gaussian distribution, which turned model order selectioninto
detection of a binary sequence. To circumvent the deadlock
of exact inference we resorted to the variational approach in
which an approximate (surrogate) posterior pdf was computed
analytically by maximizing a lower bound on the model
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Fig. 5. Performance vs. SNR forM = N = 21 samples,K = 5 and minimum separation∆ω = 2π
N

: (a) normalized MSE of the reconstructed signal; (b)
success rate of model order estimation; (c) root MSE for frequency estimation.
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Fig. 6. Performance vs.M for K = 3, N = 20 samples, SNR= 10 dB and minimum separation∆ω = 2π
N

: (a) normalized MSE of the reconstructed
signal; (b) success rate of model order estimation; (c) rootMSE for frequency estimation.
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Fig. 7. Performance of resolvingK = 2 sinusoids separated by small∆ω; M = N = 51 samples, SNR= 10 dB and0.1 × 2π
N

≤ ∆ω ≤ 2 × 2π
N

: (a)
normalized MSE of the reconstructed signal; (b) success rate of model order estimation; (c) root MSE for frequency estimation.

evidence. Contrary to related works which compute point esti-
mates of the frequencies, we considered estimating and work-
ing with their posterior probability density functions (pdfs).
We showed that these pdfs can be very well approximated by
mixtures of von Mises pdfs, which enables computation of
closed-form expectations. In fact, our simulations show that
the representation by one von Mises pdf seems appropriate.
The resulting VALSE algorithm increases the lower bound on
the model evidence in each step and hence is convergent. Since
all the parameters are estimated, VALSE does not require
any fine tuning by the user. Simulation results advocate our
fully Bayesian approach of representing and operating withthe

uncertainty in frequency estimation, as we obtain significantly
improved performance compared to just using point estimates.
VALSE shows an excellent performance (often close to the
Cramér-Rao bound), consistently better than the benchmark.

Our method can straightforwardly include prior knowledge
about the frequencies in the form of von Mises pdfs or mix-
tures of such pdfs if multimodal distribution are desired. The
fact that VALSE conveniently represents posterior distributions
allows for estimating the uncertainty in the estimation. Also,
the pdfs can be subsequently used as prior pdfs in applications
that rely on line spectral estimation. As an outlook, we expect
that finding a better variational approximation, in which the
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surrogate pdf does not fully factorize over the frequencies
yet still facilitates tractable inference, would further improve
performance, especially in situations where the frequencies are
very closely spaced.

APPENDIX A
FINDING A LOCAL MAXIMUM OF lnZ(s)

To find the globally optimal binary sequences would
require2N evaluations oflnZ(s) given by (21). Inspired by
the iterative search strategy proposed in [31], we seek a locally
optimal solution in a progressive manner. In stepp, the utility
of the reference sequences(p) is compared to theN utilities
corresponding toN test sequences. Specifically, thekth test
sequencetk is obtained by flipping thekth location ofs(p).
The change∆(p)

k = lnZ(tk)− lnZ(s(p)) is evaluated for each
k = 1, . . . , N , and the test sequence giving the highest positive
change is used as the reference sequences(p+1) in the next
step. If∆(p)

k < 0 for all k = 1, . . . , N , then the search stops
and we set̂s = s(p). The search starts with a certain initial
reference sequences(0) and converges in a finite number of
steps to some locally optimal sequence. Although (21) involves
a matrix inversion, the changes∆(p)

k , k = 1, . . . , N , can be
efficiently computed in each stepp as follows.

