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 
Abstract—Power electronics based voltage source 

converters (VSCs) keep increasing in modern electrical 
systems. As a branch of stability problems, angle stability 
is significant for an electrical system. Based on small 
disturbance analysis and time scale decomposition 
perspective, this paper proposes a criterion to analyze the 
quasi-steady angle stability and the direct current (DC) side 
stability for VSCs. The operating limit and the angle 
instability mechanism are revealed, which is generally 
applicable to the voltage-controlled converters. During the 
analysis, the influence of the parameters on angle stability 
is studied. Further, the difference on instability mechanism 
between power electronic converters and synchronous 
generators are explained in detail. Finally, experiment 
results with corrective actions verify the analysis. 
 

Index Terms—Angle stability, damping, equivalent 
circuit, eigenvalue, frequency domain analysis, output 
impedance, operating limit, quasi-steady state, small 
disturbance analysis, steady state, time domain analysis, 
time scale decomposition.  
 

I. INTRODUCTION 

OLTAGE source converters (VSCs) have been widely used 
in electrical system, such as the motor drives, flexible 

alternating current transmission systems (FACTS), high 
voltage direct current (HVDC) transmission systems and 
renewable energy systems. VSC has the advantage on 
voltage/reactive power support, black-start capability and the 
possibility to connect to weak systems. The grid-tied converters 
worked in voltage-controlled mode (VCM) have the above 
superior features that are considered to build the future power 
systems as static synchronous generators. 

As one of the key components in modern power systems, 
grid-connected converters influence the stability of the system 
significantly. In the previous literatures, the grid-connected 
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inverters are usually controlled as current source with a current 
feedback controller or as power source using both current and 
power controllers. The design of the current regulator is 
introduced in [1]-[3], which show that the performance of the 
converters is determined by the control frame, dc bus voltage 
and sampling delays. The instability of grid-connected 
converters was studied by using negative incremental 
resistance concept in [4]-[8]. In current-controlled mode 
(CCM), phase-locked loop (PLL) is often used to obtain an 
accurate synchronization to the power grid. In [9]-[11], the 
effect of PLL was introduced. The investigations reveal that 
high bandwidth of PLL decreases the stability of VSCs since it 
increases the negative real part of the output impedance. Virtual 
impedance is proposed for VSCs to improve the system 
damping and mitigate the harmonic instability [12]-[14]. The 
impedance-based analysis methodology for current-controlled 
converters is discussed in [15]-[17]. Meanwhile, Nyquist 
stability criterion is applied to the return-ratio matrix between 
the load impedance and source impedance. Though the 
performance of current-controlled converters is attractive, one 
of the drawbacks of CCM converters is that they can not work 
in stand-alone mode independently. It can only work well based 
on the support from voltage sources, whilst influencing the 
system. 

Compared with CCM, the converters that are operated in 
VCM have the advantage to support/control the voltage profile 
and frequency in the network. This critical feature is preferred 
in HVDC systems and renewable energy based systems. A 
simple voltage control scheme for converters usually contains 
an inner current loop with a voltage feedback loop keeping 
voltage constant. For parallel grid-connected inverters, there is 
often a power droop control loop beyond the voltage loop 
regulating the output power. Several control schemes as VCM 
are proposed [18]-[20]. The stability dependent on eigenvalue 
analysis is discussed for droop control in [21]-[22].To enhance 
the damping and power sharing capability, virtual impedance is 
proposed to shape the dynamic profiles [23]-[25]. The main 
advantage of the impedance based approach is that both the 
control and physical components are considered in the model. 
This method is also widely used in DC electrical systems [26]. 

In the recent years, some literatures are introducing to imitate 
synchronous generators for VSCs to improve the stability. 
Some control strategies named synchronverter [27], virtual 
synchronous generators [28]-[29] or virtual synchronous 
machines [30] are proposed. The above methods are all based 
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on the idea of virtual inertia and DC-link storage to mimic the 
synchronous generators in the electrical system. However, 
there are few literatures to intrinsically reveal the angle 
instability mechanism of VSCs which may finally answer the 
question whether and which kind of VSCs has the ability to 
replace synchronous generators to support the power system. 
Angle stability is usually regarded as short-term problem (last 
typically several seconds following a disturbance) in traditional 
electrical systems and is usually related to the kinetic inertia of 
generators [31]-[32]. Therefore, it is important to study the 
angle stability and the corresponding criterion for VSCs. 

