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ABSTRACT 

 

The article briefly presents a novel methodology of weather window 

estimation for offshore operations and mainly focuses on effects of met-

ocean condition forecasting uncertainties on weather window predictions 

when using the proposed methodology. It is demonstrated that the 

proposed methodology has the capacity to retain the uncertainties of met-

ocean condition forecasting and transfer them into uncertainties of 

probability of operation failure. In addition to that, improvements to the 

failure function, used to define operation failure are presented. The 

failure function is modified to include stochastic variables, representing 

met-ocean forecasting uncertainties and the results of such modification 

are given in terms of predicted weather windows for a selected test case. 

 

KEY WORDS: offshore, wind turbine, marine operations, 

transportation, installation, risk, probability, weather window, FORM, 

decision support.  

 

INTRODUCTION 

 

Typically, costs of installation of offshore wind turbines contribute 

significantly to initial capital expenditures (CAPEX) of an offshore wind 

farm. These costs can amount to 10-20% of CAPEX, according to 

(Brown, et al., 2015),  (Esteva Fàbrega & Gomis Bellmunt, 2014) and  

(Moné, et al., 2015) and up to half of that can be attributed purely to costs 

of transportation equipment, (Fingersh, et al., 2006). Furthermore, as 

indicated in  (Nielsen & Sørensen, 2011) and  (Santos, et al., 2015), 

operation and maintenance costs contribute 25-30% to the total 

Levelized Cost of Energy (LCOE), where up to 73% of this contribution 

is again related entirely to costs of transportation systems. Since the 

European Commision set the 20-20-20 goals in 2008, among whitch the 

contribution of renewable energy in the total energy pool is expected to 

reach 20%, the total installed capacity of offshore wind turbines 

increased more than 7 times (from 1.5GW in 2008 to 11GW in 2015, 

according to  (European Wind Energy Associacion, 2016)) and is 

expected to increase in the future. This implies that new offshore wind 

farms will have to move even further offshore, and the costs associated 

to installation and maintenance of such farms will increase accordingly. 

 

All the aformentioned offshore operations are carried out by specialized 

vessels and equipment, that needs to be hired for the duration of the 

operation. Typically this duration includes the time it takes to perform 

the operation, transfer time from port to the farm and waiting time for 

suitable weather conditions. Generally, the duration of the operation and 

the travel time to the farm is known from previous experience. However, 

it can be notably more difficult to estimate the waiting times for suitable 

weather conditions and the durations of weather windows themselves. 

With offshore wind farms moving futher offshore, where the met-ocean 

condition forecasts can be considerably more uncertain, it is imperative 

to improve and validate the methodologies for weather window 

prediction in order to ensure that estimates of instalation and 

maintenance costs of such farms stays as accurate and as low as poosible. 

 

Current practice in the industry for predicting weather windows (and 

waiting times) is the so called “α-factor” method, documented in (DNV, 

2011). It uses basic met-ocean condition parameters (wind speed, 

significant wave height, etc.) as constraints for offshore operations. 

These factors are typically < 1 and thus make the operation constraints 

more conservative. However, the limitations of offshore operations are 

inherently physical – related to strength of installation equipment, 

maximum allowable motions of vessels and lifted objects, etc. Keeping 

in mind that operation limiting met-ocean parameters are typically 

determined in the design stage from numerical simulations of operation 

vessels and equipment response, the move from basic met-ocean 

condition constraints to physical operation limiting parameters would be 

even more reasonable. Furthermore, the α-factor methodology accounts 

for forecasting uncertainties (aleatory and epistemic) by introducing a set 

of tabulated α-factors. Currently it is possible to quantify these 

uncertainties in a transparent manner by using ensemble weather 

forecasts (from e.g. ECMWF) in combination with historical 

measurements of met-ocean conditions.  

 

The methodology, briefly presented in this paper is an important 

improvement over the state of the art techniques because it relies on 

statistical analysis of offshore equipment response, in combination with 

maximum allowable equipment responses (maximum crane loads, 

motions and accelerations of vessels and equipment, etc.), to establish 

probabilities of operation failure and subsequently determine weather 

windows. It also uses ensemble met-ocean condition forecasts to 

quantify the forecasting uncertainties. Besides the brief presentation of 

the proposed methodology, the main objectives of the paper are as 

follows: 

1. Investigate how the uncertainties and biases of offshore met-

ocean condition forecasts affects weather window predictions. 

