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Delta Power Control Strategy for Multi-String
Grid-Connected PV Inverters

Ariya Sangwongwanich, Student Member, IEEE, Yongheng Yang, Member, IEEE,
Frede Blaabjerg, Fellow, IEEE and Dezso Sera, Senior Member, IEEE

Abstract—With a still increasing penetration level of grid-
connected PV systems, more advanced active power control
functionalities have been introduced in certain grid regulations. A
delta power constraint, where a portion of the active power from
the PV panels is reserved during operation, is required for grid
support (e.g., during frequency deviation). In this paper, a cost-
effective solution to realize delta power control for grid-connected
PV systems is presented, where the multi-string PV inverter
configuration is adopted. This control strategy is a combination
of Maximum Power Point Tracking (MPPT) and Constant Power
Generation (CPG) modes. In this control scheme, one PV string
operating in the MPPT mode estimates the available power, while
the other PV strings regulate the total PV power by the CPG
control strategy in such a way that the delta power constraint for
the entire PV system is achieved. Simulations and experiments
have been performed on a 3-kW single-phase grid-connected
PV system. The results have confirmed the effectiveness of the
proposed delta power control strategy, where the power reserve
according to the delta power constraint is achieved under several
operating conditions.

Index Terms—Active power control, power reserve control,
maximum power point tracking, constant power generation
control, PV systems, grid-connected power converters.

I. INTRODUCTION

HOTOVOLTAIC (PV) systems have been increasingly

integrated into the power grid in recent years, mainly
driven by the continue reduction in the price of PV panels
as well as the system installation costs [1]-[3]. More PV
systems are expected to be installed in the future and will
share a major part of the power production, especially in
residential-scale systems [3]. Accordingly, the importance of
PV participation in the grid control becomes clear, and is being
introduced in certain grid regulations [4]—[8]. For instance,
in Germany, the frequency-dependent active power reduction
has been introduced for medium-voltage systems, as shown
in Fig. 1 [4]. Similar requirements have also been defined in
other grid codes [5], [6], where PV systems are not allowed
being immediately disconnected from the grid in the case of
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Fig. 1. Grid-connected PV systems with frequency-dependent active power
reduction control, where P,y is the PV output power, Fjimj; is the power limit
level (injected output power), P,y,i is the available PV output power, AP is
the required amount of power reserve, f is the grid frequency.
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Fig. 2. Delta power constraint defined in the Danish grid code, where AP
is the amount of power reserve level [6].

frequency deviations. Instead, the output active power from
the PV systems has to be reduced to a certain level, in order
to support the grid and also to provide power reserve. In the
Danish grid code, a delta power constraint is defined [6] (also
called power reserve control), whose operational principle is
illustrated in Fig. 2. Notably, the delta power constraint is
currently used for potential frequency responses in large-scale
PV power plants. As the penetration level of grid-connected
PV systems is still increasing, this requirement is also expected
to be introduced in small and medium-scale PV power plant.
In those cases, a majority of PV systems are (and will
continue to be in the future) adopted in residential/commercial
applications [3].

When looking into the prior-art work, there are mainly three
approaches to realize Delta Power Control (DPC) [8]-[11]: 1)
integrating energy storage systems, 2) applying a dump load
to dissipate excessive power, and 3) limiting the extracted PV
power by modifying Maximum Power Point Tracking (MPPT)
algorithms. Integrating energy storage systems is one of the
most commonly-used solution, where the surplus PV power
can be stored in the energy storage device (e.g., batteries),
and thus the PV power can be reserved during operation.
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Fig. 3. Power-voltage characteristic of the PV panels with the operating point
at the power limit Py, where MPP is the maximum power point.

One key benefit of this solution is that it can also provide
an upward frequency regulation, meaning that the PV system
can inject power higher than the maximum available power by
discharging the energy storage device. This is beneficial for
grid support especially during the low PV power production
periods (e.g., at night). However, high cost and limited lifetime
are usually associated with this approach, making it not very
feasible. This can challenge the overall cost of PV energy,
which is against the high expectation of cost reduction in
the next decade [12]. Another solution to the power reserve
is by installing a dump load to dissipate the surplus PV
power. However, this solution also requires extra components
(e.g., resistance load with a controller to regulate the power
flow), thus increasing the overall system complexity [13],
[14]. Therefore, the third approach by modifying the MPPT
algorithm offers a more cost-effective solution, and will be
considered in this paper.