The aim of this paper is to overcome the aforementioned 
drawbacks and to reveal the angle instability mechanism of 
VCM inverters. Through the mathematical deduction, the 
difference between VSCs and synchronous generators is 
expounded. The paper is organized as fellows: The equivalent 
circuit and the output impedance of VCM inverters are 
presented with frequency domain method in Section II. In order 
to reveal the instability mechanism and evolution, Section III 
proposes the system model based on time scale decomposition 
perspective. The stability criteria and instability mechanism is 
given in this part. The stability of DC side is analyzed in section 
IV. In Section V, the experiment verification with the 
corrective actions is presented. Section VI concludes the paper. 

II. VOLTAGE CONTROL THEORY FOR POWER ELECTRONIC 

CONVERTERS 

A. General Voltage Control Scheme for VSC 

Fig. 1 shows the control system for voltage-controlled 
inverters. In this case, the LCL filtered VSC is controlled as a 
voltage source. The output voltage of VSC can be regulated by 
the voltage controller, while the inner current loop improves the 

transient performance. The vector of the output voltage oV and 

the grid voltage E at the point of common coupling (PCC) are 
given by: 
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ω is the angular synchronous frequency of the alternating 
current (AC) source. The dynamic equation of the converter is  

 
Fig. 1. Single phase diagram of the voltage-controlled VSC. 

 

Fig. 2. Block diagram of the voltage and current control loop.  

 

Fig. 3. The equivalent circuit of the voltage-controlled VSC.  

presented as following: 

L
m o L

dI
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o
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C I I
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where r is the parasitic resistance of the inductor L. m is the 
modulating (reference) signals for pulse width modulation 
(PWM). Vdc is the DC side voltage that is assumed as a constant 
in this section. Km  is the transfer gain of VSC’s half-bridge 
circuit which has Km=Vdc/(2Vtri). Vtri  is the amplitude of the 
PWM wave and usually set as 1. When the DC side voltage Vdc 
is constant, Km keeps constant and the DC-link can be regarded 
decoupled with the AC side. The component Km is significant 
for the DC side stability analysis in Section IV. (For more 
details, please refer to modulation theory.)  

For convenient engineering design and analysis, the block 
diagram of the control system in frequency domain is illustrated 
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in Fig. 2. In the control loop, there is an additional virtual 
impedance controller ZD(s) shaping the output impedance of 
VSC to against the disturbance from the output current. s is the 
Laplace operator. The voltage controller is a proportion and 

integrator (PI) kp+ki
1

s
 , while the inner current controller is a 

proportion (P) k.  The adopted current controller (P or PI) does 
not influence the final mathematical deduction in Section IV. 
According to Mason’s formula, the transfer function of VSC 
with the closed loop control can be expressed as following: 

   o ref o oV G s V Z s I                         (5) 

where the voltage gain G(s) and the current (disturbance) gain 
Zo(s) are given below: 
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From equation (5), the voltage-controlled VSC can be 
modelled as a two terminal Thevenin equivalent circuit that is 
shown in Fig. 3. The controlled voltage source is G(s)Vref while 
the series output impedance is Zo(s). Since the virtual 
impedance ZD(s) does not exist in the voltage gain G(s), it is 
often controlled flexibly to improve the performance of VSCs 
[24]-[25].  

B. The Outer Loop Controller for VSC 

For grid-connected inverter, there is often a power control 
loop beyond the inner voltage and current control regulating the 
active/reactive power, as is shown in Fig. 4. The inner 
controller can be adopted as is given in Fig. 1. 

In power system, the network is mainly inductive so the P-ω 
and Q-V  scheme is adopted. The voltage frequency and 
magnitude of the inverter can be controlled as:  

*1
( )( )p ik k P P

s                         (8) 

*1
( )( )pv ivV V k k Q Q

s
                        (9) 

sinrefV V t                                 (10) 

where kpω+kiω
1

s
 and kpv+kiv

1

s
 are the active power and reactive 

power controller respectively.  
Fig. 5 gives the diagram of another voltage control strategy 

with a PLL loop that is also widely used in electrical systems. 
Comparing Fig. 4 and Fig. 5, it can be found that PLL plays as 
an outer loop similarly as the power control loop such that PLL 
should have a relative low bandwidth to avoid unnecessary 
instable. As the green blocks shown in Fig. 1, Fig. 4 and Fig. 5, 
there are inherent nonlinear functions in VSCs, regardless of 
the adopted control frame (d-q, abc or α-β). Since these 
nonlinear functions are often neglected, the previous stability 
analyses for VSCs usually perform separately dd, dq, qd, and 
qq axles.  

