

Aalborg Universitet

Communication Framework For the Mionix Naos QG Mouse

For Online and Offline Usage

Wulff-Jensen, Andreas

Creative Commons License
Ikke-specificeret

Publication date:
2017

Document Version
Version blev oprettet som del af udgivelsesprocessen; udgivers layout; normalt ikke offentligt tilgængeligt

Link to publication from Aalborg University

Citation for published version (APA):
Wulff-Jensen, A. (Udvikler). (2017). Communication Framework For the Mionix Naos QG Mouse: For Online and
Offline Usage. Softwareprogram

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 - Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 - You may not further distribute the material or use it for any profit-making activity or commercial gain
 - You may freely distribute the URL identifying the publication in the public portal -
Take down policy
If you believe that this document breaches copyright please contact us at vbn@aub.aau.dk providing details, and we will remove access to
the work immediately and investigate your claim.

Downloaded from vbn.aau.dk on: March 13, 2024

https://vbn.aau.dk/da/publications/bf54a867-db9d-4e5f-b5da-ceb50cf11400

Communication Framework For the Mionix Naos QG

Mouse
For Online and Offline Usage

Andreas Wulff-Jensen

Dept. Architecture, Design and Media technology

Aalborg University Copenhagen

Copenhagen Denmark

awj@create.aau.dk

Abstract— The Mionix Naos QG mouse has multiple sensors

integrated. It can record all the metrics native to mice: being

scroll, clicks and mouse movements. Moreover, this mouse has

heart rate (HR) and Galvanic Skin Response (GSR) sensors

embedded. Through Mionics API [1] WebSocket can be used to

access all its data. This access has been demonstrated through

Javascript in a local hosted webpage. In this page the

measurements can be recorded to a .txt file and streamed to

another .txt file. The latter file can be accessed in Unity to either

send the data further through UPD, use the data within Unity or

be recorded. Another Unity implementation have been developed

as well. This was directly connected to the WebSocket, and has

the same properties as the first Unity development. Since two

nearly identical implementations were made, the quality of their

recordings and data communication were tested. Based on the

test the Unity implementation, which was directly connected to

the Mionix HUB had higher GSR temporal accuracy, but showed

more errors in its data acquisition process. GitHub page with the

implementations can be found here:

https://github.com/anwul4/Mionix-QG-Unity-and-webpage

Keywords— Mionix QG; biometrics; heart rate; gsr;

framework; online; offline; data gathereing,

I. INTRODUCTION

The Mionix Naos QG mouse is a mouse with embedded
Galvanic Skin Response (GSR) and Heart Rate (HR) sensors.
This make the mouse convenient when you need to capture the
HR and GSR of the user. For instance, in respect to computer
applications, other screen based media or experiments without
the interaction of one of the hands.

Out of the box the Mionix Noas QG mouse is ready to plug
and play like a normal computer mouse. Moreover, to get
access to the biometrics the Mionix HUB [2] needs to be
installed. In that program, you can monitor all the biometrics
and mouse metrics integrated in the mouse. With this HUB
everything can be accessed through their WebSocket based
API [1]. Though the API the data is accessible and
monitorable, though implementations for saving the data and
using it in different environments are needed to get the full out
of this mouse in regards to affective computing and
psychophysiological studies.

The next sections of this paper will describe the
implemented solutions for these problems which is free to use
both within and out of academia. To get the basic idea of what
the API gives and how to communicate with it (II) will be
about the API and its structure. (III) will continue describing a
simple webpage, which can access, record and stream the data
to the user’s computer. (IV) describe a Unity implementation
which can access the aforementioned stream, record,
manipulate and send the data further through UDP connection
to other applications. (V) describes another Unity
implementation, which is similar to the first one, but accesses
the API directly. (VI) compares the outcome and performance
of the two Unity projects in respect to errors in the
implementation and the temporal accuracy. (VII) will present a
conclusion of it all and a GitHub link to the implementations.

II. STRUCTURE AND USE OF API

Mionix wrote a tutorial of how to access the bio and mouse
metrics of the mouse. They have done it through a networking
protocol called WebSocket, which is a bi-directional server to
browser networking paradigm using TCP communication
protocol [3], [4].

This protocol sends a .json [5] to the following address
"ws://localhost:7681", "mionix-beta". In any application or
language which communicates with this server receives the
.json file. In the API it is proposed to be done through
Javascript in a HTML file.

The info given in the .json file can tell the user various
different things: whether or not the device is connected, several
device information such as its type and device capabilities,
mouse metrics such as scroll, click and movement info, lastly
the biometrics can be found, which include HR and GSR.

These three categories are furthermore separated in the
.json file through a keyword, which can be accessed by asking
for what the type of the data is. In case the type is “device” the
device info will be given to the user, if it is “mouseMetrics” all
the mouse data will be delivered to the user, last of all, if the
type is equal to “bioMetrics” HR and GSR data will be shown.

Through the brief description the user can get access to all
the data he wants, to get more details go to the API [1] for

more info of which keyword to write in order to get access to
the info you want.