In this approach, the operating point of the PV system in the
Power-Voltage (P-V) curve is regulated below the Maximum
Power Point (MPP) in order to limit the PV power P,y to
a certain level P, as it is shown in Fig. 3. Operating the
PV system below the MPP is not a new issue, as it has been
previously applied to other applications (e.g., constant power
generation, microgrid, fault-ride through) [15]-[27]. However,
the challenge to realize the DPC strategy is the estimation of
the available PV output power P,y, during operation, which
is required in order to calculate the set-point P according
to the delta power constraint (i.e., Pimit = Pawa — AP)
[9], [10], [27], [28]. One method to estimate the available
PV power is to use the irradiance measurement together
with the PV array characteristic model, as suggested in [9],
[11]. However, this method requires an accurate irradiance
measurement, which is usually not available in the residential-
scale PV systems (e.g., roof-top applications) considering the
cost. In addition, a highly accurate model of the PV arrays is
needed, which is typically not feasible due to aging, faults,
etc. This will increase the cost and the complexity of the
overall system. Alternatively, the available power P, can
be estimated by means of a quadratic approximation curve-
fitting method [10], [28], where the irradiance measurement
is not required. In this approach, the PV voltage at the MPP
Vmpp is first estimated from the present operating condition.
Then, the estimation of the PV power at the MPP is achieved
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Fig. 4. System configuration and control structure of multi-string grid-
connected PV inverters [29].

by using the estimated Viypp with a combination of linear and
quadratic approximation [28]. However, this method also relies
on a model-based approach, which is not very generic and the
estimation accuracy is compromised (due to the curve-fitting
approximation). In light of the above discussions, it calls for
a simple but effective solution to estimate the available PV
power P, and thus to flexibly regulate the extracted PV
power I,y according to the delta power constraint.

Actually, most residential/commercial PV systems (e.g.,
with the rated power of 1 kW - 30 kW) usually employ a
multi-string PV inverter topology [29]-[33], whose system
configuration is shown in Fig. 4. Recently, this string inverter
topology is also becoming more and more popular in large-
scale PV power plants, where a traditional central inverter
is replaced by several string/multi-string PV inverters, due
to reduced installation cost, maintenance cost, and increased
reliability [34], [35]. In this system configuration, the PV
power extraction of each PV string is independently controlled
by a dc-dc converter (e.g., a boost converter) equipped at each
PV string. Normally, the MPPT algorithm is employed for
each dc-dc converter, in order to maximize the PV energy
yield. However, it is also possible to coordinately control
several PV strings with different active power control strate-
gies, in order to realize a power reserve control (i.e., the
DPC strategy) [36]. In particular, one (or more) master PV
string is assigned to operate in the MPPT mode and estimate
the available PV power P,,;, while the other PV strings are
controlled as slave systems to operate in the Constant Power
Generation (CPG) mode (also called active power reserve
in some literature), where the power limits Py are set
according to the master PV string. In this way, the total PV
power production can be flexibly controlled considering the
delta power constraint. This approach requires neither energy
storage systems nor irradiance measurements, and it is being a
cost-effective solution. This concept has been briefly discussed
in [23], [37], [38]. However, a detailed explanation of the
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Fig. 5. Control scheme of the Delta Power Control (DPC) strategy and the
resultant power production, where the master and slave PV strings operate in
the MPPT and the Constant Power Generation (CPG) modes, respectively.

coordinated control algorithm to realize the DPC strategy in
multi-string PV systems has not yet been discussed in the
literature. That is to say, there is still a gap between the
conceptual discussion and the practical implementation of the
DPC strategy. In addition, performance verification of the DPC
strategy in real operation has not been investigated (e.g., during
different solar irradiance conditions).

The main aim of this paper is to present the DPC control
scheme applied to the multi-string PV system. The detailed
explanation of the coordinated control between the master PV
string (with MPPT mode) and the slave PV strings (with CPG
mode) is given in § III. This includes the discussion about the
concept of the DPC strategy as well as the control algorithm
for implementation. Then, simulations and experiments on a
3-kW two-stage PV system are conducted in § IV to verify the
effectiveness of the DPC strategy under several test conditions.
Finally, concluding remarks are given in § V.