Assume we change a sequences into a sequences′ by
flipping the bit at thekth location. Whenk /∈ S, i.e. sk = 0,
s′k = 1 andS ′ = S∪{k}, we say thekth location is activated.
Using the formulas for block-matrix determinant and block-
wise matrix inversion, we writelnZ(s′)− lnZ(s) as

∆k = ln
vk
τ

+
|uk|2
vk

+ ln
ρ

1− ρ
. (40)

where

vk = ν
(

M +
ν

τ
− ν−1jHk ĈSjk

)−1

uk = ν−1vk(hk − jHk ŵS)
(41)

with jk = (Jik | i ∈ S)T. Upon changings into s′, we use
rank-one updates for the mean and covariance of the weights

ŵ′
i =

{

uk, i = k,
ŵi − ĉHi jkuk, i ∈ S. (42)

and
(

Ĉ′
S ĉ′k

ĉ′
H

k Ĉ′
kk

)

=

(

ĈS 0

0 0

)

+vk

(

ĈSjk
−1

)(

ĈS jk
−1

)H

(43)
Thus, by activating thekth component, the posterior mean and
variance ofWk areuk andvk, respectively.

In the case of deactivation, i.e.,sk = 1, s′k = 0 andS ′ =
S \ {k}, the changelnZ(s′)− lnZ(s) is given by

∆k = − ln
Ĉkk

τ
− |ŵk|2

Ĉkk

− ln
ρ

1− ρ
. (44)

We can again develop efficient updates: for alli, j ∈ S ′,

ŵ′
i = ŵi −

Ĉik

Ĉkk

ŵk and Ĉ′
ij = Ĉij −

ĈikĈkj

Ĉkk

. (45)

The iterative maximization is given by Algorithm 4. The
most expensive computation is to obtainuk for all k /∈ S

(in line 3). It requiresO((N − l)l2) operations, wherel =
‖s‖0 is the current number of active locations. If in line1 we
initialize s = 0 (i.e., l = 0), the algorithm will execute the
while loopO(K̂) times to output̂s, whereK̂ = ‖ŝ‖0. This
gives the overall complexityO(NK̂3). However, in line1 we
can initializes with ŝ from the previous iteration of VALSE
(Algorithm 3). In this case, we observed that in each iteration
of VALSE (except for the first one), the number of locations
of ŝ that are changed by Algorithm 4 is very small (in fact,
often zero!). Thus, empirically, the complexity of Algorithm 4
during most of the iterations of VALSE isO(NK̂2).

Algorithm 4 Algorithm for maximizinglnZ(s)

Input: J, h, ν andρ
Output: ŝ, ŵŜ andĈŜ

1: Initialize s and computêwS andĈS (20)
2: while true do
3: For eachk /∈ S, computeuk andvk (41), and∆k (40)
4: For eachk ∈ S, compute∆k (44)
5: if {k | ∆k > 0} 6= ∅ then
6: k∗ = argmaxk ∆k

7: If sk∗ = 0 compute (42) (43), else compute (45)
8: sk∗ ← sk∗ ⊕ 1
9: else

10: break
11: end if
12: end while
13: return ŝ = s, ŵŜ = ŵS andĈŜ = ĈS

APPENDIX B
APPROXIMATION OF WRAPPED VONM ISES DISTRIBUTIONS

TheN -fold wrapped VM distribution is invariant under the
transformationΘ 7→ Θ+ 2π

N [35, p. 52]. Its pdf isfVM (Nθ; η),
for someη = κejNµ. The N modes of the pdf have equal
amplitudes and are evenly distributed around the circle, i.e.,
they are atµ+2πn/N , n = 0, . . . , N − 1. We show that such
a distribution is well approximated by an appropriate mixture
of von Mises distributions (MVM) obtained by matching their
characteristic functions. Our result extends the one in [35, p.
54] which proposes the approximation forN = 2.

