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Abstract—In the recent years, there have been an increasing
amount of researches aiming at optimal beamforming with
ad hoc microphone arrays, mostly fusion-center-based schemes.
However, huge computational complexities and communication
overheads impede many of these algorithms from being useful in
practice. In this paper, we propose a low-footprint optimization
approach to reduce the convergence time and overheads for the
distributed beamforming problem. We transcribe the pseudo-
coherence-based beamforming which is insightful for taking into
account the nature of speech. We formulate the distributed
minimum variance distortionless response beamformer using the
primal-dual method of multipliers. Our experiments confirm the
fast convergence using the proposed distributed algorithm. It
is also shown how a hard limit on the number of iterations
affects the performance of the array in noise and interference
suppression.

Index Terms—Speech enhancement, ad hoc microphone array,
distributed beamforming, primal-dual method of multipliers.

I. INTRODUCTION

As part of the ongoing digital revolution, the use of portable
devices is continuously increasing. Pervasiveness of such
devices provides resources for new strategies in signal pro-
cessing, since they are equipped with powerful embedded pro-
cessors, fast wireless network adapters, several microphones,
auxiliary sensors, and long life batteries. The so called ad hoc
microphone array signal processing is an emerging approach
to enhance the quality of captured acoustics using the available
resources in an acoustic enclosure.

Traditional array signal processing approaches that are
presented in [1]–[3], may be extended and used with ad hoc
microphone arrays with precaution since they have challeng-
ing characteristics. Apparatus such as the minimum variance
distortionless response (MVDR) beamformer [4], [5], the
linearly-constrained minimum variance (LCMV) beamformer
[6], [7], the speech-distortion weighted multi-channel Wiener
(SDW-MWF) filter [8]–[10], the transfer function generalized
sidelobe canceler (TF-GLC) [11]–[14], and alike, can be used
for distributed microphone arrays; however, the dominant trend
is to implement these algorithms in a centralized approach.
The centralized approach is not useful in ad hoc arrays for its
huge communication and computational overheads. Another
shortcoming arises in situations where the fusion center is
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not a remote compute server, but is one of the wireless
nodes that may leave the ad hoc array at any time, so that
a reconfiguration step is required to setup a new fusion center.

Distributed beamforming is a solution to the aforementioned
shortcomings. In this scheme, the beamforming technique of
interest is carried out in a way that each node is responsible
to process its own signal, with possible communications be-
tween neighboring nodes for updating mutual data. Distributed
adaptive node-specific methods are proposed in [15], [16] to
remove the redundant communications and reduce the compu-
tational load. This approach is extended to cooperative adap-
tive [17], and greedy algorithm [18], as well as the distributed
MVDR beamformer [19]. Clique-based [20], diffusion-based
[21], and message passing [22] algorithms are among other
distributed approaches. The clique-based approach has been
recently used in estimation of error covariance matrices for
multichannel noise reduction [23]. Alternative distributed ap-
proaches take into account the convexity of beamforming
optimization problems, and solve them with distributed con-
vex optimization techniques. Alternating direction method of
multipliers (ADMM) and its variants [24] have been widely
applied to such problems. A problem with some of these
approaches is that they follow the Gauss-Seidel method which
restrict them to synchronous updating schemes.

In this work, we propose a distributed beamforming
technique based on the primal-dual method of multipliers
(PDMM), formally BiADMM [25]. The PDMM method has
been shown to converge with both synchronous and asyn-
chronous updating regimes (with a predefined node activation
strategy) [26]. This makes the PDMM method applicable
to ad hoc microphone arrays. The proposed technique is
derived from the signal model based on the speech pseudo-
coherencies. This model is very flexible and is able to track
and respond to changes in the geometry.

The rest of this paper is organized as follows. The method
of interest of this paper is described in Section II. At first,
the signal model is defined, and the optimization problem is
introduced. Then, the required steps to set up the distributed
beamforming approach using PDMM are described. Conver-
gence of the primal and dual variables and performance of
the proposed distributed enhancement technique are studied
with experiment on random graphs in Section III. The paper
is concluded by discussions in Section IV.
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II. METHOD

A. Signal Model

The problem of interest is interference/noise suppression
with an ad hoc microphone array. We assume that the array
is composed of M omni-directional microphones in a random
geometry. The acoustic enclosure is assumed to be reverberant
with P sources. We formulate the problem in the short-time
Fourier transform (STFT) domain with a sufficiently long
analysis window. At time-frame t and frequency index k, we
denote the STFT-domain signal for the p-th source by Sp(k, t).
For the sake of readability, we will omit the time-frequency
indices from this point forward, when there is no ambiguity.
The clean but convolved signal received by microphone m can
be expressed as