III. ACCESS, RECORD AND STREAM THROUGH WEBBROWSER

The API demo was shown through a webpage, by further
developing that page it is possible to make it act as a data
recorder and streamer. On the webpage, a simple UI button
interface has been developed to control how the data stream is
manipulated (see figure 1). First, a start and a stop recording
button are created. When the start recording button is pressed
all the mouse and bio data are gathered every time a new
websocket message has been received. When the stop
recording button is pressed the gathering of data is stopped
and all of it is saved to a Blob [6]. This Blob serves as an input
to a file saving script, which saves a .txt file (the file saving
script can be found here [7]). The .txt file can then be read by
the analysis software you desire. While the webpage “records”
the data the user of the webpage can add triggers to the stream
by pressing one of the buttons labeled with a number fx “2”.
You are also capable of adding your own trigger number by
writing it in the text field available and press the “add trigger”
button. The purpose of adding triggers is to segment the data
stream in relation to different events occurring through the
stimuli. On the webpage, the process of adding triggers is
manual, and is best fitting non-interactive stimuli.
Furthermore, the triggers will be places in their own container
and have their own row of data in the created .txt file.

The webpage is also capable of “streaming” the data to a
file. This process can be toggled on and off by pressing the
“start stream button” or the “stop stream button”. When the
“start stream button” is pressed the webpage takes the current
message from the WebSocket and saves it to a file through the
same process as recording. The program then waits 100ms
before the webpage gathers a new sample and saves it by the
same file name, but only if the following plugin is installed
[8], without it, the new file will get a file index number after
the name, thus will the amount of data files quickly end up as

Figure 1 shows the UI for the webpage application.

a huge clutter, and the purpose of streaming will be lost.

IV. UNITY: DATA THROUGH FILE STREAM AND BEYOND

The “stream” from the webpage application can be
accessed through the C# class called filestreamer [9]. The code
is implemented in Unity to conveniently access the file. The
file is structured in a rather simple manner, where each line
contains the keyword of what it contains, a omma, and a value.
By asking the program to recognize the different keywords, the
data can be separated and added to the Unity system. To avoid
too many instances of the same sample the streamer is only
activated every 200ms. This delay also solves some of the
access file conflicts, as Unity cannot access the file while it is
being written to by the webpage.

In the Unity realm, we are capable of recording them into
the system, send them further to other applications, analyze
them online, use them in the system and separate them by
adding triggers.

The following structure of the code showcases how the
framework could be worked with. Furthermore, this showcase
also applies to the next Unity application, which will be
described in the next section.

When the application starts Unity checks to see if the
following folders are created "E:/HrTestData/" +
participantID”, where participantID is the number of
participants there has been recorded. If that folder exist
participantID will be incremented until the folder does not exist
on your computer. This is a suitable approach to let the
application keep track of how many participants there has been
through your experiment or experience.

After the initial folder setup the program starts getting
access to the stream file. It saves the current values, which is
send further through UDP connection to another application
such as Simulink or wherever you want the data to go.
Furthermore, the data starts being collected and a timer is
activated. The timer will be important to elicit different kinds
of trial events. Firstly, after 2 seconds the system asks if the
feature of placing a trigger is enabled. If so, a trigger is added
to the recording and send through UDP networking.
Furthermore, the ability to add a trigger is temporarily disabled
for 100ms.

When the recording has lasted 10 seconds, the baseline for
all the biometrics are calculated. By that moment baseline
correction (change score values [10]) and percentage difference
from the baseline is calculated utilizing the newest data update.
All the new values are gathered and saved. From the baseline
calculation and 20 seconds forward gathering of the raw and
the manipulated data is active. Afterwards three different data
files containing raw biometrics, baseline corrected biometrics
and percentage different from baseline biometrics are created,
ready to be analyzed offline.

During the recording process two other triggers are
integrated in the same manner as the first one.

In the program the following functions are public and can
be used in other contexts than the showcased. In the script

which has access to the file stream (txtStreamReader.cs) there
are public Get functions for all the bio and mouse metric data.

In the script “HeartRateManager.cs”, which is responsible
for gathering and all the baseline calculations the following
functions are public.

“MeasureBaseline(arrayList)”this function takes an
unknown arrayList based on its length the function calculates
the average, which can be used as baseline.

“LiveChangeScore(double biomeasure, double baseline)”
this function calculates the numerical difference between the
baseline and the bio metric measure you want.

“LivePercentageDiffFromBase(double bioMeasure, double
baseline)” calculates the percentage difference from the
baseline to the bio measure you want.

Lastly, “SetTrigger(int triggerNo)”is public and can be
used wherever it fits your experience. It sends a trigger through
UDP and place the same trigger in the biometric recordings
both raw and baseline manipulated recordings.

The functionality of this Unity application has been
described in the next section the other Unity application will be
presented. It has the same functionality as the one just
described, but gets the data in a different manner.

