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A B S T R A C T

Large biobanks exist worldwide containing formalin-fixed, paraffin-embedded samples and samples
stored in RNAlater. However, the impact of tissue preservation on the result of a quantative proteome
analysis remains poorly described.
Human colon mucosal biopsies were extracted from the sigmoideum and either immediately frozen,

stabilized in RNAlater, or stabilized by formalin-fixation. In one set of biopsies, formalin stabilization was
delayed for 30 min. The protein content of the samples was characterized by high throughput
quantitative proteomics.
We were able to identify a similar high number of proteins in the samples regardless of preservation

method, with only minor differences in protein quantitation.
ã 2015 The Authors. Published by Elsevier B.V. on behalf of European Proteomics Association (EuPA). This
is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/

4.0/).

1. Introduction

Clinical proteomic research is dependent on the availability of
clinical samples. Proteomics can provide information concerning
disease etiology, biomarkers for diagnosis, response to therapy and
novel drug discovery [1]. A rapid stabilization of the sample with
elimination of enzymatic and cell activity is critical to preserve the
biological state of the material. A commonly used method for
sample stabilization is by directly freezing (DF) the samples with
liquid nitrogen at �196 �C or dry ice at �79 �C, which preserves the
sample with minimal introduction of chemical modifications.
Biobanks containing DF samples, formalin-fixed, paraffin-embed-
ded (FFPE) tissue samples, and samples stored in RNAlater
constitute vast sources of samples, whereof especially the latter
remains largely unexploited for proteomics analysis [2,3]. Due to
standard hospital and clinic protocols a delay between sample
extraction and sample stabilization can be expected for most
samples in biobanks [4]. However, the impact of RNAlater
preservation on human tissue samples on the result of a quantative
proteome study, as well as the impact of delaying tissue
stabilization, remains poorly described.

Abbreviations: CAN, acetonitrile; FA, formic acid; FDR, false discovery rate; DF,
directly-frozen; FASP, filter-aided sample preparation; FFPE, formalin-fixed; HLA-A
class I, histocompatibility antigen A-23 alpha chain; HLA-DRB1 class II,
histocompatibility antigen DRB1-4 beta chain; LFQ, label-free quantification;
iFFPE, immediately formalin-fixed; PCA, principle component analysis; PSM,
peptide spectral match; PTM, post-translational modification; s, standard devia-
tion; sFFPE, stored for 30 min prior to formalin-fixed; SDC, sodium deoxycholate;
SDS, sodium dodecyl sulfate; TEAB, triethylammonium bicarbonate.
Significance: We have demonstrated the feasibility in conducting proteome analysis
of samples stabilized in RNAlater and formalin fixed, paraffin-embedded samples,
and propose analysis strategies for both. Especially RNAlater preservation was
found to be a promising alternative to snap freezing samples for proteomics studies,
making a simple and uniform sample preservation possible for proteomic,
transcriptomic, and genomic studies. Delaying tissue stabilization with formalin-
fixation for 30 min only had a minor impact on the result of the analysis. Our study
demonstrated the feasibility in conducting analysis of samples stored in biobanks to
extrapolate retrospective information for studies in diagnosis, response to therapy,
and novel drug discovery.
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RNAlater is primarily used to stabilize the RNA content of
samples for clinical genomic and transcriptomic analysis, and
samples stored in RNAlater have been used extensively in DNA and
RNA studies. The RNAlater solution contains high concentration of
quaternary ammonium sulfates and cesium sulfate which dena-
ture proteins, including DNases, RNases, and proteases, thereby
stabilizing the DNA, RNA, and protein content [5,6]. A few studies
have investigated the feasibility in retrieving proteins from
samples stored in RNAlater [5,7–10]. Saito et al.have demonstrated
the feasibility of retrieving proteins from bacteria stored in
RNAlater with a high number of identified proteins, and a similar
relative protein abundance compared with frozen bacteria [9]. Han
et al. [10] have performed a protein-based biomarker discovery
study on human tissue stored in RNAlater identifying hundreds of
different proteins. However, no studies have investigated the
impact on the extracted protein abundances using human tissue
samples, nor the impact on the post-translational modifications
(PTMs) of preserving samples in RNAlater, which is critical for the
subsequent data analysis. The feasibility in conducting a reliable
proteome analysis of tissue stored in RNAlater would make
coupled transcriptomics and proteomics analysis accessible for
rigorous and comprehensive molecular assessment [9].

The stability of FFPE tissue mainly arises due to molecular
crosslinking of proteins which are established during formalin-
fixation [11,12]. The crosslinks arise as the product of a three step
modification: (1) formalin reacts with the amino or thiol groups on
the amino acids leading to methylol additions. (2) The methylol
adduct on the primary amino groups is partially dehydrated
leading to the formation of labile Schiff bases, (3) which can form
crosslinks between several amino acids, i.e., arginine, asparagine,
cysteine, glutamine, histidine, tryptophan, and tyrosine [11,12].
FFPE samples are highly stable and the histological and morpho-
logical architecture of the tissue is preserved [2,13]. As a result,
samples are routinely acquired as clinical diagnostic biopsies and
large repositories have been generated worldwide [2,13]. Several
proteomic studies have demonstrated the feasibility in extracting
and identifying proteins from FFPE samples using proteomics
techniques [2,3,14–21].