Xp
m = Gpm(k)Sp, (1)

where Gpm(k) is the acoustic transfer function (ATF) from the
p-th source to the m-th microphone, and is assumed to be
time-invariant. We select one microphone as the “reference
node” for the p-th source, and denote its clean but convolved
signal as the “reference signal”, Xp

ref . As a rule Gpref 6= 0.
By superposing all signals captured by microphone m and

considering the microphone self-noise, Vm, the received signal
at this node, Ym, is expressed in STFT-domain as

Ym =

P∑
p=1

Gpm(k)Sp + Vm. (2)

Alternatively, the m-th received signal can be expressed using
the relative transfer function (RTF) signal model as

Ym =
P∑
p=1

Dp
m(k)Xp

ref + Vm, (3)

where Dp
m(k) is the relative transfer function regarding the

m-th microphone and the reference node for the p-th source,

Dp
m(k) =

Gpm(k)

Gpref(k)
. (4)

As discussed in [27], [28], the pseudo-coherence-based
signal model is another alternative, which considers the natural
coherency of speech signals. The complex pseudo-coherence
between the m-th clean signal and the reference signal for the
p-th source is defined as

PXp
m,X

p
ref

,
E
[
Xp
mX

p∗
ref

]
E
[∣∣Xp

ref

∣∣2] , (5)

where superscript ∗ represents complex conjugate and E[·]
denotes mathematical expectation. Consequently, the received
signal can be restated using the pseudo-coherence as

Ym =

P∑
p=1

PXp
m,X

p
ref
Xp

ref + Vm. (6)

Then, the pseudo-coherence-based signal model for the
whole ad hoc array would be

ȳ =
P∑
p=1

ρ̄x̄p,Xp
ref
Xp

ref + v̄, (7)

where ȳ = [Y1 · · · YM ]T , x̄p = [Xp
1 · · · Xp

M ]T , and
v̄ = [V1 · · · VM ]T are the stacked vectors for the received,
clean, and noise signals, respectively, and

ρ̄x̄p,Xp
ref

=
[
PXp

1 ,X
p
ref

· · · PXp
M ,Xp

ref

]T
is the pseudo-coherence vector for source p.

In the following subsection, we formulate the beamforming
approach to recover one desired signal among the P sources,
and we omit the superscript p for simplicity.

B. Centralized Optimization Problem

In this section, we formulate the optimization problem
for the minimum variance distortionless response (MVDR)
beamformer. The output of this beamformer is obtained by

Z = h̄H ȳ, (8)

where h̄ =
[
h1 · · · hM

]T
is the vector of weights for

enhancing the desired source using the whole ad hoc array,
and superscript H denotes the hermitian transpose.

The MVDR beamformer minimizes the variance of its
output, φZ = E[ZZ∗], such that

min
h̄

h̄HΦȳh̄ + εh̄H h̄

s.t. h̄H ρ̄x̄,Xref
= 1, (9)

where Φȳ = E[ȳȳH ] is the covariance matrix of the received
signals, and ε is the Tikhonov regularization factor. A closed
form solution for (9) exists and weights can be obtained in a
fusion center by

h̄ =

(
Φȳ + εI

)−1
ρ̄x̄,Xref

ρ̄Hx̄,Xref

(
Φȳ + εI

)−1
ρ̄x̄,Xref

, (10)

where I is the identity matrix of proper size.

C. Distributed Optimization with PDMM

In order to use PDMM, microphones in the ad hoc array
are first mapped to a graph. We denote the graph G = (V, E)
with vertexes V (nodes) and edges E . Then, the distributed
optimization problem is described as

min
ω̄

∑
m∈V

fm(ω̄m)

s.t. Amnω̄m + Anmω̄n = c̄mn ∀(m,n) ∈ E , (11)

where ω̄ = {ω̄1, . . . , ω̄M} is the set of optimization parameter
vectors, fm(ω̄m) is a closed, proper and convex fraction of
the global cost function which is computable locally, and
the constraints are defined for all sets of neighboring nodes
connected with edges.

The optimization problem in (9) should be modified to
comply with the canonical form in (11). In the remaining of
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this section we reformulate (9) to obtain a special form of (11)
which is known as the consensus problem, in which matrices
Amn = −Anm and vector c̄mn = 0̄.