II. SYSTEM CONFIGURATION AND CONTROL SCHEME OF
MULTI-STRING PV INVERTERS

In grid-connected PV applications, several system config-
urations can be adopted depending on the power rating of
the PV power plant [29]-[31]. In residential/commercial-scale
PV systems (e.g., rated power of 1 kW - 30 kW), a two-
stage conversion system, consisting of a dc-dc and a dc-
ac conversion stages, is normally required. This is usually
referred to as a multi-string inverter configuration shown in
Fig. 4, and it has been widely adopted commercially in this
power range [32], [33]. In the first dc-dc conversion stage,
each PV string, consisting of several PV panels connected in
series and/or parallel, is equipped with a dc-dc boost converter
to step up the PV voltage vpy to match the required dc-link
voltage vq.. This is due to the fact that the PV voltage from
the PV arrays in residential/commercial scale PV systems can
vary in a wide range. In some cases, it may be lower than the
minimum level of the dc-link voltage (e.g., 450 V) for grid-
connected PV inverter, due to a limited number of PV panels
connected in series.

Typically, the boost converter also performs the active power
control (e.g., the MPPT control or the CPG control) for each
PV string individually. This gives a possibility to coordinate
the active power control of each PV string in order to achieve
the delta power constraint. This will be discussed in the next
section. The total extracted power by the dc-dc converters
is subsequently delivered to the dc-link. Then, one dc-ac
inverter is employed in the dc-ac conversion stage to inject the
extracted PV power to the ac grid. This is normally achieved
by regulating the dc-link voltage to be constant through the
control of the grid current 7, [39]. As the PV power extraction
is mainly controlled by the boost dc-dc converter, the control
algorithm in the dc-dc conversion stage to realize the DPC
strategy is the main focus of this paper. Notably, the discussed
control scheme can be generally applied to any two-stage PV
system configuration, e.g., with different inverter hardware
topologies, as they share the same overall control scheme.

III. DELTA POWER CONTROL (DPC) STRATEGY FOR
MULTI-STRING PV INVERTERS

The PV system needs to reserve a certain amount of PV
power AP during operation for possible frequency regulation,
where the delta power constraint can be summarized as

va = Pavai — AP (1)

In order to control the PV output power F,, according to
the DPC strategy in (1), the other two quantities (i.e., the
available power P,y and the amount of power reserve AP)
must be known. Typically, the amount of power reserve AP
can either be calculated as a function of the grid frequency
deviation or set by the system operator [9]-[11]. Thus, two
challenging issues remain: 1) estimating the available power
Piyai during the operation without irradiance measurements
and 2) regulating the extracted PV power P, according to the
DPC constraint in (1). As mentioned previously, the available
power can be estimated by one of the PV strings that performs
the MPPT control, while the latter issue can be achieved by
the CPG control strategy [17]. Thus, the focus of this work is
on the active power control of the PV string (see Fig. 4), where
the MPPT and the CPG operation are coordinately controlled.
For the sake of simplicity, two PV strings with equal rated
power in Fig. 4 are considered. The control structure is further
illustrated in Fig. 5 and the total output power can thus be
expressed as

va = val + va2 2

A. Estimation of the available output power - MPPT operation
for the master PV string

Estimating the available PV power is very challenging,
especially when the solar irradiance is not measured. However,
PV strings in residential-/commercial-scale PV systems are
usually located close to each other (e.g., on the same rooftop),
in order to maximize the space utilization. This implies that
most PV strings will have similar solar irradiance and ambient
temperature profiles, and therefore similar power production
profile. If one PV string as the master operates in the MPPT



mode, its output power Fp,y; can be used to estimate the
available power of the rest PV strings as the slaves. Thus,
the total available power of the PV plant P,,,; can be simply
estimated by multiplying F,y; with the number of PV strings
as

Pavai ~ vaval (3)

where NV, is the ratio between the rated power of the total
PV plant and the rated power of the master PV string. For
instance, if the PV system consists of two PV strings (i.e.,
one master string and one slave string) with the equal rated
power (e.g., same total number of PV panels) considered in
this paper and illustrated in Fig. 5, the power ratio can be
determined as N, = 2. That is, the rated power of the master
PV string is a half of the total PV system rated power.

By doing so, the total available power of the PV plant
can be estimated without the solar irradiance measurement
nor an accurate PV panel characteristic model, being a cost-
effective solution. It is worth mentioning that this is based
on the assumption that the mismatch between each PV string
(e.g., due to faults, aging, partial shading) is very small.