The aims of the study were to investigate the impact on the
result of a quantative proteome study of (1) preserving human
tissue samples in RNAlater compared to DF and FFPE, and (2)
delaying tissue stabilization for 30 min, in terms of protein
abundances, protein modifications, and protein denaturation.
We, therefore, examined methods for protein extraction from
tissue preserved in RNAlater solution or by FFPE, with DF tissue as a
control, comparing the result of a LC–MS/MS-based proteome
analysis. We focused our analysis on a set of soft tissue colon
biopsies extracted for the purpose of this study to demonstrate the
potentials in biobank analysis with the suggested protocols. The
filter-aided sample preparation (FASP) method is commonly used
for preparing samples prior to bottom-up proteomics analysis.
Molecular cutoff spin filters are central in the FASP protocol, which
facilitates efficient and easily conducted buffer changes, beneficial
in relation to protein extraction from tissue in RNAlater solution to
remove salts [22–24]. For FFPE samples we adapted the de-
crosslinking method from Wakabayashi et al. [16] for use in a FASP
protocol. Additionally, we implemented a buffer optimization
recommended by Kawashima et al. [25] to enhance the yield of
protein extraction.

2. Materials and methods

2.1. Collection of sample material

Colon mucosal biopsies were sampled from the sigmoideum of
two gastroenterological healthy persons, by endoscopy at Hospital

of Southern Jutland, Aabenraa, Denmark. Twelve biopsies were
extracted from each person approximately 40 cm from the anus,
kept constant for each person. All biopsies had an approximate size
of 1–2 mm3, and the biopsies were preserved by four different
methods. Directly frozen biopsies (DF) were immediately trans-
ferred to individual cryotubes and within 10–20 s snap frozen with
liquid nitrogen followed by storage at �80 �C. RNAlater biopsies
were immediately transferred to individual cryotubes prefilled
with 0.5 mL RNAlater (Life Technologies, Carlsbad, CA, USA), stored
at room temperature for 24 h followed by storage at �80 �C,
according to manufacturer’s instructions. FFPE biopsies were
following extraction within 10–20 s placed in preparation car-
tridges. Biopsies were either immediately (iFFPE) stabilized in 4%
formaldehyde, or stored for 30 min at ambient temperature before
stabilization with 4% formaldehyde (sFFPE) to simulate a clinical
situation. Paraffin embedding was performed after a week at
Department of Pathology, Aalborg University Hospital, Denmark,
according to current standards. All samples were stored for a total
of one month prior to proteomics sample preparation and analysis.

The project was approved by The Regional Scientific Ethical
Committee (S-20120204) and the Danish Data Protection Agency
(2008-58-035), and all participants had given informed consent to
participate in the study.

2.2. Proteomics sample preparation

We utilized a modified FASP tryptic protein digestion protocol
for the sample preparation, with ethyl acetate phase inversion to
facilitate surfactant removal [22–24,26,27]. Wakabayashi et al. [16]
utilized a lysis buffer with 100 mM Tris–HCl for the protein
extraction. However, Kawashima et al. [25] found that increasing
the concentration of Tris–HCl in the lysis buffer to 300 mM
significantly improved the efficiency of the protein extraction,
which we implemented in the FASP protocol.

RNAlater and DF preserved samples were homogenized in
0.5 mL lysis buffer (12 mM sodium deoxycholate (SDC), 12 mM
sodium dodecyl sulfate (SDS) in 300 mM Tris/HCl, pH 9.0) with
steel beads, using a Bullet Blender Gold power-setting 10 for 5 min
(Next Advance Inc., Averill Park, NY, USA). The homogenized
samples were incubated at 95 �C for 10 min and sonicated for
10 min.

FFPE tissues were extracted using a scalpel, deparaffinized and
rehydrated by washing in xylene (3�), and in 100% ethanol (2�),
96% ethanol (2�), 70% ethanol (2�), water. The samples were
homogenized in 0.5 mL lysis buffer with steel beads, using a Bullet
Blender Gold power-setting 10 for 5 min (Next Advance Inc., Averill
Park, NY, USA). The homogenized samples were incubated at 95 �C
for 60 min for de-crosslinking formalin fixation, and sonicated for
10 min [16].