2. Demonstrate the capabilities of uncertainty transfer within the 

proposed methodology. 

3. Demonstrate how inclusion of additional stochastic variables, 

representing met-ocean condition forecasting uncertainties, in 



the failure function definition can be used to reduce the 

computation power needed to estimate weather windows, 

when ECMWF ensemble weather forecasts are used as input 

to the model. 

 

The paper is structured as follows. First, the proposed methodology is 

presented and modifications to it are described. In the same section, a 

description of the test case is given. Secondly, a section is dedicated to 

investigate the effects of weather forecasting uncertainties on weather 

window predictions and probability of operation failure. This section 

also serves as demonstration of capacity of the proposed methodology to 

retain and transfer met-ocean forecasting uncertainties to uncertainties of 

probabilities of operation failure. Thirdly, a section discussing the effects 

of updating the failure function with additional stochastic variables, 

accounting for statistical forecasting uncertainties, is given. Here the 

updated failure function is applied and results are presented and 

discussed. Finally, the results are summarized in the conclusion section. 

 

METHDOLOGY AND TEST CASE SETUP 

 
This section briefly describes the proposed methodology for weather 

window prediction, also a description of the test case is given. The goal 

here is to introduce the reader to the main ideas of the proposed 

methodology, while giving more details where it is necessary for the 

purposes of this paper. For a detailed description of the proposed 

methodology the reader is referred to (Gintautas, et al., 2016) and 

(Gintautas & Sørensen, 2016), where the initial methodology is 

presented in detail and evaluated, and to  (Gintautas & Sørensen, 2017) 

where improvements to the methodology are described. 

 

Proposed methodology 

 

The methodology uses physical offshore vessel and equipment responses 

as basis for probability of operation failure calculations, which, in turn, 

can be compared to maximum allowable probability of failure to obtain 

weather windows. The following Fig.  1 shows the graphical 

representation of the proposed methodology, which can be summarized 

in the following steps, (Gintautas & Sørensen, 2017): 

 

1. Developing a simulation model for the offshore operation 

using hydrodynamic simulation software of choice 

(Abaqus/Aqua, SIMO, etc.). 

2. Retrieving multi-ensemble weather forecasts for the period 

and location in question. 

3. Simulating the installation equipment response using 

forecasted met-ocean conditions as input and retrieving the 

time series of relevant responses. 

4. Extracting extremes of relevant responses from simulated time 

series and estimating parameters of extreme response 

distributions. 

5. Estimating the probabilities of individual responses exceeding 

their respective acceptance criteria by solving limit state 

functions by FORM (First Order Reliability Method).  

6. Estimating the total probability of operation failure by 

combining the probabilities of individual acceptance criterion 

exceedance events. 

7. Obtaining weather windows, suitable for successful operation, 

by comparing the total probability of operation failure with the 

maximum allowable probability of operation failure, 

recommended by (DNV, 2011) – 10-4 per operation. 

 

 
Fig.  1. Proposed methodology. 

 
The methodology adopts failure function formulation for critical 

operation events in the form of Eq. (1) and uses FORM to solve these 

functions for probability of operation failure. 

 

)()()( XEXXRXxg ER   (1) 

Here XR is uncertainty related to acceptance criteria definition and 

modelling, R(X) is the acceptance criteria for particular equipment 

response (e.g. maximum allowed crane load, maximum allowed 

velocity/acceleration of lifted objects, etc.), XE is the uncertainty related 

to equipment response modelling (e.g. hydrodynamic modelling 

uncertainties, weather forecast model uncertainty, etc.) and E(X) models 

the relevant equipment response (crane load, acceleration and motion of 

lifted objects, etc.). 

 

Such formulation of critical operation events allows relatively simple 

inclusion of modelling and other uncertainties to the weather window 

prediction model, by introducing additional stochastic variables. Having 

this capability makes it possible to use and evaluate the influence of met-

ocean condition forecasting uncertainties directly, rather than by the use 

of an approximate α-factor, given that these uncertainties can be properly 

quantified. These uncertainties can be quantified using methods from e.g. 