 

Fig. 4. Block diagram of power control loop. 

 

Fig. 5. Block diagram of voltage-controlled scheme with PLL as the outer loop. 

Without losing representativeness, the following part in this 
section mainly discusses the power control as the outer loop for 
voltage-controlled VSCs. Owing to the multiply operators both 
for calculating the output power (Po  and Qo ) and the final 
resultant reference, the power control is a typical multi-input 
nonlinear closed control loop (Fig. 4). The previous literatures 
often treat this control loop as linear and (or) open loop, which 
may influence the conclusion or accuracy in some specific 
cases. Meanwhile, the power loop brings an additional output 
impedance Zp(s) that is related to the output current/power 
rating. The active power controller mainly influences the phase 
of the output impedance Zp(s) (in a nonlinear way), while the 
reactive power controller influences the magnitude of Zp(s). 
The final output impedance of VSCs in frequency domain can 
be expressed as:  

     poZ s Z s Z s                         (11) 

To simplify the analysis, [23] assumes the output impedance 
of VSCs is mainly influenced by inner voltage loop Zo(s). This 
assumption is reasonable if virtual impedance is added in the 
inner control loop to improve the system’s damping to against 
the disturbance from Io . The bode diagram of the output 
impedance is shown in Fig. 6 and Fig. 7. The parameters here 
are given in Table I. It can be found that the virtual impedance 
can influence the characteristics of the total output impedance 
in its limited bandwidth.  

However, in order to generally reveal the angle stability of 
the voltage-controlled VSCs, the following stability deduction 
in this paper is based on the algebraic expression. For the time 
domain analysis in the next section, the actual output 
impedance Z of VSC can be easily transformed from frequency 
domain into time domain:  

  z zZ R Ij j                             (12) 

where Rz  is the real part of Z and Iz is the imaginary part.  
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Fig. 6. Bode diagram of output impedance with increasing virtual resistance. 

 

Fig. 7. Bode diagram of output impedance with increasing virtual inductance. 

TABLE I  
THE PARAMETERS IN CONTROL SYSTEM AND VSC 

Parameters Description Value 
fs PWM switching frequency 10kHz 
Vdc DC side voltage source 650V(10kW) 
ܸ∗

 Voltage reference 311V 
k Proportional term in current loop 5.65 
kp Proportional term in voltage loop 0.04 
ki Integral term in voltage loop 8 
kpv Proportional term in reactive power loop 0.003 
kiv Integral term in reactive power loop 0 
kpω Proportional term in active power loop 0.001 
kiω Integral term in active power loop 0 
ωc The cut-off frequency of low pass filter 60 
L The filter inductance at converter side 1.8mH 
r Parasitic resistance in filter inductance 0.1Ω 
C Filter capacitance 25µF 

Lg 
The filter inductance at grid side (regarded as 
the line impedance) 

1.8mH 

RD Virtual resistance 0.5Ω 
LD Virtual inductance 5mH 
RLoad Resistive load 57Ω 

 
When ignoring the influence of the outer power control loop, 

the nonlinear output impedance of the inner control loop Zo(s) 
is given below: 

 

1

2

z

z

A
R

B
A

I
B




 

where the expression of A1, A2 and B are given in the appendix, 
respectively.  

III. ANGLE STABILITY ANALYSIS FOR VSC 

A. Time Scale Decomposition Perspective 

Time domain analysis has the advantage of actually 
revealing the evolution of a dynamical system. The small 
disturbance analysis of an electrical system can be described as 
a group of differential-algebraic (DA) equations:  

( , , )z h z x y                              (13) 

( , , )x f z x y                             (14) 

0 g( , , )z x y                              (15) 

where z is the long-term and mid-term state variables, x is the 
short-term and transient variables and y is the algebraic 
variables respectively. 