The total lysate protein concentration was determined using a
bicinchoninic acid assay (BCA) for normalization of sample
material with BSA as standard, as well as absorbance at 280 nm
(A280) using a NanoDrop 1000 UV–vis Spectrophotometer
(Thermo Scientific, Waltham, MA, USA). For each sample, a volume
corresponding to 100 mg protein was transferred to individual YM-
30 kDa spin filters for digestion (Millipore, Billerica, MA, USA) and
centrifuged. All centrifugation steps were performed at 14,000 g
for 15 min at 4 �C. Protein disulfide bonds were reduced with
12 mM tris(2-carboxyethyl) phosphine (Thermo Scientific, Wal-
tham, MA, USA) for 30 min at 37 �C, and alkylated with 50 mM
chloroacetamide (Sigma–Aldrich, St. Louis, MO, USA) for 20 min at
37 �C, and centrifuged after each step. The cysteine alkylation was
done using chloroacetamide instead of iodoacetamide specified in
the original protocol [24]. The protocol modification was intro-
duced as specificity issues have been reported with iodoacetamide
alkylation, and chloroacetamide has been suggested as an
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alternative [28,29]. The reducing and alkylating agents were
dissolved in 120 mM SDC in 50 mM triethylammonium bicarbon-
ate (TEAB), pH 8.5. In preparation for digestion, 400 mL digestion
buffer (12 mM SDC in 50 mM TEAB) was added to the spin filter and
centrifuged. A 1:50 (w/w) trypsin:protein ratio dissolved in 50 mL
digestion buffer was added to the spin filter, and the samples were
digested overnight at 37 �C. The flow-through containing the
peptides was retrieved by addition of 50 mL digestion buffer and
centrifugation. To facilitate SDC removal, a phase separation was
performed with 3:1 (v/v) ethyl acetate:sample and acidified by
addition of formic acid (FA) to a final concentration of 0.5%. Total
phase separation was achieved by 2 min agitation followed by
centrifugation. The aqueous phase was collected and vacuum
centrifuged overnight and the dry peptide product was stored at
�80 �C until time of analysis.

2.3. Mass spectrometry analysis

The samples were resuspended in 2% acetonitrile (ACN), 0.1%
FA, briefly sonicated, and 5 mg total peptide material was analyzed
per LC–MS analysis, in a random sample order [30]. The samples
were analyzed using a UPLC-nanoESI MS/MS setup with an
NanoRSLC system (Dionex, Sunnyvale, CA, USA). The system was
coupled online with an emitter for nanospray ionization (New
objective picotip 360-20-10) to a Q Exactive Plus mass spectrome-
ter (Thermo Scientific, Waltham, USA). The peptide material was
loaded onto a 2 cm trapping reversed phase Acclaim PepMap RSLC
C18 column (Dionex), and separated using an analytical 50 cm
reversed phase Acclaim PepMap RSLC C18 column (Dionex). Both
columns were kept at 40 �C. The sample was eluted with a gradient
of 96% solvent A (0.1% FA) and 4% solvent B (0.1% FA in ACN), which
was increased to 10% solvent B on a 1 min ramp gradient at a
constant flow rate of 300 nL/min. Subsequently, the gradient was
raised to 30% solvent B, on a 180 min ramp gradient. The mass
spectrometer was operated in positive mode, selecting up to 12
precursor ions with a mass window of m/z 1.6 based on highest
intensity for HCD fragmenting, at a normalized collision energy of
27. Selected precursors were dynamically excluded for fragmenta-
tion for 30 s.

The MS proteomics data have been deposited to the Proteo-
meXchange Consortium via the PRIDE partner repository with the
dataset identifier PXD002029 [31,32].

2.4. Peptide modification analysis

We conducted a PTM analysis with the purpose of identifying
the most commonly single observed peptide modifications, based
on the data from the colon biopsies. Mascot generic format files

were generated from the raw data-files in Proteome Discoverer 1.4
(Thermo Scientific, Waltham, USA). The Mascot generic format files
were searched individually using ProteinPilot 4.5 (Rev. 1656,
Paragon algorithm 4.5.0.0 [33]) (SCIEX, Framingham, USA) against
the Uniprot Homo sapiensreference proteome (UP000005640, last
modified 2015-01-16, protein count 68,015). The files were
searched in “thorough” mode with a focus on biological
modifications to include 303 different PTMs. To give a representa-
tion of the global PTM distribution the search result was analyzed
using ProteinPilot Descriptive Statistics Template version 3.001
(SCIEX) according to manufacturers’ instructions. The statistics
template included the first 20,000 peptide spectral matches
(PSMs) resulting in the identification of peptides with <1% local
peptide false discovery rate (FDR). A stricter filtering setting than
the standard <5% local peptide FDR was applied for included
peptides, to ensure that only high confidence data was included in
the analysis.

2.5. Protein identification and quantitation data analysis

A label-free relative quantitation analysis was performed in
MaxQuant 1.5.1.2. The rawfiles were searched against the
previously mentioned H. sapiens Uniprot database [34,35]. All
standard settings were employed with carbamidomethyl (C) as a
static peptide modification, and deamidation (NQ), oxidation (M),
formylation (N-terminal and K), and protein acetylation (N-
terminal) as variable modifications. The output containing the
list of proteins identified below 1% FDR and their abundances was
further filtered and processed in Perseus v1.5.0.31. Initially, all
reverse hits and proteins tagged as contaminants were removed
from further analysis, and the data was log 2-transformed. Two
unique peptides or more was required for a protein quantitation.
Additionally, a non-zero quantitation value in at least two of the six
biopsies from minimum one preservation method was required for
the quantifiable proteins. To characterize proteins unique to a
given preservation method, Gene Ontology-annotations were
imported from Uniprot knowledgebase when available for all
proteins using STRAP v1.5 [36]. A principle component analysis
(PCA) was performed in Perseus, with all measured protein
abundances as input. As PCA does not allow missing values (i.e.,
proteins where a quantitation value was not obtained for a given
replicate analysis), missing values were replaced with values from
a normal distribution (width 0.3 and down shift 1.8) to simulate
signals from low abundant proteins [37]. The grouping of the
replicates on the PCA scores plots was investigated.

