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Abstract— To address the uncertain output of distributed 

generators (DGs) for reactive power optimization in active dis-

tribution networks, the stochastic programming model is widely 

used. The model is employed to find an optimal control strategy 

with minimum expected network loss while satisfying all the 

physical constraints. Therein, the probability distribution of un-

certainties in the stochastic model is always pre-defined by the 

historical data. However, the empirical distribution can be biased 

due to a limited amount of historical data and thus result in a 

suboptimal control decision. Therefore, in this paper, a da-

ta-driven modeling approach is introduced to assume that the 

probability distribution from the historical data is uncertain 

within a confidence set. Furthermore, a data-driven stochastic 

programming model is formulated as a two-stage problem, where 

the first-stage variables find the optimal control for discrete re-

active power compensation equipment under the worst probabil-

ity distribution of the second stage recourse. The second-stage 

variables are adjusted to uncertain probability distribution. In 

particular, this two-stage problem has a special structure so that 

the second-stage problem can be directly decomposed into several 

small-scale sub-problems, which can be handled in parallel 

without the information of dual problems. Numerical study on 

two distribution systems has been performed. Comparisons with 

the two-stage stochastic and robust approaches demonstrate the 

effectiveness of the proposal.  

 
Index Terms—Stochastic optimization; reactive power optimi-

zation; column-and-constraint generation algorithm; active dis-

tribution network; distributed generation 

NOMENCLATURE 

Indices and Sets 

i, j, k Index for buses 

t Index for time period 

B Set of buses 

E Set of branches 
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Θ Set of branches with transformers 

 Set of buses for reactive power compensators 

D Set of buses for shunt capacitors/reactors 

(j) Set of all parents of bus j 

(j) Set of all children of bus j 

  Confidence set of the probability distribution 

Y
s Feasible region of continuous variables under 

s-th scenario 

Parameters 

M A large number 

T Time horizons 

Nw Cardinality of  Θ 

Nc Cardinality of  D 

Nr Cardinality of  D 

Ns Number of scenarios 

K Number of observations for uncertain parameters 

nij Number of tap ratios at transformer branch (i, j) 

rij, xij Resistance/reactance of branch (i, j) 

bs,j Shunt susceptance from j to ground 

C
max

j/C
min

j Upper/lower bound of shunt capacitors/reactors 

capacity at bus j 

W
max

ij/ 

W
min

ij 

Upper/lower bound of transformer ratio limit at 

branch (i, j) 

c,j Specified operational times for shunt capaci-

tors/reactor at bus j 

w,ij Specified operational times for transformer (i, j) 

sj Step size of shunt capacitors/reactors at bus j 

wij,k Tap ratio on k-th level of the transformer (i, j) 

Uj
max

/Uj
min

 Upper/lower bound of voltage magnitude at bus j 

Il
max

 Current capacity limit of branch (i, j) 

Qc,j
max

/ 

Qc,j
min

 

Upper/lower bound of reactive power compen-

sation for continuous reactive power compensa-

tors at bus j 

u Uncertain parameters 

u
s
 Uncertain parameters under s-th scenario 

j Number of auxiliary binary variables ,0 ,,...,
jj j    

p0 Probability from the historical data  

 A parameter that can control the size of the con-

fidence set 

1  using 1-norm to control the size of the confi-

dence set 

  using inf-norm to control the size of the confi-

dence set 

 Confidence level  

Variables 

Hij, Gij Active/reactive power flow from bus i to j 
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Uj Voltage magnitude of bus j 

Pj, Qj Injected active/reactive power of bus j 

lij Squared branch current at branch (i, j) 

wij Tap ratio of the transformer branch (i, j) 

Cj Value of shunt capacitors/reactors at bus j 

o
k
ij Optimal 0-1 decision on k-th level of the trans-

former (i, j) 

ρj Optimal step of shunt capacitors/reactors at bus j 

Qc,j Value of reactive power compensation for con-

tinuous reactive power compensators at bus j 

vj Squared voltage magnitude of bus j 

z Discrete decision variables 

y Continuous decision variables 

y
s 

Continuous decision variables under s-th scenario 

,0 ,,...,
jj j  

 

Auxiliary binary variables to express the integer 

variable ρj by binary code 

I. INTRODUCTION 

ISTRIBUTED networks, characterized by their mostly 

radial topology, are featured with heavily fluctuating 

loads, which may lead to large power losses and voltage drop 

near the end of feeders, adversely affecting industrial manu-

factures and daily lives. To improve the power quality, reactive 

power optimization, serving for tertiary voltage control (TVC), 

aims to minimize the total transmission losses and improve the 

voltage profile by controlling reactive power compensators and 

transformer tap ratios over several periods, while satisfying 

specific physical and operating constraints.  
Generally, the controlled equipment can be classified as con-