We construct our distributed optimization problem in a
similar manner to the approach in [29]. First thing to notice
is that the enhanced signal would not be accessible in a
distributed manner unless the locally calculable output, Zm,
becomes a side product of the algorithm or an optimization
parameter itself. We define the sequence

Zm(t− l) = h̄H ȳ(t− l) l ∈ {0, . . . , L− 1}, (12)

such that Zm(t − l) be equal to Z(t − l), where t − l
refers to the l-th time-frame before the current one. Then,
by accommodating the outputs from all nodes and expanding
the inner product we have∑

m∈V
Zm(t− l) = M h̄H ȳ(t− l)

= M
∑
m∈V

h∗mym(t− l). (13)

Assuming signals are ergodic, the output variance can be
estimated with smoothing over the past L time-frames as

φ̂Z(t) =
1

L

L−1∑
l=0

Z(t− l)Z∗(t− l)

=
1

LM

L−1∑
l=0

∑
m∈V

Zm(t− l)Z∗m(t− l). (14)

Further modifications are required for (9) to obtain a dis-
tributed prescription. The vector inner product in the constraint
of (9) can be expanded as

h̄H ρ̄x̄,Xref
− 1 =

∑
m∈V

(
h∗mPXm,Xref

− 1

M

)
, (15)

where PXm,Xref
is the m-th element of the pseudo-coherence

vector, ρ̄x̄p,Xp
ref

. The squared `2-norm of the weight vector is

‖h̄‖22 = h̄H h̄ =
∑
m∈V

h∗mhm. (16)

Using (13) as an auxiliary constraint, (14) and (16) to
modify the objective function, and (15) to modify the main
constraint, we can rewrite the optimization problem in (9) as

min
{h̄H ,Zm(t)}

∑
m∈V

( 1

ML

L−1∑
l=0

∣∣Zm(t− l)
∣∣2 + εh∗mhm

)
s.t.

∑
m∈V

(
h∗mPXm,Xref

− 1

M

)
= 0∑

m∈V

(
Zm(t− l)−Mh∗mym(t− l)

)
= 0. (17)

It is possible to restate the optimization problem in (17) as

min
ω̄m

∑
m∈V

ω̄HmQω̄m

s.t.
∑
m∈V

(Amω̄m − b̄) = 0, (18)

where

ω̄m =
[
Zm(t− L+ 1), . . . , Zm(t), h∗m

]T
,

Q =


1
ML 0. . .

0
1
ML

ε

 ,

Am =


1 0 −Mym(t− L+ 1)

. . .
...

0 1 −Mym(t)
0 · · · 0 PXm,Xref

 ,
b̄ =

[
0, . . . , 0,

1

M

]T
. (19)

Equation (18) is in a distributed form, yet it contains node
constraints instead of edge constraints. In order to obtain the
desirable form, we formulate the dual problem as follows. The
Lagrangian for the optimization problem in (18) is

L(ω̄m, µ̄) =
∑
m∈V

(
ω̄HmQω̄m

− 2<
{
µ̄H(Amω̄m − b̄)

})
, (20)

where <{·} denotes the real part operator. By equating the
gradient of (20) to zero,

~∇ω̄H
m
L(ω̄m, µ̄) = Qω̄m −AH

mµ̄ = 0, (21)

the optimum solution at node m will be reached,

ω̄m = Q−1AH
mµ̄. (22)

By putting the optimal primal variable, ω̄m from (22), into
the Lagrangian function in (20), the dual function is obtained,

g(µ̄) = L(ω̄m, µ̄)

=
∑
m∈V

(
− µ̄HΩmµ̄+ 2<

{
b̄Hµ̄

})
, (23)

where

Ωm = AmQ−1AH
m. (24)

The dual problem of (18), which maximizes the dual function
in (23), can be solved in different ways. For the PDMM
method to be applicable, the dual problem is decoupled into

min
µ̄m

∑
m∈V

(
µ̄HmΩmµ̄m − 2<

{
b̄Hµ̄m

})
s.t. µ̄m = µ̄n ∀(m,n) ∈ E , (25)

where n ∈ N (m) is connected to node m with an edge, and
µ̄m is the local dual parameter at node m.

Now that the optimization problem in (25) is formulated in
accordance to the form in (11), the PDMM method can be used
to solve it iteratively. Algorithm 1 shows the procedure, briefly.
Depending on the choice of synchronous or asynchronous
regimes, all or an active subset of nodes, I ⊆ V , are being up-
dated at each iteration, respectively. For the contributing nodes,
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(a) (b) (c)

Fig. 1. Experimental Results.