In stability analysis, the network is assumed instantaneous 
response such that the network is described by the algebraic 
equations [33], including y of the voltage magnitudes and phase 
angles. The short-term and transient dynamics x last typically 
for several seconds at most following a disturbance, while the 
mid-term and long-term component z (may contain discrete 
dynamics) acts typically in minutes. When a disturbance occurs, 
the short-term dynamics exist first and decay rapidly, but the 
slow dynamics do not response yet. Once the system survived 
from the short-term response in a disturbance, it begins to be 
driven by mid- and long-term variables. The theoretical 
stability analysis of a dynamical system is given in subsection 2 
of the appendix for further reading.  

For power electronics based VSCs, however, the dynamics 
of the controller are extremely fast due to the PWM frequency 
whose action cycle is often above 10 kHz. Since the controller 
has been studied and plays well with appropriate Bode or 
Nyquist diagram design, this paper assumes the controller’s 
dynamics infinitely fast and the system survived from the 
transient dynamics of the controller in a disturbance, which 
reserves and focus on the other dynamics. In this condition, as 
the quasi-steady state approach, the transient dynamics of 
VSCs can be replaced with equilibrium: 

( , , )z h z x y                               (16) 

0 ( , , )f z x y                               (17) 

0 g( , , )z x y                               (18) 

B. Active Power versus Angle Stability 

Based on the above perspective and circuit theory, Fig. 8 
gives the equivalent circuit of a voltage-controlled inverter 
connected to the power grid. V*∠φ  is the given voltage 
reference, Vo∠δ is the output voltage, E∠0 is the grid voltage 
and ZL∠ߠ=R+jX  is the line impedance. Z is the equivalent 
output impedance of VSC, which is calculated in Section II.  
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Fig. 8. Equivalent circuit of an inverter connected to power grid.  

 
The output complex power drawn to the grid can be 

expressed as below: 
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Substituting the equations (20), (21) into (19), we can get: 
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The sensitivity of the output active power P to the operating 
voltage angle δ  can be obtained through taking partial 
differential on (22) with δ: 
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            (25) 

When 
∂P

∂δ
>0, which equals to 0<δ<µ, the system is operated 

as negative feedback control and keeps angle stable:  

0
P





                                 (26) 

The maximum operating limit of δ equals to µ, which is the 
singularity-introduced bifurcation:  
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           (27) 

C. Maximum Operating Angle Difference 

The P-δ curve is given in Fig. 9, while curve 1 is the ideal 
operating characteristic without output impedance. It can be 
observed that the output active power is the function of the 
angle difference δ between VSC and the grid reference point. 
There are two operating points a and b corresponding to the  

   
Fig.  9. The P-δ characteristic curve.  

output active power Ps, but a is the stable operating point. 
Assume there is a small positive disturbance ∆δ imposed on δa 

so that the power angle increases to δa
1. In this case, Ps becomes 

larger and makes the output power decrease according to the 
negative feedback control. It finally leads to the power angle 
decreases back to δa. Since the DC voltage is assumed constant, 
it can be regarded as no influence from/on DC side. For 
synchronous generators, this small disturbance leads to the 
rotor accelerate/decelerate and finally makes the electrical 
angle come back to δa. The dynamic process of the mechanical 
generators is mainly depending on the rotational inertia 
(rotational kinetic energy) while VSC is depending on the 
control schemes. This feature leads to the transient response of 
VSCs is superior to generators. Due to the inertia, there are 
inevitable swings on the rotor of a generator in a disturbance. 

On the other hand, for operating point b (
∂P

∂δ
ቚ
δb

<0), the behavior 

of the system changes inversely (positive feedback control) 
such that the system loses stability.  

Equation (27) shows that the maximum angle is related to the 
voltage reference, the output impedance as well as the line 
impedance. δmax  is the decreasing function of the real 
component Rz of VSC output impedance. When 0< φ+θ < 90° 
and Rz > 0, δmax is the increasing function of line impedance 
ZL  and the voltage reference V*∠φ  (both the magnitude and 
phase). The previous literatures often ignore the influence of 
the given reference in VSCs during the stability analysis.  