tinuous and discrete controllable devices. The discrete control-
lable devices are controlled via switching on/off and they should 
not be adjusted quite frequently due to their service lifetime and 
existing manufacture techniques. Thus, the total number of 
operating times of discrete controllable devices is limited, which 
leads to the development of the dynamic reactive power opti-
mization (DRPO) model [1-3]. This model is actually a 
large-scale mixed-integer nonlinear programming and several 
techniques including intelligent searches and standard 
branch-and-bound/cut methods were proposed to solve this 
complex model [4]-[6]. With a proposal of a two-stage mul-
ti-period mixed-integer convex model, [7] analyzed the tradeoff 
between risk mitigation and investment cost minimization. In 
[8], a voltage security constrained multi-period optimal reactive 
power flow model was proposed based on the generalized 
Benders decomposition method with an optimal condition de-
composition approach to solve it. However, the size of data 
arises as a result of large-scale mixed-integer nonlinear pro-
gramming problems with multi-periods, increasing the com-
putational burden and time. Recently, the conic relaxation 
technique was studied in distribution networks, which gives a 
sound solution while significantly improving the computational 
performance [9]-[11]. For instance, in [12], the second-order 
cones to relax the non-convex power flow equations were pro-
posed in order to obtain a mixed integer second order coned 
programming model, after which a sensitivity-based relaxation 
and decomposition method was introduced to further improve 
the computation. After determining the total size of the distrib-
uted energy storage (DES, e.g., batteries) and optimal locations 
for the DES, [13] applied the second order cone programming 
relaxation to obtain the globally optimal solution and avoid the 
problem of NP-hardness. Furthermore, [14] dealt with a joint 

problem of reactive power optimization and network reconfig-
uration to minimize power losses and improve the voltage pro-
file, the original non-convex model of which was converted into 
a mixed integer second order cone programming model using 
the second-order cone relaxation, the big-M method and the 
piecewise linearization techniques. 

Nevertheless, an increasing number of distributed generators 

(DGs) including wind power and photovoltaic (PV) is coming 

into distributed networks nowadays. The distributed networks 

integrated with DGs, termed as active distributed networks, are 

facing critical technical challenges to traditional operation due 

to the stochastic nature of DGs, which may result in uncertain 

output, and thus severer voltage violations. 
To cope with the uncertain output of DGs in the optimization 

operation in active distribution networks, stochastic program-
ming [15-17], chance-constrained based stochastic program-
ming [18-20] and robust optimization [21-23] have been ex-
tensively explored. For example, a multi-scenario framework 
for optimal power flow under the worst wind scenario and 
transmission N-1 contingency to properly address the uncertain 
wind power generation was proposed in [24]. A stochastic 
multi-objective framework for distribution feeder reconfigura-
tion was employed in [25], firstly converting it into specific 
deterministic scenarios among random scenarios of wind/load 
forecast variations and then implementing multi-objective 
formulation for each deterministic scenario in the first stage. In 
[26], a chance-constrained programming for optimal power 
flow under uncertainty considering nonlinear model with mul-
tiple uncertain inputs was studied, where a back-mapping ap-
proach and linear approximation of nonlinear model equations 
were performed. Furthermore, [27] converted the 
chance-constrained stochastic programming formulation into a 
linear deterministic problem and a decomposition-based 
method to solve the day-ahead scheduling problem. Although 
linearized models enable to improve computational efficiency, 
the accuracy of linearization should be ensured.  

Generally, stochastic programming methods cannot cover all 
the possible realization of uncertainties. In order to address this 
problem, robust optimization was proposed to immunize 
against the solution within a given uncertainty set. As presented 
in [28], a two-stage robust reactive power optimization to co-
ordinate the discrete and continuous reactive power compen-
sators was set up, while hedging against any possible realiza-
tion within uncertain wind power output. A mixed-integer 
two-stage robust optimization formulation and a decomposition 
algorithm in a master-slave structure to achieve minimum 
network losses were discussed in [29], considering the worst 
conditions over uncertainty sets. Although the robust optimi-
zation can protect the system against a pre-defined uncertainty 
set, it always gives a more conservative solution than the sto-
chastic approach.  

In practice, historical data of DG outputs may be available at 
ISOs/RTOs. Therefore, it is possible to derive a more efficient 
solution that is robust while less conservative, which incorpo-
rates the superiority of both stochastic and robust approaches. 
According to the historical data, a confidence set is constructed 
for the probability distribution of the uncertainties to find an 
optimal solution under the worst probability distribution 
[30]-[35]. Therefore, a data-driven two-stage stochastic dy-
namic reactive power optimization model is developed in this 
work to coordinate the discrete and continuous controllable 
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devices, while addressing the uncertain DG output. The con-
tributions of the paper are summarized as follows: 

1) It is the first time to set up a data-driven stochastic pro-

gramming model in the distribution networks, where the second 

order cone programming relaxation is utilized to relax the 

nonconvex feasible region caused by the branch flow equations. 

Furthermore, the dynamic reactive power optimization can be 

termed as a large-scale mixed-integer second order cone pro-

gramming model. 

2) It is found that the proposed model has a special structure 

in the second-stage bi-level model, where the feasible region of 

the uncertainty set is disjoint with the operating region. As a 

result, a new column-and-constraint generation algorithm is 

proposed to decompose the bi-level problem into several 

small-scale sub-problems to be handled in parallel, which does 

not require the duality information as the traditional method. 