To investigate the measured protein abundances across the
different preservation methods, the protein abundances were
combined method-wise by the mean. The data was investigated by

Fig. 1. Representative two-dimensional LC–MS heat maps from the analysis of the colon biopsies preserved by (a) direct freezing (DF), (b) RNAlater, or (c) immediate
formalin-fixed, paraffin-embedded (iFFPE).
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scatterplots and Pearson’s correlation coefficients were calculated
in Perseus. Protein physicochemical properties were calculated
using ProtParam on the ExPASy Server for physicochemical bias
analysis [38].

3. Results

3.1. Peptide modification analysis

All samples were analyzed by LC–MS without contaminants
interrupting the stable spray, such as incompletely removed salts.
We generated and inspected 2D LC–MS heat maps (Fig. 1) and no
repetitive intense signals could be observed, which would have
indicated remaining detergents or polymers in the samples. To
facilitate the identification of modified peptides and elucidate
tentative preservation method specific modifications, we per-
formed a peptide PTM analysis of the data from the 24 colon
biopsies (six from each preservation method) in ProteinPilot,
which included 303 different modifications. The analysis elucidat-
ed the presence of PTMs on the peptide level from the DF, RNAlater,
iFFPE, and sFFPE preserved biopsies (Table 1). For all four
preservation methods, at least half of all peptides were identified
in a modified state. As expected, the lowest number of modified
peptides were identified in the DF preserved samples. A similar
ratio of modified peptides was found in the iFFPE and sFFPE
preserved tissues, and the highest ratio of modified peptides was
found in the RNAlater preserved tissue. Formylated N-terminals
and formylated lysines (K) were expected artifacts in the FFPE
preservation methods as they are introduced during the formalin
fixation. Accordingly, a higher ratio of peptides carrying the
modifications was found in the iFFPE and sFFPE preserved samples,
compared to RNAlater and DF (Table 2). Finally, an increased
number of deamidated peptides (N and Q) were identified in the
FFPE preserved biopsies compared to DF or RNAlater. Based on the
PTM analysis, carbamidomethyl (C), oxidation (M), deamidated (N
or Q), formyl (N-term or K) and acetyl (protein N-term)
modification were included in the subsequent data analysis.

3.2. Preparation method specific proteins

The LC–MS raw-data from the colon biopsies were processed in
MaxQuant to identify and quantify proteins. A similar mean
number of proteins were identified from the biopsies preserved by
DF and RNAlater, namely 3840 and 3718 proteins (Fig. 2). Biopsies
preserved by iFFPE and sFFPE yielded a statistically significant
lower number of identified proteins (p < 0.05) as determined by a
two-sample t-tests, compared to DF and RNAlater, namely
3384 and 3328 proteins. The difference in mean number of
identified proteins between iFFPE and sFFPE was minor and not
found to be statistically significant (p > 0.05). This indicated that
the 30 min stored prior to stabilization of the sFFPE preserved
colon biopsies did not result in protein degradation to an extend
that had an impact on the number of identifiable proteins.

The mean protein abundances were calculated for each
preservation method, and the overlap between quantifiable
proteins were investigated (Fig. 3). A higher number of proteins
were quantifiable in biopsies preserved by DF and RNAlater
compared to iFFPE, and 5.9% (202) of the proteins were not found
with iFFPE. However, 90.2% (3072) of all quantifiable proteins were
found using either method.

We next investigated if any of the methods systematically
enriched or categorically lost specific protein groups, based on the
proteins unique to any methods. All quantifiable proteins were
classified by subcellular location using available data from Uniprot
Knowledgebase Gene Ontology (Fig. 4). We choose to compare
proteins, which were uniquely quantifiable in the iFFPE preserved
biopsies, to the combined list of proteins unique in the RNAlater or
the DF preserved biopsies. RNAlater and DF unique proteins were
combined into one group as the lists of quantified proteins using
the two methods were nearly identical sharing a 96.8% (3274)
overlap. The analysis revealed only minor differences in subcellular
location of the proteins unique to DF and RNAlater compared to all
proteins quantified in the DF preserved biopsies. Biopsies
preserved by iFFPE appeared to be enriched for ER and nucleus
proteins, compared to the DF preserved biopsies. However, only
23 proteins were unique to the iFFPE preserved biopsies, and 98.7%
(3114) of the proteins quantified in iFFPE were also quantified in
the biopsies preserved by the DF preserved biopsies as well, so the
differences are minor.

We next investigated the molecular weight and isoelectric point
of the method specific proteins. The mean molecular weight and
standard deviation (s) were 68,183 Da (s = 85,398 Da) for all DF
proteins, 64,950 Da (s = 59957 Da) for proteins unique to DF and
RNAlater, and 92,626 Da (s = 78,930 Da) for iFFPE unique proteins.
The 23 iFFPE unique proteins have a higher mean molecular weight
than the DF proteins, but, the variance is likewise higher. Likewise,
the mean isoelectric points of the proteins was 6.72 (s = 1.63) for all
DF proteins, 6.71 (s = 1.59) for DF and RNAlater unique proteins, and
6.89 (s = 1.81) for iFFPE unique proteins. As such, only minor
differences could be detected in the molecular weight and the
isoelectric point between the proteins unique to any method
compared to all DF proteins.