Normally, the inverter reference is set as unit power factor 
(φ=0). Equation (27) can be simplified as: 
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From (28), it can be found δmax is the decreasing function of 
R and increasing function of X. In a mainly inductive network, 
the line resistance can be ignored further. We have: 

*

max arctan
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If Rz ≈ 0 for VSC, δmax ≈ 90°.  As the controller has 
significant influence on the output impedance Z, the operating 
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limit may decrease. As can be seen in Fig. 9, the maximum 
deliverable active power Pmax  and angle δmax  (of curve 2) 
decrease when Rz  (or R) increases. If the system operating 
curve shrinks from curve 1 to curve 2, the system may lose 
equilibrium for a constant power consumption Ps so as to be 
instable.  

Come back to equation (27) and assume the equilibrium 
exists. In islanded mode or distribution system, the line 
impedance is relative small and we can assume X=R. At this 
situation, the maximum operating angle will be less than 45° 
with the grid angle reference is 0°. As the output impedance of 
VSC increases, the operating margin decreases further. For 
uninterrupted power supply (UPS) systems, the limit may be 
much less due to the small values of X and R and non-ignorable 
Z. When the system walks close to the edge paradigm, 
everything fails suddenly. The system should have a “safety 
margin” to avoid the catastrophe of a free fall. In critical 
condition, increasing the magnitude of voltage reference is 
helpful to increase the operating margin. It can be easily known 
that a higher voltage source allows a higher power delivered to 
the load. 

IV. DC SIDE INFLUENCE ON THE SYSTEM STABILITY  

A. Constant DC Input Power 

The above analysis is based on the assumption of constant 
DC voltage, this part we consider another condition: constant 
DC input power. Though the DC-link is often controlled 
constant for two-stage VSCs, the operating mode may become 
to constant DC input power under a disturbance or fault. In this 
case, Km is inconstant, so that the VSC’s output power S is the 
function of Vdc. The charging state (iin=ic+is) of DC-link is 

shown in Fig. 10. Assume o
dcV  is the current operating point on 

DC side and δo is the operating voltage angle on AC side. The 
charging current of the capacitor on DC-link is given below: 

dc
c dc

dV
i C

dt
                                 (30) 

Based on the law of energy conservation, the dynamic 
equation of DC side can be expressed as: 

dc in out

dc dc

dV P P

dt C V


                              (31) 

where Pin and Pout are the power flows through in and out the 

DC-link. The partial derivative of (31) at operating point o
dcV  is 

given in (32). 
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When (32) has negative real part, the operating point is 
stable: 
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Simplify the above equation: 

 

Fig.  10. The charging state of DC-link side. 
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When there is no loss on VSC, we can assume the VSC’s 
output complex power S=Pout, namely Re(Pout)=P. Then: 

0
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dc in
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o
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V


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                    (35) 

where the output active power P in (22) can be simplified by 
eliminating Vo∠δ: 
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      (36) 

The equation (35) and (36) can be solved once the 
parameters of the system are known, while Rz and Iz contain 
the influence of the control system (as is given in the appendix). 
For discharging state (iin=is-ic), the direction of ic is reverse 
with (30) so that the final criteria is the same with (35). 
Therefore, the final criteria of the quasi-steady angle stability in 
case of constant DC input power, equations (35), (26) must be 
satisfied simultaneously. Rewrite them as following:  

0
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dc
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                 (37) 

Actually, (37) contains the eigenvalues (of Jacobian) in (16) 
- (18) for VSC angle stability that linearized around the system 

operating point , .o o
dcV  The proposed methodology is 

reasonable for small disturbance analysis when PWM and the 
controller are very fast. From the above deduction, it can be 
found that both the DC side and the P-δ characteristic influence 
the angle stability. The criterion on DC side mainly ensures the 
stability of transferring enough energy to AC side, while the 
P-δ characteristic of AC network ensures the sensitivity is 
nonsingular and the control system is operated as negative 
feedback control. Since the above analysis is based on algebraic 
expression, it is generally appropriate for the voltage-controlled 
VSCs that can be indicated in Fig. 8. After appropriate 
engineering design for the controllers (bandwidth, margin and 
damping) in VSCs, (27)-(29) can be easily used to estimate the 
angle margin for the current operating state.  

dcV

ci
ini si

dcC

outPinP VSC
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B. Comparison with Synchronous Generators 

The above criteria deduction is different with synchronous 
generators, since there are only electrical/electromagnetic 
variables in VSCs. For comparison, the dynamic equation (in 
per unit) of the rotor in synchronous generators is given below:  

2

2J m E

d
T P P

dt


                              (38) 

where Pm is the input mechanical power and PE is the output 

electric power. TJ =
JΩN

2

SN
= 2H is a constant. H is the inertia 

constant (MJ/MVA or MW∙s/MVA). J is rotor moment of 
inertia (kg ∙ m2). ΩN  and SN  are the synchronous angular 
velocity (rad/s) and the rated capacity of the generator, 
respectively.  