V. UNITY: DATA THROUGH MIONIX HUB

This Unity application are quite similar to the other one, the
mayor difference is how the program gets the data from the
mouse. In this Unity application the data is send directly from
the HUB to Unity. C# in Unity is natively not capable of using
communicating through WebSockets, however a WebSocket-
Sharp script [11]. has been developed and can be used as an
external library. By this library the communication to the
Mionix HUB can be established the same way as in the
webpage service. When the communication to the server is
established and receives the .json objects C# interprets it in a
different manner. It divides the objects into two chunks. One
for the mouse metrics and one for the bio metrics. These
chunks are strings, in which words can be searched for. If they
are found, part of the string up to and with the word is deleted,
and the characters from the next word to the end is erased as
well. By this operation the only available characters in the
string is the number corresponding to the data metric of interest
for instance “

if (data.Contains ("heartRateMax"))

{

 string str;

 str = data.Remove (0, data.IndexOf ("heartRateMax")+ 14);

str = str.Remove (str.IndexOf ("gsr") - 2, str.Length +2 -
str.IndexOf ("gsr"));

heartRateMax = Convert.ToDouble(str);

}”.

This chunk of code has the purpose of finding the value
corresponding to heartRateMax, as it first looks for that part of

the string continued by looking for “gsr” which is the next text
in the string.

The values gathered through this method is stored in the
corresponding containers and can be addressed by Get
functions.

From this point the application does the same as the
previous Unity projects.

VI. UNITY APPLICATION COMPARISSON TEST

Since the Unity projects are nearly similar, and only differs by

how they get the data the coming sections will investigate the

temporal and reliable differences between the

implementations. Each of them will be tested 10 times through

the demo procedure of accessing, recording and printing data.

The temporal accuracy will be compared, the deviation of it,

the amount of errors in the communication to the HUB or the

.txt file will as well be taken into account when the two

applications are compared.

VII. TEST RESULTS AND DISCUSSION

The ten runs of each Unity application showed the
following averages and standard deviations (STD).

For the Mionix Hub to the Unity application the average
amount of communication error during 10 runs of 30 seconds is
26.1 with a standard deviation of 10.69. the update rate for the
HR is 1 per second with a STD of 0, the GSR is 8 per second
with an STD of 0.

For the Webpage’s file to Unity the following results
appeared. The average amount of accessing the txt file at the
same time conflicts were 2,5 with a STD of 1.62. The update
rate of HR was 1 per second with STD of 0 and for the GSR it
was 4 per second with STD of 0.44.

These results are rather interesting. There are more
communication errors between the HUB and Unity than the
communication between the common .txt file and Unity, but
the update rates seem not to be affected by the errors. In fact,
the update rates are stable. Opposed to the other
implementation the sharing conflicts of the file are rather low,
but the update rate for the GSR seems to fluctuate a little, and
only updates half as many times as the other.

These observations impose that the direct communication
to the HUB produces temporal more accurate results, than the
communication with the webpage file. Despite higher amount
of communication errors the temporal accuracy does not suffer
in anyway.

VIII. CONCLUSION

Through this paper a communication framework from
Mionix HUB to either a Webpage or Unity has been described.
Both of which capable of accessing, sending and recording the
data. Furthermore, the Unity applications are able to do online
analysis of the data in respect to a calculated baseline, such as
baseline correction and percentage difference from the
baseline.
Since there were two ways the data could get into Unity,
through the Mionix HUB and through a .txt file created by the
webpage, a small technical test was established. The test
showed higher temporal accuracy for the GSR for the Mionix
HUB to Unity communication and higher amount of
communication errors as well. Furthermore, with this
framework users with the Mionix Naos QG mouse will be able
to carry out online and offline analysis of the data in respect to
different kind of stimuli.

To get access to the implementations please go to this
GitHub page. https://github.com/anwul4/Mionix-QG-Unity-
and-webpage

REFERENCES

[1] Mionix, ‘Mionix Naos QG API’. Mionix, Stockholm, p. 1, 2017.

[2] Mionix, ‘Mionix HUB’. Mionix, Stockholm, p. 1, 2017.

[3] C. Kale, ‘TCP/IP tutorial’, Spider Systems Limited, 1991. [Online].
Available: https://www.rfc-

editor.org/info/rfc1180%5Cnhttp://www.rfc-

editor.org/rfc/rfc1180.txt%5Cnhttps://www.rfc-
editor.org/info/rfc1180%5Cnhttp://www.rfc-

editor.org/rfc/rfc1180.txt.

[4] I. Hickson, ‘The websocket api’, W3C, Editor’s Draft, vol. 15.

2010.

[5] JSON.org, ‘Introducing JSON’, json.org, 2014. [Online]. Available:

http://www.json.org/.

[6] J. Reid and T. Valentine, JavaScript Programmer’s Reference, no.

1. 2013.

[7] J. K. R. Wärting, ‘FileSaver.js’. GitHub, Stockholm, p. 10, 2016.

[8] Benshayden, ‘Downloads Overwrites Existing Files’. Chrome Web

Store, p. 1, 2016.

[9] J. Ferguson, B. Patterson, J. Beres, P. Boutquin, and M. Gupta, C #
Bible. 2002.

[10] R. F. Potter and P. D. Bolls, Psychophysiological Measurement and
Meaning, vol. 1, no. 1. New York: Routledge, 2012.

[11] STA, ‘Websocket-sharp’. GitHub, p. 5, 2017.