3.3. Principle component analysis

We performed a PCA to investigate how the measured protein
abundances vary between the differently preserved biopsies. A
PCA is a statistical analysis technique that allows for reducing a
large number of variables to a smaller number of groups (principle
components). The data can be visualized on scores plots based on
the principle components, and e.g., be used to interpret how
samples in a dataset are separated/grouped based on the variance
of all measured protein abundances. In effect, a PCA can be used to
interpret the variance in a highly complex dataset, such as a high
throughput proteomics dataset [27,39].

Table 1
Peptide properties. Analysis of the first 20,000 peptide spectral matches (PSMs) resulting in the identification of peptides with <1% local peptide false discovery rate (resulting
peptide confidence listed). DF: directly frozen biopsies, RNAlater: biopsies preserved directly in RNAlater, iFFPE: immediate formalin-fixed, paraffin-embedded biopsies,
sFFPE: biopsies stored for 30 min prior to formalin-fixation, paraffin-embedding. The termini of the identified peptides is given, with expecting termini being tryptic.
Carbamidomethylated cysteines are not counted as a PTM, as the modification is deliberately introduced prior to digestion with trypsin. Standard deviations are given (�s).

DF (%) RNAlater (%) iFFPE (%) sFFPE (%)

Unmodified peptides 55.5 � 2.5 56.0 � 0.6 50.7 � 3.8 49.9 � 2.2
Modified peptides 44.5 � 2.5 44.0 � 0.6 49.3 � 3.8 50.1 � 2.2
Peptide confidence 97.7 � 0.39 98.0 � 0.25 98.1 � 0.3 98.0 � 0.3
Tryptic termini 95.0 � 0.4 94.9 � 0.4 95.5 � 0.5 95.8 � 0.3
Semi-specific (only one tryptic terminus) 5.0 � 0.4 5.0 � 0.4 4.4 � 0.5 4.1 � 0.3
Non-specific (neither terminus tryptic) 0.0 � 0.1 0.0 � 0.0 0.1 � 0.0 0.1 � 0.0

12 T.B. Bennike et al. / EuPA Open Proteomics 10 (2016) 9–18



All measured protein abundances in all colon biopsy samples
were used as input for the PCA, and a two-dimensional scores plot
was constructed (Fig. 5a). A scores plot describe how the biopsies

group relative to one another, based on the differences in measured
protein abundances of all proteins. Biopsies in which similar
protein abundances have been measured will be close in space on
the scores plot, relative to the other biopsies. Principal component
1 and principle component 2 represent the largest and second
largest variance in the protein abundance dataset, respectively, and
explained 34.4% of the variance in the protein abundance in this
dataset. In all cases, the biopsies from the individual participants
grouped together. Principal component 1 mainly separated the DF
and RNAlater preserved biopsies from the FFPE preserved biopsies,
whereas principle component 2 mainly separated the two
participants from which the biopsies originated.

The impact of each protein on the separation of the biopsies on
the scores plot, can be visualized on a loadings plot. To further
identify the main differences in the dataset leading to the
separation of DF and RNAlater stabilized samples and FFPE
samples, the loading plot of principle component 1 was investi-
gated. The isoelectric point and molecular weight of proteins
having a loadings score greater than �0.4 were investigated
(Fig. 5b, blue and red circles). The mean molecular weight for the
107 proteins with greater than 0.4 loading score was 34,414 Da, and
55,226 Da for the 15 protein with less than �0.4 loading score. The
mean molecular weight of all DF proteins was 68,183 Da. Likewise,

Table 2
Residue and terminal specific modifications. Method-vise pooled top ten peptide modifications in biopsies preserved by direct freezing (DF), RNAlater, immediate formalin-
fixed, paraffin-embedded (iFFPE), or 30 min stored formalin-fixed, paraffin-embedded (sFFPE). Modified amino acid is given by one-letter code. The first 20,000 peptide
spectral matches (PSMs) resulting in the identification of peptides with <1% local peptide false discovery rate were included in the analysis. PTM peptides of possible is the
percentage of peptides found in a given modified state, in relation to all peptides which could have the specific modification. Standard deviations are given (�s).

Feature D mass (Da) PTM peptides of possible

DF (%) RNAlater (%) iFFPE (%) sFFPE (%)