Due to the inertia and the response of speed regulator, the 
input mechanical power is often assumed constant for 
synchronous generators. In this case, the angle stability 
criterion for (38) is:  

0EP





                                  (39) 

It can be observed that the criterion for angle stability is the 
same with (26). Since there are only electrical variables in 
VSCs, the response of VSCs can be much faster than 
mechanical generators e.g. storage based VSCs. When the DC 
side ensures the stability to transfer enough primary energy, 
VSCs have the ability to replace the synchronous generators 
with stable operation and fast transient response (and of course 
different control schemes). 

V. EXPERIMENT WITH CORRECTIVE ACTIONS 

A. Experiment Illustration and Analysis 

In this Section, we utilize experiments with several 
corrective actions to illustrate the validity of the above analysis. 
Since the exact parameters of the power grid are difficult to 
estimate, the experiment is performed on two parallel VSCs 
with a resistive load consuming the output active power. The 
diagram of the experiment system is shown in Fig. 11, while the 
parameters in d-q frame are given in Table I. In the test, the 
LCL inductance filter at grid side Lg is regarded as the line 
impedance. The voltage references of VSCs are set as unit 
factor here. According to (28), the line resistance can decrease 
the operating margin similarly as the virtual resistance of VSCs. 
Because it is difficult to continuously change the line 
impedance in the experiment, we illustrate the influence of 
VSC’s output impedance in the paper. 

In Fig. 12, the output voltage and current of the two VSCs are 
given separately for normal operating state with RD=0.5Ω (case 
1), critical condition with RD=370Ω (case 2) and unstable state 
with RD=375Ω (case 3). It can be observed that the system can 
keep stable both for RD=0.5Ω and RD=370Ω, but there is a 
voltage drop when RD=370Ω. On the other hand, the system 
loses stability when RD is increased to 375Ω (case 3). During 
the experiments, the stability of the system plays randomly 
around 370 Ω - 375 Ω. It also reveals that the system goes near 
to the boundary. Based on (28) or (29), the operating angle limit  

 

Fig.  11. The diagram of the experiment system. 

can be estimated as δmax≪1°. In this critical situation, a small 
disturbance even may lead the system to operate outside the 
feasible set and make VSCs lose the stability suddenly, which 
finally may lead the entire system to collapse. Since the inner 
current control loop has the fastest dynamic to face the situation, 
the output currents are distorted severely in the critical stable 
state (case 2, case 4 and case 5) and collapse first to draw the 
whole system down (case 3). Though there is an obvious 
voltage drop in the experiment, this instability phenomenon can 
be mainly treated as angle stability problem. In traditional 
electrical systems, voltage stability is usually regarded as a 
dynamic phenomenon driven by the loads. Obviously, the 
evolution of a real system can be more complex such that the 
system can lose the stability through different trajectory or 
path.  

The above analysis and experiment reveal that the VSC’s 
output impedance and line impedance influence the angle 
stability. When VSCs are operated in a weak network or there is 
a fault in the system, the equivalent line impedance (the 
electrical distance) of the network may change seriously. It may 
lead to the power curve shrink severely as is given in Fig. 9, 
which may lead to the operating points outside the feasible set 
for constant power loads (or consumption). Meanwhile, it 
should be recognized that most instability phenomenon in 
power systems are related to a fault or disturbance in 
emergency states.  