Algorithm 1 The proposed enhancement algorithm
1: set up the graph, form Q and b̄
2: while new time-frames are available do
3: buffer L time-frames
4: initialize i := 0, µ̄(0)

n ← µ0, ν̄(0)
n ← ν0

5: update Am and Ωm

6: repeat {PDMM updates}
7: i← i+ 1
8: for ∀m ∈ I do
9: forward edge: r = −1, backward edge: r = +1

10: µ̄
(i)
m ←

(
Ωm +

∑
n∈N (m) Rmn

)−1(
b̄ +

∑
n∈N (m)

(
Rmnµ̄

(i−1)
n + rν̄

(i−1)
n|m

))
11: ν̄

(i)
m|n ← ν̄

(i−1)
n|m − rRmn

(
µ̄

(i)
m − µ̄(i−1)

n

)
12: end for
13: until convergence
14: ω̄m ← Q−1AH

mµ̄m
15: end while

the set of dual parameters, {µ̄(i)
m

∣∣m ∈ I}, are being calculated
and then broadcasted to neighboring nodes, at the i-th iteration.
The set of dual-dual parameters, {ν̄(i)

m|n
∣∣(m,n) ∈ E}, are also

get updated for the subset of active nodes; however, it is
possible to either unicast them along the edges, or to calculate
the dual-dual parameters of each edge, locally. Unicasting
the dual-dual parameter has the advantage of making the
algorithm robust against packet losses at the cost of increased
communication overheads. Alternating signs along each edge,
denoted by term r, is intrinsic to PDMM algorithm, but is
only an assignment. The dual and dual-dual parameters can be
initialized with zero vectors; however, it is possible to initialize
them with the final values of the latest time-frame. With proper
selection of the positive definite penalty terms, Rmn, the
algorithm will converge in acceptable number of iterations.
To check convergence, one can look into the gradients.

III. EXPERIMENTS

In order to clarify the theories in Section II, and to un-
derstand the behavior of the proposed algorithm, pilot ex-
periments are performed in this section. In our experiments,
speech signals from the TSP speech database are used for one
desired and two interfering speakers. A sampling frequency of
8000 Hz is used with time-frames of 512 samples, with 50%
overlapping Hanning window. A 5×5×3 m room is simulated
with the image method [30] with 150 ms reverberation time.
The applicability of the algorithm was also verified using ray
tracing method. Fig.1a shows an instance of such a geometry.
Nine nodes (blue circles) in this random geographic network
are connected only to the nodes in their neighborhood through
edges (brown lines). The desired speaker (red square) and the
interfering speakers (red diamonds) are placed at (2.5, 2, 1.5)
m, (2, 2.9, 1.5) m, and (3, 2.6, 1.5) m, respectively. Pseudo-
coherence vectors are calculated using recursive time averag-
ing with forgetting factor equal to 0.2. Here, L = 1. Spatially
white noise is added to microphones with variance equal to the
variance of the desired speech at the reference microphone.

In the first experiment, we study the convergence of param-
eters of the proposed algorithm for the randomly positioned
array with synchronous updates. Convergence curves for the
dual and the dual-dual parameters are obtained at one arbitrary
microphone by time and frequency averaging the normalized
residuals. The normalized residuals for every element of the
dual and dual-dual parameters are defined as

ξ(i)
µ =

∣∣µ(i+1) − µ(i−1)
∣∣

2µ(i)
, ξ(i)

ν =

∣∣ν(i+1) − ν(i−1)
∣∣

2ν(i)
. (26)

This definition allows us to average over different time-
frequency bins without concern regarding the scale of dual
and dual-dual parameters. As Fig.1b shows, the normalized
residuals are decreasing very fast. Sufficient reduction in the
residuals is achieved only within a few cycles. After 20
iterations, the residual of both the dual and the dual-dual
parameters is decreased to about 0.2 percent.
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In the second experiment the performance of the proposed
algorithm w.r.t. noise/interference suppression is studied. The
amount of interference plus noise is measured by time aver-
aging the power of error signals at the input and the output of
the beamformer as

ein(m) =
∑
t

∑
k

∣∣Xref(k, t)− Ym(k, t)
∣∣2,

e(i)
rn (m) =

∑
t

∑
k

∣∣Xref(k, t)− Z(i)
m (k, t)

∣∣2, (27)

where ein(m) is the received error signal (considering both
noise and interferences), and Z

(i)
m (k, t) and e

(i)
rn (m) are the

beamformer output signal and the remaining error signal at
node m after i iterations, respectively. Then, the average array
gain after i iterations is

A(i) =

∑
m∈V

∣∣ein(m)
∣∣2∑

m∈V
∣∣e(i)

rn (m)
∣∣2 . (28)

Fig.1c shows how a hard-limit on the number of iterations
affects the defined array gain. As can be seen, the array gain
approaches its optimal value just after a few iterations.

IV. CONCLUSIONS

In this paper, we have proposed a distributed optimiza-
tion algorithm for the minimum variance distortionless re-
sponse beamformer using the primal-dual method of moments.
The pseudo-coherence-based signal model is used in deriva-
tions. Experimental results show fast convergence for random
graphic networks. Moreover, it is studied how the array gain
for noise and interference suppression is affected by imposing
hard-limits on the number of iterations. The results show that
the overall performance of the microphone array just drops
few dBs, even when only a few iterations are allowed.
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