The rest of the paper is organized as follows: Section II 

presents a general dynamic reactive power optimization based 

on second order cone programming relaxation for active dis-

tribution networks. In Section III, a data-driven stochastic re-

active power optimization model is proposed with the consid-

eration of uncertain DG output. Furthermore, a new duali-

ty-free based column-and-constraint generation algorithm is 

presented to solve the proposed reactive power optimization 

model in Section IV. In Section V, numerical results obtained 

on a 33-bus system demonstrate the effectiveness of the pro-

posal, which is also compared with the two traditional ap-

proaches. Finally, conclusions are drawn in Section VI. 

II. REACTIVE POWER OPTIMIZATION MODEL IN ACTIVE 

DISTRIBUTION NETWORKS 

A. Formulation of Reactive Power Optimization Model 

Distribution networks, different from transmission networks, 

have the property that the topology is radial, so it is very 

common to utilize the branch flow formulation for describing 

the power flow in distribution networks [12], [28], [36]. 
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 (1) 

where  , \i j E   denotes  ,i j E , but  ,i j  . The 

first and second equations describe the active and reactive 

power balance at each bus; the third and fourth equations de-

scribe the voltage drop at each line and transformer; the last 

equation describes the relationship among voltage, current and 

power. 

The reactive power optimization problem essentially aims to 

minimize total power losses by controlling the reactive power 

compensators and transformer tap ratios over a given number of 

time horizons while satisfying various physical constraints. 

Here, the reactive power compensators can be classified as 

continuous adjustment equipment such as DG output, and dis-

crete adjustment equipment including capacitor banks. It is 

common that the electric devices including transformer tap 

ratios and switched capacitor banks cannot be adjusted very 

frequently due to the limitation of their service lifetime and 

existing manufacture techniques. Therefore, the maximum 

allowable operational times should be considered in the model 

and the reactive power optimization model can be exactly 

written as follows 

     
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,  ,i j  , 1,...,t T  (6) 
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0

1
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k
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

 ,     ,i j                 (8) 

 min max
j j jU U t U  ,    j B                        (9) 
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2

max0 ij ijl t I  ,    ,i j E                      (10) 

 min max
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j j jC C t C  ,    Dj                 (13) 
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1
T
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t

t t  


   ,   Dj                 (14) 
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k k k
ij ij w ij

t k

o t o t 
 

   ,      ,i j        (15) 

     , 0,1 , ,ij ko t i j   ,                (16) 

  j t Z  ,     Dj                     (17) 

where (2) aims to minimize total network loss over T time 

periods; (3)-(4) denote the power balance at each bus; (5)-(7) 

show the Ohm's law for each branch, including (6) for trans-

former branch; (8) shows a choice constraint by which only one 

trap ratio level is chosen; (9)-(10) are constraints for voltage 
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magnitude and branch current; (11) is the constraint for the 

continuous reactive power compensators; (12)-(13) are the 

constraints for discrete reactive power compensators; (14)-(15) 

are restrictions that the total allowable operational times by 

discrete adjustment equipment should be limited. 

However, the model (2)-(17) is a mixed integer nonlinear 

nonconvex programming which is very difficult to solve. 

However, the non-convexity comes only from the nonlinear 

power flow constraints. To address this issue, the semi-definite 

programming (SDP) and second order cone programming 

(SOCP) were proposed to convexify the feasible region en-

closed by the power flow constraints [9]-[10]. It was shown in 

[9]-[10] that SOCP and SDP relaxation methods are equivalent 

for the radial network, but the computational time from the 

former one is much less than the latter one. This is because both 

SOCP and SDP are solved by the standard primal-dual interior 

point method, but SOCP has much better worse-case com-

plexity than SDP [37]. Theoretically, the complexity of SOCP 

is O(n
3
) whereas O(n

4
) of SDP. Here, n is the number of vari-

ables. Thus, for a large power system with numerous variables, 

SOCP would perform much faster than SDP and thus is se-

lected in this work. 

B. SOCP Relaxation for Reactive Power Optimization Model 

At first, let    2
j jU t v t  for j B   and then constraints 

(4)-(7), (9) will become 
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 The constraint in (21) is a nonlinear equality, resulting in the 

nonconvex problem. To address this issue, the second order 

cone relaxation is performed by relaxing the quadratic equality 

into inequality, yielding 
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After this relaxation, the original reactive power optimiza-

tion model will lead to be a mixed integer second order cone 

programming model, but not a standard mixed integer second 

order cone programming model since there are still many bi-

linear terms in the above model, and we can simplify them by 

reformulations in the appendix, leading to (A10)-(A12). 

Subsequently, the reactive power optimization model in can 

be mathematically formulated as a general problem as 

, Y
min T

z y
a y                                 (24) 

s.t.        Az b ,   0,1z                            (25) 

2
, , 1,...,

Y
,

T

i i i id i n      
  

    

y Cy f Q y q c y

Dy g Gz Ey u
      (26) 

where C, Qi, qi, ci, D, g, G, E and di are matrix/vector form with 

respect to the original model. 