(EN 1990, 2002) - by comparing the forecasted met-ocean conditions 

with measurements at the same location. The result of such comparison 

would be estimates of model biases and variance of model error terms 

for selected forecast components (e.g. significant wave height, period 

and/or wind speed). Then, based on the aforementioned forecasting 

model uncertainty estimates, stochastic variables, representing 

modelling uncertainties of each met-ocean forecast component, can be 

constructed and added to the failure function the following way: 
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Here XPar,i is the stochastic variable related to forecasting uncertainty of 

met-ocean parameter i, e.g. significant wave height or wind speed. 

 

A significant shortcoming of the proposed methodology is that using 

multi-ensemble met-ocean forecasts requires hydrodynamic simulation 

of operation equipment responses of each individual forecast ensemble 

member. Since hydrodynamic simulations are quite time consuming, the 

total computation time requirements might be too high for the 

methodology to be practical. However, failure function definition in the 

form of Eq. (2) gives the opportunity to use estimates of forecasting 

uncertainties together with quantile estimates of forecasted met-ocean 



parameters to obtain quantile estimates of probability of failure and, 

subsequently, quantile estimates of weather windows. This would allow 

simulation of installation equipment response using 1 set of forecasted 

met-ocean parameters (e.g. 95% quantile estimates of significant wave 

height, wind speed, etc.) instead of all 51 ensemble members of the 

ECMWF weather forecast. This approach will be discussed in more 

detail in Section 4 of this paper. 

  

It should be noted here that uncertainty parameters related to equipment 

resistance modelling are not included in the analysis, and thus XR is 

omitted from Eq.2. 

 

Description of the operation model and equipment physical limits 

 

The test case used in this paper is an offshore lift operation of Hywind 

Demo wind turbine rotor installation. The operation model consists of a 

barge coupled with heavy lift crane, a wind turbine rotor, positioned on 

the barge, and a floating foundation already positioned at the installation 

location. During the operation, a fully assembled wind turbine rotor is 

lifted up from the barge and mounted to the nacelle, positioned on top of 

a spar type floating wind turbine foundation, see Fig.  2 . 

 
Fig.  2. Hywind rotor lift operation, adopted from (Vatne & Helian, 

2014). 

 
Since the proposed methodology deals with statistical analysis of 

installation equipment response and operation failure is defined as 

relevant equipment responses exceeding their maximum allowable 

values (strength, maximum allowable motions, etc.), the following  

Table 1 shows a summary of physical limitations of Hywind rotor lift 

operation. For a more detailed description of the physical limitations for 

this operation and for limits using the proposed methodology in general, 

the reader is referred to (Vatne & Helian, 2014) and (Gintautas & 

Sørensen, 2017). 

 

Table 1. Physical limits of the operation. 

Critical Response Acceptance  

criteria 

Crane loads < 6375 kN 

Acceleration of rotor < 4.8 m/s2 

Rotational acceleration of rotor < 6 rad/s2 

Rotor sway and surge motions of lifted rotor < 2 m 

Yaw and tilt angle of lifted rotor < 5 degrees 

Relative angle between rotor and special tool < 5 degrees 

Relative radial velocity < 0.4 m/s 

Relative axial velocity < 0.1 m/s 

 
 

 

Selected location and met-ocean condition forecasts 

 

Met-ocean condition forecasts were retrieved from ECMWF (European 

Centre for Medium-Range Weather Forecasts) for FINO3 met-mast 

location in the North Sea (55° 11,7’ N - 007° 09,5’ E). The location was 

chosen based on easy access to met-ocean condition measurement data, 

that is available from the met-mast. Measurement data will be later used 

to quantify the model uncertainties related to the ECMWF forecasts. A 

3-month long period in summer of 2014 (May 1st to Aug 1st) was chosen 

for testing and 3 met-ocean condition forecast data sets were compiled 

from ECMWF forecast data, using different forecasting update 

frequencies. The conditions at the test site were described by multiple 

parameters – significant wave height and peak period, wind speed and 

the misalignment angle between the incoming wind and waves. The 

temporal resolution of ECMWF forecasts was 3 hours. 