Carbamidomethyl (C) 57.0215 100 � 0.0 100 � 0.0 100 � 0.0 100 � 0.0
Oxidation (M) 15.9949 29.3 � 3.9 33.7 � 1.8 45.4 � 12.3 49.7 � 16.9
Protein terminal acetyl@N-term 42.0106 34.4 � 4.7 34.1 � 2.1 39.0 � 3.0 39.2 � 2.9%
Gln- > pyro-Glu@N-term �17.0265 27.0 � 6.4 24.0 � 2.2 29.0 � 1.8 29.0 � 4.6%
Deamidated (N) 0.984 11.7 � 0.5 11.8 � 0.5 17.0 � 1.0 16.0 � 0.8%
Deamidated (Q) 0.984 6.2 � 0.1 6.2 � 0.1 7.6 � 0.4 7.4 � 0.5%
Formyl@N-term 27.9949 5.1 � 3.6 2.8 � 0.6 6.4 � 2.4 7.3 � 3.2%
Oxidation (P) 15.9949 1.3 � 0.3 1.1 � 0.6 1.8 � 0.3 1.7 � 0.4%
Dioxidation (M) 31.9898 0.7 � 0.2 0.8 � 0.1 1.5 � 0.6 1.6 � 0.8
Met- > Hcy (M) �14.0157 0.6 � 0.1 0.6 � 0.1 0.4 � 0.1 0.4 � 0.1
Formyl (K) 27.9949 0.4 � 0.5 0.2 � 0.1 3.7 � 0.5 3.3 � 0.4%
Methyl (K) 14.0157 0.0 � 0.0 0.0 � 0.0 2.5 � 0.3 2.3 � 0.3%
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Fig. 2. Number of identified proteins in the individual colon biopsies, using the
direct freezing (DF), RNAlater, immediate formalin-fixed, paraffin-embedded
(iFFPE), and 30 min stored formalin-fixed, paraffin-embedded (sFFPE) preparation
protocols. Significant changes detected by two-sample t-tests and represented by p-
values. NS: not significant, p < 0.05 were considered significant.

Fig. 3. Number of proteins uniquely quantified in the colon biopsies preserved by (a) direct freezing (DF), RNAlater, or immediate formalin-fixed, paraffin-embedded (iFFPE),
and (b) iFFPE or 30 min stored formalin-fixed, paraffin-embedded (sFFPE) preservation protocols.
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the mean isoelectric point of proteins with greater than 0.4 loading
score was 6.52 (s = 1.69), and for protein with less than �0.4 was
8.14 (s = 2.80), compared to 6.72 (s = 1.63) for all DF proteins.

We next investigated the proteins mainly contributing to the
separation of the two participant. In our dataset this was based on
PCA principle component 2. The two proteins with the highest
impact were HLA class I histocompatibility antigen A-23 alpha
chain (HLA-A) and HLA class II histocompatibility antigen DRB1-
4 beta chain (HLA-DRB1). Both are well described in the literature
and known to exist in high genetic diversity. To ensure that the two
proteins were represented similarly using all tissue preservation
methods, we calculated the mean fold abundance change between
participant A and B, of HLA-DRB1 for each method. HLA-DRB1 was
found in all biopsies and the fold change of the protein between
participant B and A was 5.00 in DF biopsies, 4.32 in RNAlater
biopsies, 5.66 in iFFPE biopsies, and 5.55 in sFFPE biopsies. HLA-A
was found in all biopsies from participant A and none from
participant B, regardless of method of sample stabilization. The
sensitivity of the assay thereby seems retained regardless of
method of sample stabilization for these proteins.

3.4. Protein abundance scatterplots

To investigate preservation method induced variations across
all protein abundances, we investigated scatterplots of the protein
abundances. Scatterplots compare the quantitative value of every
protein between two preservation methods, plotting the protein
abundance of different methods on the x and y-axis, respectively.
Ideally, the different tissue preservation methods should yield
identical protein abundances, represented by a Pearson’s correla-
tion coefficient of one, indicating a perfect correlation. The
measured protein abundance in the three biological replicates
were combined preservation method wise by the mean, and
scatterplots were generated comparing the RNAlater, iFFPE, and
sFFPE preservation methods to DF, as well as iFFPE to sFFPE (Fig. 6).

The lowest correlation coefficient (0.943) was calculated
comparing DF preserved tissue to sFFPE preserved tissue. The
highest correlation (0.987) was found between the DF and
RNAlater preserved tissues, which was similar to the coefficient
between the iFFPE and sFFPE (0.983) protein quantitations. In all
cases, the Pearson’s correlation coefficients were close to one,
indicating a good correlation.
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The high Pearson’s correlation coefficient between iFFPE and
sFFPE indicates that delaying tissue biopsy stabilization with
30 min only had a minor impact on the measured global protein
abundances. To further investigate the differences between iFFPE
and sFFPE and the impact of the delayed sample stabilization, we
added protein instability index scores from ExPASy for changing
proteins [38]. The instability index score provides an estimation of
a proteins’ in vivo stability [40]. An instability index score below
40 estimates the protein to be stable [41]. We assumed that
proteins prone to in vivo degradation, would be partly degraded in
the 30 min delay in stabilization in the sFFPE preserved biopsies.
Therefore, we choose to investigate proteins with a greater than
two fold abundance decrease in sFFPE biopsies compared to iFFPE.
This came to 48 proteins and 113 iFFPE unique proteins, and the
mean protein instability index score for these proteins was
calculated to be 42.0 (s = 13.3). The score was compared to the
mean protein instability index score for proteins with similar
abundances between sFFPE and iFFPE, which we assumed to be
more in vivostable. We choose to include all proteins with less than
0.05 mean fold change difference between iFFPE and sFFPE (fold
change 1.05–0.95). This came to 677 proteins with a mean protein
instability index score 43.8 (s = 10.7). Considering the standard
deviation, the two stability indexes are highly similar. We
additionally investigated the molecular weight and isoelectric
point of these protein groups, and similar properties were found
(data not shown). This indicates that the protein instability index
score isoelectric point and molecular weight cannot account for
the abundance change of the 161 proteins (Supplementary list 2)
found with lower abundance in the sFFPE biopsies.