However, as a corrective action, the system stability can be 
improved by increasing the given reference during the critical 
condition. The conclusion is verified by case 4 (both transient 
state and critical stable state) in Fig. 13, which are performed by 
increasing the given voltage reference *V from 311 V to 1400 V. 
It shows that the control system and the DC side are decoupled 
in case of constant DC voltage, and the stability can be 
improved by increasing the output settings. It is an inverse 
process of the shrinking action in Fig. 9. The above 
experiments are based on a sufficient DC input power source 
(10 kW can be provided at most). If the stability of DC side can 
not be ensured in the critical condition, the system stability may 
decrease further as is given in equation (37). In this situation, 
DC side may lose stability in advance of the control system. In 
a VSC-based system, VSCs should have some additional 
active/reactive power margins in response to load increasing 
over the system capability. Furthermore, it is critical important 
for VSCs to keep the stability of DC side (with constant DC 
voltage) so that the AC system can be decoupled with the DC 
side as much as possible. These are part of the reasons that the 
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Fig.  12. The experiment results for different operating states.

stability of some renewable energy based VSCs play weakly in 
a real electrical system, e.g. photovoltaic units and wind 
turbines that operated in a maximum power output mode. As 
increasing the VSCs’ output settings may result in a cheat that 
all reserves are going to be exhausted at the same time, it 
requires a more conservative and faster as well as coordinated 
“boosting” control (and also control center) at the emergency 
situations in a real system.  

As another countermeasure, load shedding can also help 
increase the system margin that is verified by case 5 (Fig. 13). 
In this test, the loading is decreased (RLoad  is increased) from 
57Ω to 230 Ω then repeat the processing in case 4. Because the 
consumed active power becomes less, the margin/distance of 
the operating point is relatively lager from the limit Pmax (and 
δmax etc.) so that the system can recover to critical stable state 
very fast with a smaller *V value (550 V). 

B. Further Discussion 

The above theoretical analysis and experimental results 
illustrate that there is a feasible set of values limiting the entire 
system stable operation. The resulting boundary of this feasible 
set is a hyperplane due to the severe nonlinearities. So far, this 
perspective has not been clearly addressed in previous works 
that deal with the stability analysis in power electronics 
systems. Furthermore, the control scheme is a subsystem of the 
entire electrical system. If the system operating point is already 

beyond the feasible set of values, the whole system may lose 
stability even though the control sub-system is stable.  

In case 3 of Fig. 12, the experimental results show that the 
system loses stability when RD is increased to about 375 Ω with 
a feasible set much less than 1°. Though the feasible set is not 
reduced to 0, the system is still unstable because there are small 
disturbances, which cannot be avoid in dynamical systems, 
leading to the operating point outside the set and VSCs go to the 
unstable region. 

Here, we give another simple case to explain/illustrate the 
stability analysis for VSCs supplying the constant power loads. 
As an instance given in Fig. 9, if the power curve is shrunk from 
curve 1 to curve 2 suddenly for some reasons (for example the 
network changes the topology), the system may lose stability 
for constant power consumption Ps even though the control 
system of VSCs may be stable at the current time, because the 
operating point has already been outside the feasible set. This is 
a simple but practical case for VSCs in electrical systems which 
contain lots of nonlinear loads such as constant power loads. 
Whereas, the methodology used in the previous literatures of 
power electronics system cannot explain this phenomenon very 
well for VSCs. 

Therefore, the boundary of the feasible set is significant to 
understand and to avoid instability, since it gives a physical 
limit for the whole system. When we have known the margin or 
distance from the boundary, we can do some proper 
countermeasures to increase the system stability. It is also the 
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Fig.  13. The experiment results for different corrective actions.

contribution and motivation of this paper to reveal the angle 
instability phenomenon and propose a different stability 
analysis methodology. As is mentioned in Section III, this 
paper uses time scale decomposition perspective to get the 
approximated limitation (37) for angle stability analysis, which 
is only the necessary condition of the practical restriction. Even 
though (37) is not the exact limitation, with a proper 
simplification, it can give us an estimated safe margin or 
distance for the system operating point. 

The experimental results of case 4 in Fig. 13 show that 
increasing the output level of the voltage sources is helpful for 
the system stability, since it increases the feasible set and the 
boundary, as well as the margin for the operating point. Once 
we can increase the number of voltage sources interconnected 
in a system at the same time without losing stability, it is may 
be a useful method for system operators. Of course, it must be 
performed in a reasonable and limited level in the real system, 
together with other optional countermeasures, such as loading 
shedding in the experiment test.  