Notably, in the case of a larger scale PV plant (i.e., more
PV strings), several PV strings can be assigned to perform the
MPPT operation (as master PV strings). Then, there are two
possibilities for estimating the available power of the PV plant:
1) Global estimation - the averaged value of output power
from all master PV strings is used globally for estimating the
available power of the total system or 2) Local estimation -
the measured output power of each master PV string is used
locally for estimating the available power of a local group
of PV strings. The choice between the two approaches is not
obvious as it depends on both the physical arrangement and the
economic factor of the systems. The global estimation offers
a simple implementation but the accuracy is compromised,
especially for a large area PV plant, where the solar irradiance
profile of different PV strings can vary considerably. Thus,
it is not very suitable for a large scale PV system with a
wide-area distribution. On the other hand, the local estimation
offers a higher estimation accuracy, but all the local groups
of PV strings need to be coordinately controlled by a central
controller in order to ensure that the total output power follows
the DPC constraint in (1). This leads to more complicated
control algorithms and costly communication systems, which
may not be suitable for a small-/medium-scale PV plant.
Moreover, the maximum power reserve level also decreases
with the increased number of master PV strings (as they
always need to operate with the MPPT operation), which is a
trade-off between the power reserve capacity and the control
accuracy of the DPC strategy.

B. Compensation of the output power - CPG operation for the
slave PV strings

Once the available power P,,; is estimated, the slave PV
string has to regulate its output power Py, in order to provide
the total extracted power (from both PV strings) I,y according
to (1). As discussed in [10] and [16], the output power of
the PV string can be regulated below the MPP using the
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Fig. 7. Operational principle of the Constant Power Generation (CPG) scheme
based on the Perturb and Observe algorithm (P&O-CPG).

CPG strategy. From the Power-Voltage (P-V) characteristic
of the PV arrays shown in Fig. 6, there are two possible
operating points for regulating the PV power F,,, at a certain
set-point BPjyie (i.e., at A and C in Fig. 6). It has been
demonstrated in [16] that the operating region at the right
side of the MPP (i.e., at C in Fig. 6) may introduce unstable
operation during a fast decreasing irradiance condition (e.g.,
caused by passing clouds). This is due to the fast decrease
in open-circuit voltage of the PV arrays, when the irradiance
level suddenly drops (e.g., from 1000 W/m? to 200 W/m?).
Under this circumstance, the operating point of the PV system
may fall into the open-circuit condition, if the PV system
was previously operating at the right side of the MPP (i.e.,
C—D). This is not the case when the PV system regulates
the PV power at the left side of the MPP, as the operating
point will not go to the open-circuit condition during a fast
irradiance drop (i.e., A—B). Nevertheless, operating at the
lower PV voltage requires a higher conversion ratio (i.e.,
Ude/Vpv2), Which it may decrease the efficiency of the boost
converter, but it is beyond the scope of this paper [40]. Thus,
in order to ensure a stable operation, the PV voltage vy, is
regulated at the left side of the MPP (i.e., at A in Fig. 6) in
order to control the PV power according to By = Piimit.

As discussed previously, one way to reduce the PV power
to a certain set-point is by regulating the PV voltage at the
left side of the MPP. This can be achieved by means of the
Perturb and Observe (P&O) CPG algorithm, whose operational
principle is illustrated in Fig. 7. Specifically, when the PV
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power is below the set-point (i.e., Py < Bimit), the MPPT
algorithm is employed in order to allow the PV power to reach
the set-point (e.g., shown as the red arrow in Fig. 7). However,
once the PV power reaches and starts to exceed the set-point
(i.e., Byv2 > Bimit), the PV voltage is continuously perturbed
toward the left side of the MPP (e.g., by continuously reducing
the reference PV voltage) until the PV output power is equal
to the set-point. This is shown as the black arrow in Fig. 7.
The reference PV voltage vy, during this operation can be
expressed as:

when P2 < Plimit
when By > Bimit

x UMPPT
Upv2 -
Upv2 — Usteps

where vyppr is the reference voltage from the MPPT algorithm
(i.e., the P&O MPPT algorithm) and vy is the perturbation
step-size of the algorithm.

In contrast to the CPG algorithm in [15]-[17], where a
constant set-point Pjip; is used, the DPC method dynamically
changes the value of the set-point P during the operation in
order to achieve the delta power constraint. Since the master
PV string is operating in the MPPT mode with the extracted
power according to (3), the PV power of the slave PV string
P,y has to be limited according to (8), i.e., Flimii = Povi —AP.