4. Discussion

We examined the impact of sample preservation on a
discovery-based proteome analysis, in order to enable reliable
proteome analysis of differently preserved samples. Human colon
mucosa biopsies were extracted and immediately preserved in
RNAlater or by FFPE. To simulate a clinical scenario, one set of
biopsies were stored for 30 min (sFFPE) at ambient temperature
before sample stabilization with formalin. The samples were
compared to snap frozen biopsies (DF), where the introduction of
chemical artifacts, which might interfere with a proteome analysis,
is minimal. The main finding of the study was that biological
samples can be stored in RNAlater and preserved by FFPE with a
minimal impact on the result of a quantitative proteome analysis
compared to DF preserved samples. Additionally, delaying the
formalin sample stabilization for 30 min only had a minor impact
in our dataset. Similar results and conclusions regarding pathway
regulations can be reached for the samples as compared to DF
preserved samples. Especially RNAlater preservation was found to
be a promising alternative to snap freezing samples for proteomic
studies.

We performed a peptide PTM analysis to investigate the
efficiency of the de-crosslinking protocol and to identify mod-
ifications introduced by the preservation methods. The PTM
analysis revealed that FFPE preservation of colon tissue caused an
increase in the overall number of peptides identified with a
modification compared to DF and RNAlater. The analysis of specific
peptide modifications revealed an increased ratio of formylated
peptides (K- and N-term) in the FFPE preserved biopsies compared
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to RNAlater and DF. This was an expected artifact from the FFPE
crosslinking. Additionally, an increased number of methylated
lysine-containing peptides was identified in the FFPE preserved
samples, in accordance with findings in a recent study which gives
validation to the applied methodology [42]. However, less than 10%
of the PSMs resulted in identification of peptides with a formyl
modification, indicating that the applied de-crosslinking protocol
is effective. An increased number of deamidated peptides were
identified in biopsies preserved with the FFPE protocols compared
to the DF and RNAlater protocols. The modification was likely
introduced during the exposure to non-physiological pH and
elevated temperatures during the sample preparation (alkaline
pH) which was prolonged in the FFPE protocol [43,44]. Only minor
differences could be observed in the PTM frequencies between DF
and RNAlater stabilized tissue, indicating that the introduction of
identifiable chemical artifacts with the two methods is similar.

The alkylation of cysteine-containing peptides with chloroa-
cetamide was demonstrated, and 100% of cysteine-residue
containing peptides were found in an alkylated state. Additionally,
no peptide alkylation artifacts were observed in this study with
frequencies of more than 0.6% of possibly modifiable peptides,
such as carbamidomethylated N-terminal and non-cysteine
residues. In a recent study of porcine synovial fluid using the
FASP protocol with iodoacetamide alkylation, 2.7% of all peptides
were identified with a carbamidomethylated N-terminal, and 1.9%
of the cysteine- and lysine-containing peptides were identified
with an carbamidomethylated lysine [45]. The analyzed samples in
the mentioned study are very different from the samples analyzed
in this study. Nonetheless, the comparison points to an improved
alkylation specificity when using the protocol with chloroaceta-
mide compared to iodoacetamide, in agreement with a previous
study [29].

The differences in frequencies of the various modifications
demonstrate that the majority of the PTMs are introduced during
the sample preservation. As such, the PTM-table can be used to
choose relevant modifications for database searching.

We were able to identify a similar number of proteins in tissue
preserved by DF and RNAlater. Other proteomic studies have
reported a similar or slightly increased number of proteins
identified from bacteria, yeast, and fish preserved in RNAlater
compared to DF, in agreement with our findings on human tissue
[5,7,9]. We identified a statistically significantly lower number of
proteins in the FFPE preserved tissue compared to DF and RNAlater
preserved biopsies. These findings are in agreement with what
other proteomic studies on human samples have reported [2,3,
14–21]. Even though the number of quantified proteins was lower
in the FFPE biopsies, 92.3% of the proteins quantified in the DF
preserved biopsies were also quantified in the FFPE preserved
biopsies. The high overlap demonstrates the feasibility of
conducting proteomics on FFPE samples.

We conducted a Gene Ontology-based analysis of proteins only
found in the iFFPE preserved biopsies, compared to the RNAlater
and DF preserved. This was done to investigate if the unique
proteins originated from a specific cellular location. The analysis
revealed that proteins unique to a given method did not belong to a
specific subcellular location. The analysis of the isoelectric point
and molecular weight of the unique protein groups also did not
reveal any determining differences. This indicates that no
systematic loss or enrichment of proteins from a specific cellular
location, nor proteins with specific physiological properties, is
taking place using either of the preservation methods, and thus an
unbiased analysis regardless of sample preservation method.