III. DATA-DRIVEN STOCHASTIC REACTIVE POWER 

OPTIMIZATION CONSIDERING UNCERTAINTIES 

In the last section, the reactive power optimization model is 

only conducted under a given load demand curve over multiple 

time periods. However, to address the uncertain generation 

output of the distributed generators (i.e., u in (26)), the sto-

chastic programming is employed to coordinate the discrete 

and continuous reactive power compensators. Specifically, the 

discrete decision variables (i.e., z in (24)) should be determined 

before the uncertainty is revealed since such equipment should 

not be adjusted quite frequently, whereas the continuous deci-

sion variables (i.e., y in (24)) can be flexible with the revealed 

uncertainty. This framework gives a two-stage framework and 

for the Ns scenarios of uncertainties from discretizing the given 

probability distribution, such that 
1

u ,…, sN
u and the corre-

sponding probability is ( 1p ,…, sN
p ). The objective function 

minimizes the total expected network loss. Then, the general 

data-driven stochastic reactive power optimization model is 

formulated as 

, Y
1

min
s

s s

N
T s

s

s

p





z y

a y                                 (27) 

s.t.        Az b ,   0,1z                            (28) 

2
, , 1,...,

Y
,

s s s T s

i i i is

s s s

d i n      
  

    

y Cy f Q y q c y

Dy g Gz Ey u
  (29) 

Due to the limited information from the historical data, the 

probability distribution of uncertainties cannot be exactly de-

termined by the data. As a result, we allow the probability 

distribution of uncertainties to be arbitrary within a pre-defined 

confidence set constructed from the historical data. Thus, the 

proposed data-driven stochastic reactive power optimization 

model aims to find the optimal solution under the worst-case 

probability distribution, such that 

Y
1

min max min
sN

T s

s

s

p
 




z yp

a y                        (30) 

s.t.        Az b ,   0,1z                            (31) 

2
, , 1,...,

Y
,

s s s T s

i i i is

s s s

d i n      
  

    

y Cy f Q y q c y

Dy g Gz Ey u
  (32) 
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In [35], two popular confidence sets based on norm-1 and 

norm-inf were presented for , which can be expressed as 

   1 0 0,1
1

s

s s

N
N N

k k

k

R R p p   



  
        

  
p p p p (33) 

   0 0,
1
maxs s

s

N N

k k
k N

R R p p      
       p p p p (34) 

Supposing Ns scenarios from K observations, we have the 

following relationship between the number of historical data 

and : 

  2 /

0 1
Pr 1 2 sK N

sN e
 

   p p                 (35) 

  2

0Pr 1 2 K

sN e  


   p p                  (36) 

It can be found that the right-hand side of (35)-(36) is actu-

ally the confidence level of the confidence set. Then, the rela-

tionship between confidence level (i.e., the right-hand side of 

(35)-(36))  and the value of  is given by 

1

2
ln

2 1

s sN N

K






                               (37) 

21
ln

2 1

sN

K



 


                              (38) 

 Furthermore, (37) and (38) show that with the increase of the 

number of historical data, i.e., M, the estimated probability 

distribution will be closer to its true distribution. That means,  

will become smaller until to zero. Moreover, for the same ,  

is smaller than 1. 

IV. COLUMN-AND-CONSTRAINT GENERATION ALGORITHM 

The proposed data-driven stochastic reactive power optimi-

zation model can be cast as a two-stage optimization problem 

which generally can be solved by the Benders decomposition 

method or standard column-and-constraint generation method 

(C&CG). These methods are implemented in a mas-

ter-subproblem framework: sub-problem (SP) aims to find the 

critical scenario of the uncertain set for a given first-stage de-

cision variable that provides an upper bound; then new varia-

bles and constraints are added to the master problem (MP) to 

obtain a lower bound. The MP and SP are solved iteratively and 

the method stops until the gap between the upper and lower 

bounds is smaller than a pre-set convergence tolerance. 

A. C&CG-Sub-problem 

For a given specific first-stage variables in the k-th iteration 

as 
*k

z , we can set up a second-stage bi-level “max-min” model 

from (30)-(32) to find the worst-case scenario, yielding 

Y
1

max min
s

s s

N
T s

s

s

p
 




p y

a y                          (39) 

s.t.        2

*

, , 1,...,
Y

,

s s s T s

i i i is

s k s s

d i n      
  

    

y Cy f Q y q c y

Dy g Gz Ey u
 

   1,..., ss N (40) 

It can be observed that the model (39)-(40) has some special 

properties: (i) the sub-feasible regions (Y
1
,…,Y

s
,…,Y

Ns
) are 

separable; (ii) the decision variables p are all nonnegative; (iii) 

the feasible region of  and Y
s
 are absolutely disjoint. 