“4)

Povo By — Bowi )]
= (Puwai —AP) — Py (6)
= (2B — AP) — Py (7
= P, — AP (8)

Consequently, the total extracted power according to (1) can
be achieved. Fig. 8 illustrates the operational principle of the
DPC strategy where the master PV string is assigned to operate
with the MPPT operation and the slave PV string regulates its
output power according to (8) by continuously operating in the
CPG mode. Notably, P,y can be easily obtained by measuring
tpyv1 and vpyy (i.€., Bpyi = ipy1Upyv1), as it is shown in Fig. 5.

IV. PERFORMANCE VERIFICATION OF THE DELTA POWER
CONTROL (DPC) STRATEGY

The effectiveness of the DPC strategy has been verified
first on a PLECS/Simulink co-simulation platform and later by
experiments with the test-rig shown in Fig. 9. In both cases,
the system configuration is shown in Fig. 4, where the system

FPGA
Controller

Two-stage PV system
(Boost converter and Full-
Bridge inverter)

ac grid
| (isolation transformer)

Fig. 9. Experimental setup of the two-stage single-phase grid-connected PV
system.

TABLE I
PARAMETERS OF THE TWO-STAGE SINGLE-PHASE GRID-CONNECTED PV
SYSTEM (FIG. 4).

PV rated power 3 kW (i.e., 1.5 kW/PV string)

Boost converter inductor L =18 mH
PV-side capacitor Cpv = 1000 pF
Liny = 4. H, L, =2 mH
LCLfilter inv = 4.8 mH, L =2 mH,
Cy =43 uF

Boost converter: fp = 16 kHz,
Full-Bridge inverter: fi,, = 8 kHz
vy =450V

Vg =230V

wo = 27 x50 rad/s

Switching frequency

DC-link voltage
Grid nominal voltage (RMS)
Grid nominal frequency

parameters are given in Table I. In the tests (both simulations
and experiments), the reference power reserve AP is chosen
to be 200 W, and the DPC strategy is activated when the total
PV output power B, is higher than 2 kW, i.e., P,y > 2 kW.

First, a trapezoidal solar irradiance profile has been used
in simulation, as it is shown in Fig. 10. It can be seen from
the results in Fig. 10(a) that the PV power of the slave PV
string Py, decreases during the DPC operation period by the
required amount of power reserve AP, compared to P, of the
master PV string with the MPPT operation. The operational
mode transitions can also be observed from the operation P-V
trajectory in Fig. 10(b), where B, is dynamically regulated
at the left side of the MPP (i.e., CPG operation) compared
to the MPPT operating trajectory of the master PV string
Pyv1, when the DPC strategy is activated. Consequently, the
total extracted power F,, follows the delta power constraint
(i.e., similar to that in Fig. 2). The performances of the
DPC strategy are further examined with two real-field daily
solar irradiance and temperature profiles through simulations
(with accelerated tests due to the limited simulation time).
The power extraction of the DPC strategy under a clear day
and a cloudy day conditions are shown in Fig. 11. Then, the
corresponding reserved power AP = Py, — FP,, during the
operation of the above two conditions is shown in Fig. 12. It
can be seen from Figs. 11(a) and 12(a) that the total PV power
P,, and the reserved power AP are accurately controlled
according to the delta power constraint, i.e., AP = 200 W
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Fig. 12. Reserved power (simulations) of the multi-string grid-connected PV system with the DPC strategy under: (a) a clear day and (b) a cloudy day

irradiance conditions with the reference power reserve AP of 200 W.

with the DPC strategy during a clear day condition. Similar
behaviors are also observed under a cloudy day condition
in Figs. 11(b) and 12(b). In this case, the dynamics of the
controller are more challenged due to the rapidly changing
irradiance condition, where the fluctuation in the power reserve
is observed. Nevertheless, the reserved power AP can still be
controlled with a good accuracy during the DPC operation
(e.g., during t = 2.7 - 3.2 s), as it can be seen in Fig. 12(b).