The characteristic functionϕ′
p, p ∈ Z, of a random variable

having anN -fold wrapped VM distribution is

ϕ′
p =

∫ 2π

0

ejpθ
1

2πI0(κ)
eκ cosN(θ−µ) dθ

=
ejpµ

2πI0(κ)

N−1
∑

n=0

∫ 2π(n+1)/N

2πn/N

ejpθ eκ cosNθ dθ

=
ejpµ

2πI0(κ)

N−1
∑

n=0

ej2π
p
N n

∫ 2π/N

0

ejpθ eκ cosNθ dθ

=
ejpµ

2πI0(κ)

1

N

N−1
∑

n=0

ej2π
p
N n

∫ 2π

0

ej
p
N θ eκ cos θ dθ (46)

The sum of a geometrical progression in (46) amounts to

1

N

N−1
∑

n=0

ej2π
p
N n =

{

1, if pmodN = 0,
0, else.

(47)
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Finally, we obtain the characteristic function

ϕ′
p =

{

ejpµ
Ip/N (κ)

I0(κ)
, if pmodN = 0,

0, else.
(48)

Given the properties of theN -fold wrapped VM pdf, we
choose the approximating MVM pdf

1

2πI0(κ̃)N

N−1
∑

n=0

eκ̃ cos(θ−µ̃−2πn/N),

i.e., the pdf hasN components with equal amplitudes, evenly
spaced means̃µ+2πn/N , n = 0, . . . , N−1, and concentration
parameters equal tõκ. The characteristic functionϕ′′

p , p ∈ Z,
is obtained as

ϕ′′
p =

∫ 2π

0

ejpθ
1

2πI0(κ̃)N

N−1
∑

n=0

eκ̃ cos(θ−µ̃−2πn/N) dθ

=
ejpµ̃

2πI0(κ̃)

1

N

N−1
∑

n=0

ej2π
p
N n

∫ 2π

0

ejpθ eκ̃ cos θ dθ

Using (47) again, we obtain

ϕ′′
p =

{

ejpµ̃
Ip(κ̃)
I0(κ̃)

, if pmodN = 0,

0, else.
(49)

We want to findµ̃ andκ̃ that provide a good match between
ϕ′
p andϕ′′

p , for all p ∈ Z. Settingµ̃ = µ, we obtainarg{ϕ′
p} =

arg{ϕ′′
p}, for all p. As to the magnitudes, we equate the first

nonzero values of the characteristic functions, i.e.,ϕ′
N = ϕ′′

N ,
and obtain the transcendental equation inκ̃

IN (κ̃)

I0(κ̃)
=

I1(κ)

I0(κ)
(50)

To show that (50) yields a good approximation|ϕ′′
p | ≃ |ϕ′

p|
for any p, we make use of the fact that the VM distribution
characterized byµ and κ can be well approximated by a
wrapped normal distribution with mean directionµ and mean
resultant lengthρ = A(κ) , I1(κ)/I0(κ) [35]. While the
approximation is tight for largeκ, it is still satisfactory for
intermediate values ofκ. Therefore, the characteristic function
ejµpρp

2

of the wrapped normal distribution approximates that
one of a VM distribution. Based on (26), we can thus write:

Ip(κ)

I0(κ)
≃ ρp

2

, (51)

for all p ∈ Z and ρ = A(κ). Next, we defineρ̃ by ρ̃N
2

=
IN (κ̃)/I0(κ̃). According to (50),ρ̃N

2

= ρ. Thus, using (51),
we obtain that, for allp ∈ Z, pmodN = 0,

Ip/N (κ)

I0(κ)
≃ ρp

2/N2 ≃ (ρ̃)p
2 ≃ Ip(κ̃)

I0(κ̃)
.

In conclusion, setting̃µ = µ and solving (50) for̃κ, we find
a good approximationϕ′′

p ≃ ϕ′
p for all p and thus can write

fVM (Nθ;Nµ, κ) ≃ 1

N

N−1
∑

n=0

fVM (θ;µ+ 2πn/N, κ̃). (52)

An approximate solution to (50) can be found by using (51)
to arrive at [A(κ̃)]N

2

= A(κ), whereA(·) = I1(·)/I0(·).
Approximations of the functionA(·) and its inverse are well
studied, see [35, p. 40] and [35, pp. 85–86].
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