For the first and second properties that the sub-feasible re-

gions (Y
1
,…,Y

s
,…,Y

Ns
) are separable and the decision varia-

bles p are all nonnegative, we can exchange the summation 

operator “” and “min” operator, so the second-stage 

“max-min” problem can be reformulated as 

Y
1

max min
s

s s

N
T s

s

s

p
 




p y

a y                          (41) 

s.t.        2

*

, , 1,...,
Y

,

s s s T s

i i i is

s k s s

d i n      
  

    

y Cy f Q y q c y

Dy g Gz Ey u
 

  1,..., ss N (42) 

 For convenience, let 
Y

min
s s

T s
sh




y
a y and the above model 

becomes 

1

max
sN

s s

s

p h





p

                                                (43) 

s.t.        
Y

arg min
s s

T s
sh




y

a y                                             (44) 

s.t.   2

*

, , 1,...,
Y

,

s s s T s

i i i is

s k s s

d i n      
  

    

y Cy f Q y q c y

Dy g Gz Ey u
  

1,..., ss N (45) 

According to the property (iii), the feasible region Y
s
 for 

variables y
s
 and the feasible region  for variables p

s
 are ab-

solutely disjoint. That means, the feasible region of upper-level 

model  doesn’t affect the lower-level model and for any given 

value p
s
, the optimal solution y

s
 is unique. As a result, the bi-

level model can be solved by sequentially solving upper-level 

and lower-level models, respectively. Moreover, the first 

property tells that the sub-feasible regions (Y
1
,…,Y

s
,…,Y

Ns
) 

are separable, so lower-level model of the bi-level model can be 

further decomposed into Ns independent optimization models. 

This gives the fact that the bi-level model can be decoupled by 

the following structure: 

For each u
s
, it generates a second order cone programming 

model, such that 
*

Y

arg min
s s

T s
sh




y

a y                            (46) 

s.t.   2

*

, , 1,...,
Y

,

s s s T s

i i i is

s k s s

d i n      
  

    

y Cy f Q y q c y

Dy g Gz Ey u
(47) 

It can be observed that the above second order cone pro-

gramming models are Ns small models, comparing to the 

original model (43)-(45), since (46)-(47) only contains varia-

bles y
s
 for each model whereas (43)-(45) contains 

(y
1
,…,y

s
,…,y

Ns
) simultaneously in one model. Moreover, the Ns 

small models can be handled in parallel. 

After obtaining the optimal solution (
*
1h ,…,

*

sNh ) for the 

above Ns small models, we have 

*

1

max
sN

s s

s

h p





p

                            (48) 
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Thus, we can see that the original bi-level model can be 

solved by Ns small second order cone programming models that 

can be handled in parallel and one small linear programming. 

When the SP is solved, an optimal value  *kQ z and the 

worst-case probability p
k*

 are obtained, which in fact gives an 

upper bound for the original model. Then, a set of extra varia-

bles y
s,k+1

 and associated constraints are generated and added 

into master problem by fixing the optimal probability p
k*

 from 

the above model in (48). 

If the SP is feasible, we can create variables , 1s k
y and assign 

the following constraints to C&CG-master problem, which is 

called “optimality cuts”. 

* , 1

1

sN
k T s k

s

s

p 



 a y                               (49) 

, 1 , 1 , 1

2
, , 1,...,s k s k T s k

i i i id i n      Cy f Q y q c y       (50) 

, 1 , 1,s k s k s   Dy g Gz Ey u , 1,..., ss N        (51) 

where  is a dummy continuous variable. 

If the SP is infeasible, it is possible to create variables
1k

x

and assign the following constraints to C&CG-master problem, 

which is called “feasibility cuts”. 
, 1 , 1 , 1

2
, , 1,...,s k s k T s k

i i i id i n      Cy f Q y q c y     (52) 

, 1 , 1,s k s k s   Dy g Gz Ey u , 1,..., ss N         (53) 

B. C&CG-Master Problem 

The MP aims to relax the original optimization model and 

provide a lower bound. After K iterations have been preceded, 

the master problem can be described as follows: 

min 
z

                                     (54) 

s.t.        Az b ,   0,1z                            (55) 

* , 1

1

sN
k T s k

s

s

p 



 a y , 1,2,...k K                    (56) 

, 1 , 1 , 1

2
, , 1,...,s k s k T s k

i i i id i n      Cy f Q y q c y , 

1,2,...k K , 1,..., ss N (57) 

, 1 , 1,s k s k s   Dy g Gz Ey u , 1,2,...k K , 1,..., ss N (58) 

The above MP is a standard mixed integer second order cone 

programming model that can be easily handled by the 

off-the-shell commercial solvers, such as MOSEK, CPLEX, 

GUROBI, etc.. Solving the MP gives the optimal discrete var-

iables *
z  and optimal continuous variables (y

s,1*
,…,y

s,k*
) that 

are generated in SP for the uncertainty set. The SP and the MP 

are solved iteratively until the given convergence criteria is 

satisfied and thus the global optimal solution is obtained. As 

presented in [24], the column-and-constraint generation algo-

rithm can be converged in finite iterations where all possible 

realizations of are needed to be enumerated [24]. However, it 

should be noted that the proposed column-and-constraint gen-

eration algorithm is a little different from that in [24], where the 

proposed model has a special structure, so that there is no need 

as [24] to dualize the inner “max-min” bi-level model into a 

single level model to solve it. With respect to the special 

structure, we propose a novel C&CG decomposition method 

with the information of duality. For the given convergence 

error , the implementation steps of the proposed algorithm are 

given in Table I. 