The transient instability of VSCs, under serious disturbances, 
can be simply viewed as the operating point located (suddenly) 
outside the current feasible set O in the power space which 
leads to the controller of VSCs lose stability or the DC-link side 

collapse. Due to the specific physical features of VSCs, the 
time scale of the transient instability process of VSCs may be 
much faster than synchronous generators, e.g. VSCs can lose 
stability directly without the apparent swings phenomenon that 
often happens in synchronous generators. Furthermore, there 
may be oscillation phenomenon on DC-link side and (or) AC 
side, when VSCs face some significant disturbances. 
Corrective actions can be regarded as the countermeasures of 
attracting the operating point back within the new feasible set 

.O  The saturation limiter in the controller, enhanced DC 
chopper circuit and storage unit can be adopted to limit the DC 
voltage deviation for VSCs, while shunt/series compensation, 
system protection and control schemes, and generator/load 
shedding are usually considered in utilities to face the 
contingencies. 

VI. CONCLUSION 

In this paper, the quasi-steady angle instability mechanism of 
voltage-controlled converters was first explained with 
mathematical deduction from the perspective of time scale 
decomposition. Meanwhile, the stability of DC-link side is 
deduced separately for constant DC voltage and constant DC 
input power. When the DC side voltage is constant, VSCs can 
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have the same angle stability criterion as synchronous 
generators, with various well designed control schemes. The 
experiment results with the corrective actions verify the 
analysis. 

APPENDIX 

Some additional explanation of the content is given in the 
appendix for further reading. 
1. The equations of A1, B and A2 in equation (12) with the 

parameters of the system are:  
    

 

2 2 2
1

2 21

m p D m i D m i m

m m p D m i D m p

A L kk L kk R kk r k C

r k kk R kk L kk L

K K K K

K K CK K

  

 

     

      

        (40) 

2 2 3 2[ ( ) ] [( 1) ]m i m m pB K K Kkk r k C kk LC                     (41) 

 
    

2 2 2
2

2

1m p D m i D m p

m m p D m i D m i m

A L kk L kk R kk LC

r k kk R kk L kk r k C

K K K

K K K K K

   

 

         

    
       (42) 

2. Small disturbance analysis of a dynamical system. 
We define a dynamical system is as below: 

( )
dx

x f x
dt

                              (43) 

Assume x∗is an equilibrium point so that ( ) 0f x  . ∆x is a 

small disturbance around the equilibrium point x∗. For small 
disturbance analysis, the Taylor expansion of the dynamical 
system on x∗+∆x is as following: 

( ) ( ) ( ) ( )f x x f x DF x x O x                 (44) 
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DF(x∗) is the partial derivative of ( )f x on x∗, which is usually 

called Jacobian matrix. ( )O x  is the high order terms with 

respect to ∆x, which can be ignored in the analysis.  

Because ( ) 0f x  , we have:  

( )x DF x x                              (45) 

The above differential equation with respect to ∆x can be 
solved as: 

1

( ) exp( )
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i i i
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x t Ae s t


   
                       (46) 

where si is the eigenvalue of DF(x∗), and the initial value of

1

(0)
N

i i
i

x Ae


  
. 

If all eigenvalues of DF(x∗) have negative real parts, the 
dynamical system ( )x f x is stable on x∗, because the small 

disturbance
1

( ) exp( )
N

i i i
i

x t Ae s t


   
keeps decreasing. 

If at least one eigenvalue of DF(x∗) has the positive real part, 
the system is instable, because the small disturbance

1

( ) exp( )
N

i i i
i

x t Ae s t


   
keeps increasing toward certain 

directions.  
If there are a pair of eigenvalues in DF(x∗) having 0 real part 

or one eigenvalue equaling to 0, the system is operated in 
critical stabile state. The system may lose the stability with 
periodic oscillations.  

The above eigenvalues analysis is valid for both time and 
frequency domain system. Comparing with frequency domain 
methods that is widely used in power electronics system, time 
domain analysis has the advantage of revealing the exact 
evolution of a dynamical system more intuitively though it is 
relatively difficult on calculation. Therefore, the author actually 
combines both frequency domain and time domain analysis as a 
contribution in the paper. The frequency domain method is 
mainly used to design the reasonable parameters to ensure the 
control system work well, while the time domain method is 
adopted for stability analysis to reveal the instability 
mechanism. In this paper, for simplifying the analysis, the 
author assumes the transient dynamics of VSCs are infinitely 
fast and stable from a time scale decomposition perspective. In 
power industry, however, the real-time calculation can be 
improved for an entire complex dynamical system based on the 
numerical calculation in modern computers.  
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