The label-free relative quantitation allowed us to assess the
impact of the biopsy preservation on the protein abundances. The
PCA scores plot of principle component 1 and 2 described the
largest variance in protein abundances. The PCA scores plot did not

separate DF and RNAlater preserved colon tissue, nor the colon
tissue preserved by iFFPE and sFFPE. This demonstrates that the
biological variance in the measured proteome of the two
participants is greater than the variance introduced by the
preservation in DF and RNAlater, as well as iFFPE and sFFPE tissue,
respectively. Samples preserved by RNAlater can thus be compared
to sample preserved by DF, as the introduction of proteome
changes is minimal. The same can be said for iFFPE and sFFPE
preserved samples. It should be emphasized that the colon
biopsies originated from two participants without gastroentero-
logical findings. The difference in protein abundances between the
two sets of biopsies can, therefore, be expected to be less than what
is measured in disease studies, e.g., of inflammed and non-
inflammed colon biopsies [27]. Even so, we were still able to
separate biopsies from the two participants. The findings from the
PCA are supported by the scatterplots, where protein abundances
across the different methods were investigated. The calculated
Pearson’s correlation coefficients of RNAlater, iFFPE, sFFPE, and DF
preserved colon biopsies were all greater than 0.94. This
demonstrates the good correlation in measured protein abundan-
ces between the different methods, i.e., a low impact of the method
of preservation on the overall measured protein abundances
[27,46]. The result indicates that the largest difference is between
the DF and FFPE methods, in agreement with the PCA.

Additionally, the slightly better correlation of DF and RNAlater
preserved samples compared to iFFPE and sFFPE, indicates that the
impact on the proteome of the RNAlater treatment is less than the
impact of a 30 min storage at room temperature. As RNAlater
samples are stored at 24 h at room temperature prior to storage at
�80 �C, the result indicates that RNAlater efficiently inhibits in
vivobiological activity in the biopsies. The similar relative amounts
measured using either method, demonstrates that all four
preservation methods can be used to stabilize tissues prior to
proteomic analysis. This is supported by the PCA showing the
ability to separate the participants by genomic diverse proteins
such as the two HLA protein classes.

The collection of samples for research at hospitals and clinics
should not interfere with the standard clinical protocols, which
means that a delay before a sample can be stabilized is in many
cases unavoidable. It has been reported that the average time from
specimen extraction to processing in a surgical department is
19.3 min [4]. The time can be expected to vary between different
hospitals/departments. Therefore, we chose to store samples for
30 min prior to formalin stabilization (sFFPE). We did not find a
significant decrease in the number of proteins we were able to
recover from the sFFPE samples compared to iFFPE. Nor did we find
vast changes in the overall protein abundances by scatterplots, nor
changes in the protein stability index scores caused by the 30 min
delayed sample stabilization. Our findings thereby strongly
support that clinically obtained tissue biopsies can be used for
quantative proteomics research, even when stabilization has been
delayed. We did not focus our analysis on the impact of unstable
protein modifications, such as protein phosphorylation or proteins
with short in vivo lifetime/stability. Several studies have reported
changes in the phosphorylation-patterns of several stress-related
proteins following tissue extraction, when sample stabilization
was delayed even a few minutes [4,47,48]. Clinical samples
obtained with a delay might, therefore, constitute suitable material
for global quantative proteome research focusing on protein
abundances, but be poorly suitable for e.g., protein phosphoprotein
studies. We have included the list of 48 proteins with a greater than
two-fold abundances difference between iFFPE and sFFPE pre-
served biopsies and the 113 iFFPE unique proteins (Supplementary
Table 2). It is possible that these proteins display a lower in vivo
stability than represented by the protein instability index scores.
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Other studies have demonstrated that RNAlater can be used to
stabilize bacteria, fungus, and human cervical swabs prior to
proteome analysis [5,8,9]. Combined with the findings in other
studies performed on bacteria and yeast, our findings demonstrate
that RNAlater can be used for uniform preservation of a wide range
of biological material prior to proteomic, transcriptomic, and
genomic studies. The need for snap freezing samples can be
reduced, which can be impractical especially in clinical situations.
Additionally, RNAlater and FFPE sample preservation removes the
need for quick sample handling. This is in contrast to DF preserved
tissue where the protective effect of freezing only persists until the
sample is thawed, making a rapid sample handling prior to
protease inhibition critical [5]. The possibility to utilize established
biobanks for proteome analysis constitutes a vast source of well-
characterized biological material for clinical proteomics research.

5. Conclusion

This is the first study to investigate the impact of RNAlater and
FFPE stabilization of human tissues on PTMs and protein
quantitation. Using 24 human colon biopsies from two partic-
ipants, we have demonstrated that human tissue samples can be
stabilized and preserved by RNAlater or FFPE as alternatives to
snap freezing with a minimal impact on the quality of protein
quantifications. Especially RNAlater preservation was found to be a
promising alternative to snap freezing samples for proteomic
studies. Comparable proteomics pathway information can be
extracted from tissue preserved with either method. Additionally,
delaying tissue sample stabilization with formalin for 30 min to
simulate a clinical situation, only resulted in a minor impact on the
quality of the protein quantitations. Our findings thereby demon-
strate that biobanks containing RNAlater preserved samples, FFPE
preserved samples, and samples obtained with a delay in
stabilization, can be used for proteome analysis. Similar result
and conclusions can be obtained on the global proteome level as
when studying snap frozen samples. The suggested protocols can
thus be used, e.g. to provide retrospective information concerning
diagnosis, response to therapy and novel drug discovery.
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