TABLE I    PROCEDURE OF C&CG ALGORITHM 

C&CG algorithm 

1. Set LB=  , UB=  , k=0; 

2. Solve the master problem (54)-(58). Derive an optimal solution 
*

z and (
*  , ys,1*,…,ys,k+1*) for s=1,…,Ns. Then, update  the 

lower bound 
* *TLB  c y ; 

3. Fix *
z  and solve the subproblems (46)-(47) in parallel, yield-

ing an optimal value Q( *
z ) and worst-case probability *

p . 

4 
Update UB=min{UB ,  * *T Qc z z }. If UB-LB<, termi-

nate; else, go to step 5. 

5 Generate variables (
1, 1k

y ,…, 
, 1s k

y ,…, 
, 1sN k

y ). Add the 

new variables and constraints to master problem according to 

(49)-(53). Update k=k+1, and go to step 2. 

V. NUMERICAL ANALYSIS 

A. Test System and Data Collection 

In this section, a 33-bus distribution network that is plotted in 

Fig. 1 is analyzed to verify the proposed method. We consider 

the step of tap ratio (TR) of the transformer in the substation is 

0.01 and the range is [0.94, 1.06]. Two switchable capaci-

tors/reactors (SCRs) are connected to buses {#3, #9} whose 

capacity are both [-0.01, +0.01] MVar, where the steps are 

0.002 and 0.005 MVar. The maximum operating times over 24 

hours for SCRs are 8 and 6, respectively. Besides, five DGs are 

installed at buses {#19, #25, #28, #31, #33} with the capacity 

being 0.1 MW, 0.2 MW, 0.3 MW, 0.3 MW and 0.3 MW re-

spectively. The forecasted load demand and DG generation 

factors over 24 hours are depicted in Fig. 2., where it is as-

sumed that the uncertain DG output follows a multivariate 

normal distribution with the variance equivalent to 1/5 of the 

mean value (a.k.a., forecasted value). We randomly generate 

1000 samples by Monte Carlo simulation to simulate the set of 

the historical data. Taking the 1 determined by (37) for exam-

ple, the relationship among 1, Ns and  is shown in Fig. 3. This 

reveals that for the given number of samples, with the increase 

of the number of scenarios Ns and confidence level , 1 be-

comes larger and the uncertainty set will become larger as well. 

It is obvious that the size of uncertainty set will affect the op-

timal solution, so in the following study, we will choose dif-

ferent Ns and  to show the impact of uncertainty set on the 

reactive power optimization model. 

The computational tasks were performed on a 2.0 GHz per-

sonal computer with 4 GB RAM, and the proposed method was 

programmed in MATLAB where the mixed integer second 

order cone programming were solved using CPLEX 12.5. 
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Fig. 1.  Topology of 33-bus system 

 

 
Fig. 2.  Load/Generation factors over 24 hours. 

 
Fig. 3.  The relationship among 1, Ns and . 

B. Results and Comparison on A 33-Bus Test System 

The proposed method is compared with the traditional two 

popular methods, two-stage stochastic and robust optimization 

approaches, denoted by ‘S’ and ‘R’ respectively. To compare 

with the traditional stochastic programming model with the 

deterministic multivariate normal distribution, we solve the 

traditional model and fix the first-stage decision variables. 

Then, we randomly choose 10000 different probabilities from 

the uncertain set and solve the second-stage problem for each 

given probability, where it is found that the solution with the 

maximum network loss is served as the worst-case scenario for 

the stochastic approaches, denoted as ‘Swst’. 

Furthermore, the comparison of the three methods is 

presented in Table II. The results show that the two-stage robust 

optimization method yields the highest network loss (2.8545 

MW) and the two-stage stochastic optimization method arrives 

at the lowest network loss (2.0117 MW). The two-stage robust 

optimization method optimizes the optimal solution under the 

worst-case for all the possible realizations, which leads to the 

largest optimal solution. The two-stage stochastic optimization 

method neglects the uncertainty of probability of each scenario, 

which leads to the smallest optimal solution. Moreover, The 

two methods always yield the same solution for different . 

The proposed method under both 1 and  gives a mild optimal 

solution and  can be termed as a budget that can control the 

size of uncertainty set and further affects the optimal solution. 

Moreover, the network loss from the worst case of stochastic 

approach (i.e, Swst) considering uncertain probability distri-

bution is about 20%~30% larger than the traditional two-stage 

stochastic programming. Increasing confidence level  leads to 

a larger uncertainty set, so that the worst-case solution will 

become larger. Comparing the proposed method with the tra-

ditional stochastic approach, it can be observed that the net-

work loss from the proposed method under both uncertain sets 

inf and 1 is larger than the traditional stochastic programming, 

while it is smaller than that from the worst case of stochastic 

approach. In particular, a smaller confidence level  leads to a 

larger gap between Swst and the proposed method.  

Besides, the network loss by the proposed method under 

different uncertainty sets gives different values, but for the 

same confidence level , the optimal solution is very close and 

the optimal solution under 1 is slightly smaller than that under 

inf. 