Experimental tests have also been performed with the test-
rig shown in Fig. 9, in order to verify the effectiveness of the
DPC strategy experimentally. In those tests, a PV simulator has

been adopted, where the real-field solar irradiance and ambient
temperature profiles are programmed in order to emulate the
behavior of the PV panels in real operations. It should be
mentioned that the coordinated control between the master
PV string and the slave PV string is implemented off-line
due to the availability of lab facilities (only one PV simulator
is available). More specifically, the master PV string is first
operated with the MPPT operation and its output power Py
is recorded. Then, the test is repeated for the slave PV string
where the recorded PV output power from the master PV string
F,y1 is used for as the estimated available power for calculating
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Fig. 13. Experimental results of the multi-string grid-connected PV system
with DPC strategy under a clear day irradiance condition: (a) PV power and
(b) reserved power with the reference power reserve AP of 200 W and the
DPC algorithm sampling rate of 10 Hz.
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with DPC strategy under a clear day irradiance condition: (a) PV power and
(b) reserved power with the changing reference power reserve level AP from
200 W to 400 W and the DPC algorithm sampling rate of 10 Hz.

the set-point Py of the CPG strategy for the slave PV string.
Also, the accelerated test is adopted in the experiments similar
to that in the simulations (i.e., from 24 hours to 24 minutes).
First, the clear day irradiance condition (like in Fig. 11(a))
is used, in order to verify the effectiveness of the DPC during
slow changing solar irradiance conditions. The PV output

power and the corresponding power reserve AP are shown
in Figs. 13(a) and 13(b), respectively, where it can be seen
that the experimental results are in close agreement with
the simulation results in Figs. 11(a) and 12(a). The power
reserve can be accurately controlled at 200 W during the
DPC operation. Further, another test with the changing power
reserve condition is carried out in Fig. 14, where a step change
in the power reserve reference AP from 200 W to 400 W is
introduced at ¢ = 12 minutes. It can be seen from the results in
Fig. 14(a) that the PV power of the slave string Py, is further
reduced when the reference power reserve level increases. As a
consequence, the reserved power in Fig. 14(b) can be regulated
following the change in the reference value during operation.

The dynamics of the DPC strategy are also examined
with a cloudy day irradiance condition, where the control
performance of the DPC strategy is highly challenged by
a rapid change in the solar irradiance. In this case, the
sampling rate of the DPC algorithm (i.e., MPPT and CPG
algorithms) becomes important, as it affects the algorithm
tracking performance. The experimental results of the DPC
strategy with the sampling rate of 10 Hz (which has also been
adopted previously in Figs. 13 and 14) are shown in Fig. 15,
where a large variation in the power reserve is presented. It
can be observed in Fig. 15(b) that the power reserve cannot be
maintained at the required value (i.e., 200 W) during a rapid
change in the irradiance (e.g., during ¢ = 10 - 13 minutes).
This is due to the slow dynamic of the DPC algorithm, which
cannot follow the change in the irradiance condition. In order
to improve the dynamic performance of the DPC strategy, the
sampling rate of DPC strategy is increased to 20 Hz. The
experimental results with this case are shown in Fig. 16, where
it can be seen from Fig. 16(b) that the variations in the power
reserve is reduced, compared to that in Fig. 15(b). Notably, in
order to further improve the dynamic performance of the DPC
strategy, more advanced MPPT and CPG control strategies
with fast dynamics is required, which is a subject for future
work [41]-[43]. Nevertheless, it can be seen that the results
carried out via the test-rig are in a close agreement with the
simulation results. Thus, the experimental results also verify
the effectiveness of the delta power control strategy.

V. CONCLUSION

A delta power control strategy for multi-string grid-
connected PV systems has been discussed in this paper. In
contrast to the prior-art solutions, the presented strategy offers
a cost-effective solution to the delta power control without
extra components (e.g., energy storage devices, irradiance
measurements). This is achieved by coordinately controlling
some PV strings in the master-operation mode (i.e., MPPT)
and some in the slave-operation mode (i.e., CPG operation
according to the delta power constraint). Particularly, a master
PV string operates in the MPPT mode to determine the
total available PV power; the other slave PV strings use
the estimated available power from the master PV string to
calculate their operating point in the P-V characteristic curve
of the PV arrays, and regulate the PV power at the left side of
the MPP with the CPG operation. This leads to a delta power
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Fig. 15. Experimental results of the multi-string grid-connected PV system
with DPC strategy under a cloudy day irradiance condition: (a) PV power and
(b) reserved power with the reference power reserve AP of 200 W and the
DPC algorithm sampling rate of 10 Hz.
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Fig. 16. Experimental results of the multi-string grid-connected PV system
with DPC strategy under a cloudy day irradiance condition: (a) PV power and
(b) reserved power with the reference power reserve AP of 200 W and the
DPC algorithm sampling rate of 20 Hz.

production for the entire systems, while ensuring a stable
operation. The effectiveness of the delta power control strategy
has been verified by simulations and experiments, where the
delta power production is achieved and the reserved power is
accurately controlled.
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