Finally, the discrete control actions by the three methods are 

studied and compared. Take the first SCR for illustration and 

Fig. 4 depicts that four and eight operating times of SCR1 are 

obtained by robust and stochastic optimization methods, 

whereas the proposed method is operated between 4 and 8 

times. Here, we only choose =0.5 and =0.99 for comparison 

due to the limited space. It observes that with the increase of , 

the optimal control action over 24 hours is closer to that of 

robust optimization method. This is because the increase of  

will enlarge the uncertainty set, which is closer to the uncer-

tainty set of robust optimization approach.  

Table II.    Comparison of network loss by three methods under dif-

ferent  

 
Network Loss (MW) 

inf 1 R S Swst 

0.5 2.0813 2.0575 2.8545 2.0117 2.3888 

0.6 2.1280 2.1076 2.8545 2.0117 2.4305 

0.7 2.1720 2.1522 2.8545 2.0117 2.4732 

0.8 2.2409 2.2210 2.8545 2.0117 2.5170 

0.9 2.3072 2.2941 2.8545 2.0117 2.5618 

0.95 2.3702 2.3614 2.8545 2.0117 2.6076 

0.99 2.5066 2.5088 2.8545 2.0117 2.6309 
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Fig. 4.   Comparison of SCR1 on the three methods 

C. Comparison of Computational Performance Between the 

Proposed Method and Traditional Approaches 

The comparison of computational performance among the 

three approaches is shown in Table III, presenting the iterations 

(Iter.) and computational time (Time) of each method.  

For the two-stage stochastic programing model, it needs to 

solve a large-scale mixed integer second order cone program-

ming, which is actually a single-level model that can be directly 

handled by the off-the-shelf solvers. However, the computa-

tional time increases significantly with the increase of the 

number of scenarios.  

For the two-stage robust optimization model, the number of 

iterations is only 3, where a new worst-case scenario is identi-

fied at each iteration. It is very time-consuming because solving 

the inner bi-level “max-min” problem needs to take dual and 

furthermore to solve a large-scale mixed integer second order 

cone programming model. 

 In contrast, the proposed data-driven stochastic program-

ming model has a very special structure, in which the feasible 

region of second-stage problem is disjoint with the uncertainty 

set, so a new column-and-constraint generation algorithm is 

proposed to decompose the SP into Ns small-scale SPs that can 

be solved in parallel. Meanwhile, the SPs are several second 

order cone programming models, different from the robust 

optimization model where the SP is a large-scale mixed integer 

second order cone programming. The computational time can 

be further reduced significantly. It is observed from Table III 

that the proposed method is much faster than the two-stage 

robust optimization method. 

Moreover, when Ns is small, two-stage stochastic program-

ming model is a little faster than the proposed method, but with 

increasing Ns, the two-stage stochastic programming model 

becomes significantly slower due to the large number of vari-

ables and constraints from the scenarios, whereas the compu-

tational time of the proposed model increases only slightly 

thanks to the decomposition method. Therefore, the proposed 

method performs faster than the two-stage stochastic pro-

gramming model especially for the case with a large number of 

scenarios. 

Another test system is from a 123-bus test system with 10 

DG and five switchable capacitors/reactors (SCRs) connected 

to bus 12, 35, 54, 76, and 108, which is shown in Fig. 5 . The 

detailed information can be available from [28]. The compar-

ison of computational performance among the three approaches 

is shown in Table IV, where it can be observed that the robust 

optimization needs six iterations for convergence by use of 

column-and-constraint generation algorithm and the total time 

is about 12473s. The computational time of the stochastic op-

timization will increase significantly with increasing the 

number of scenarios. This is because the stochastic optimiza-

tion model contains Ns sets of decision variables and constraints. 

Large Ns will significantly increase the number of total decision 

variables and constraints and thus need more computational 

time. As for the proposed method, the computational speed is 

more than 20 times faster than the robust and stochastic opti-

mization models when Ns is large. Since the increase of Ns will 

enlarge the uncertainty set. Therefore, it needs more iterations 

for convergence and the total computational time will increase 

as well.  

Finally, it should be mentioned that the maximum gap of 

conic relaxation for any test system is smaller than 10
-4

 MW, 

suggesting that the second order cone programming relaxation 

is always exact to the original nonconvex model. 

Table III.  Comparison of computational efficiency by three methods 

on 33-bus test system 

Ns 

Proposed Robust Stochastic 

Iter. Time (s) Iter. Time (s) Iter. Time (s) 

5 3 11.3 3 

2897.4 

1 8.5 

10 3 16.6 3 1 23.4 

15 3 23.5 3 1 50.3 

20 4 29.9 3 1 156.8 

25 4 37.5 3 1 363.7 
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Fig. 5.  Topology of 123-bus system 

Table IV.  Comparison of computational efficiency by three methods 

on 123-bus test system 

Ns 

Proposed Robust Stochastic 

Iter. Time (s) Iter. Time (s) Iter. Time (s) 

5 6 76.5 6 

12473 

1 125.3 

10 7 108.2 6 1 323.4 

15 7 113.9 6 1 987.6 

20 8 208.8 6 1 2092.1 

25 8 235.4 6 1 5754.3 
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VI. CONCLUSIONS 

This work proposes a data-driven stochastic reactive power 

optimization model to address uncertain distributed generators 

integrated into active distribution networks. According to the 

historical data, the proposed method constructs a confidence set 

for the probability distribution of the uncertainties and aims to 

find an optimal solution under the worst probability distribution. 

Furthermore, conic relaxation is employed to utilize to relax the 

feasible region enclosed by power flow equations. It is noted 

that the proposed model has a special structure, so that a new 

column-and-constraint generation algorithm is proposed to 

decompose the second-stage bi-level inner problem into several 

small-scale subproblems that can be handled in parallel. The 

comparison with the traditional two-stage stochastic and robust 

approaches on two test systems shows that the proposed model 

can achieve better optimal solution and computational perfor-

mance than traditional methods. 

APPENDIX 

As discussed in Section II, the original reactive power op-

timization model is not a standard mixed integer second order 

cone programming model since there are still many bilinear 

terms in the above model. Now, we can simplify them so as to 

construct a standard mixed integer second order cone pro-

gramming model. 

(i) Reformulations for constraints in (12)-(14) and (18) 

 The discrete reactive power compensators in (12)-(14) and 

(18) are nonnegative integers, rather than 0-1 binary variables. 

For the standard mixed integer programming model, it is ex-

pected to formulate the model with binary variables. Therefore, 

we should reformulate each integer variable  j t  into a 

combination of 0-1 binary variables. Since any integer number 

has a unique binary code, the binary code of  j t can be ex-

pressed by the combination of binary variables

     ,0 ,1 ,, ,...,
jj j jt t t    as 

       0 1
,0 ,1 ,2 2 ... 2 j

jj j j jt t t t


                (A1) 

According to the bound constraints in (12) and (13) that 

 

   

min max

min

j j j

j j j j

C C t C

C t C s t

  


 

, we can derive 

       0 1 max min
,0 ,1 ,2 2 ... 2 j

jj j j j j js t t t C C


        (A2) 

Since        ,0 ,1 ,, ,..., 0,1
jj j jt t t    , the maximum value 

should be 1. Therefore, the maximum value of j should be 

 

max min max min

2 2log 1 1 log 1
j j j j

j

j j

C C C C

s s


    
       

   
   

(A3) 

According to (A1) and (12),    j jv t C t becomes 

   

    

            

min

min 0 1
,0 ,1 ,2 2 ... 2 j

j

j j

j j j j

j j j j j j j j j

v t C t

v t C s t

C v t s t v t v t t v t






  

 

    

  (A4) 

For convenience, let      , ,j k j k jt t v t  , (18) derives 

           

        
  

min 0 1
,0 ,1 , , ,

,

1
2 2 ... 2 +

2

+

j

jj j j j j c j L j

jk ij ij ij s j j

k j i j

C s t t t Q t Q t

G t G t x l t b v t





 

  

 

    

   
,

    Dj  , 1,...,t T (A5) 

Furthermore,      , ,j k j k jt t v t   can be linearized by 

means of the big-M approach, such that 

         
     

, , ,

, , ,

1 1j k j k j j k

j k j k j k

M t t v t M t

M t t M t

  

  

     


  

,                

Dj  , 1,.., jk  (A6) 

For (A6), since    , 0,1j k t  , we can find that  

 , 0j k t   gives 
   

 
 ,

,
,

0
0 0

j k j

j k
j k

M t v t M
t

t






   
 

 
; 

 , 1j k t   gives 
   

 
   ,

,
,

0 0j k j

j k j
j k

t v t
t v t

M t M






  
 

  
. 

Therefore, (A6) is equivalent to      , ,j k j k jt t v t  and 

(12)-(14) and (18) can be expressed as (A5) with additional 

constraints (A6). 

Meanwhile, taking (A1) into (14) leads to 

    , , ,

2 0

2 1
jT

k
j k j k c j

t k

t t



  
 

   ,   Dj      (A7) 

 (ii) Reformulations for constraints in (20) 

Similar to the method for linearizing bilinear terms 

   j jv t C t , the bilinear terms    ,ij k jo t v t  can be also linear-

ized using the big-M approach. Let      , ,ij k ij k jh t o t v t  and 

the constraints (20) containing bilinear terms    ,ij k jo t v t will 

become 

 

 
             , 2 2

2
0

,

2
ijn

ij k

i ij ij ij ij ij ij ij

k
ij k

h t
v t r H t x G t r t x t l t

w

     ,

 ,i j  , 1,...,t T  (A8) 

         
   

, , ,

, , ,

1 1ij k ij k j ij k

ij k ij k ij k

M o t h t v t M o t

Mo t h Mo t

     


  

,              

       ,i j  , 1,.., ijk n (A9) 

According to the above reformulations and relaxation in 

section II, the reactive power optimization model can be cast as 

a standard 0-1 mixed integer second order cone programming 

as follows: 
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     
  

 
, ,

1 ,

min
c

T

ij ij
Q t t o t

t i j E

r l t


 

                            (A10) 

s.t   (3), (8), (10)-(11), (15)-(16), (19), (22)-(23), (A5)-(A9)      

(A11) 

      0,1t  ,    0,1t o ,  c t ContinousQ        (A12) 
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