 
 

Fig.  3. Met-ocean condition forecasts at FINO3 location, forecasts 

updated daily. 

 
Here the green line represents measurement data from FINO3 met-mast 

and the scatter around is the 51 ensemble members of ECMWF weather 

forecasts. Daily updated forecasts (at 00:00 hour, see Fig.  3) were used 

as base case, while forecasts for the other two cases were updated every 

2nd and 3rd day. Having data sets with different update frequencies gives 

an opportunity to analyze the effects that weather forecasting 

uncertainties have on weather window predictions, and this will be 

discussed further in the paper. 

 

WEATHER WINDOW PREDICTION UNDER UNCERTAIN 

MET-OCEAN CONDITION FORECASTS 

 
This section focuses on demonstrating the effects that weather 

forecasting uncertainties have on weather window predictions and 

probabilities of operation failure. First, the effect of forecast updating 

frequency is investigated, followed by analysis of met-ocean forecast 

variability effects on variability of estimated probabilities of operation 

failure. Finally, the effects of forecasting biases (model uncertainties) on 

variability of operation failure probability are discussed. 

 

Variability of met-ocean condition forecasts 

 

As it was mentioned before, 3 data sets of met-ocean condition forecasts 

were constructed. The only difference among these data sets is the 



frequency at which the forecasts are updated. In this section, coefficient 

of variation (COV) is chosen as a measure to quantify uncertainties 

related to forecasted met-ocean conditions (weather window prediction 

model input) and probabilities of operation failure (weather window 

prediction model output). However, due to multiparametric nature of 

forecasted met-ocean conditions, simple single-parameter COV would 

not be a completely suitable measure, therefore a more complex measure 

should be used. A multivariate coefficient of variation, based on (Albert 

& Zhang, 2010) Eq. (3), was chosen to represent the combined 

uncertainty of multi-parametric met ocean condition forecasts.  
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Where x is a vector of sample means of multiple input parameters (wind 

speed, wave height and period and their respective directions) and S is 

the dispersion (covariance) matrix. 

 

The following Fig.  4 shows the combined COVM for all 5 parameters 

used to describe the weather conditions at the test site.  

 
Fig.  4. Change of met-ocean condition forecast uncertainty based on 

forecast updating frequency. 

 
Obviously, a lower forecast updating frequency implies higher 

uncertainty of forecasted met-ocean conditions, as indicated in Fig.  4.  

Lower updating frequency results in a wider, lower peaked distribution 

of COVM. Furthermore, as it is seen in the zoomed section of wave height 

forecasts, the lower update frequency results in more extreme minima 

and maxima of the forecasted conditions. 

 

Effect of weather forecasting variability on weather window 

estimates 

 

All 3 previously mentioned data sets were used to simulate Hywind rotor 

lift operation at FINO3 location. Weather windows, suitable for 

operation, were obtained using the methodology depicted in Fig.  1. The 

following Fig.  5 shows the results of the analysis. Here the total length 

of predicted weather windows is normalized with respect to the case 

where weather forecasts were updated every day. Basis for weather 

window estimation, operation failure probabilities were evaluated at 5, 

50 and 95% quantiles, by applying the quantile function, Eq. (4): 

 

  pPPPPpPP FjensFFQFOpF  )(,,, :)(  (4) 

Here p is the desired quantile (5, 50 or 95%); PF,Op is the probability of 

operation failure and PF,ens(j) total probability of operation failure 

considering the (j-th) ensemble member of weather forecast. 

 
Fig.  5. Results of weather window estimation for Hywind rotor lift 

operation. 

 

In the case when 95% quantile of operation failure probability (PF,Op,95%) 

is used to estimate weather windows (yellow bars), it is clearly visible 

that the total length of weather windows decreases when the forecasting 

frequency is decreased. This can be easily explained by the fact that 

estimates of PF,Op,95% would be highly affected by simulations containing 

maxima of forecasted met-ocean condition parameters. And as was 

mentioned before, lower forecast updating frequency results in higher 

forecasted met-ocean condition maxima. When it comes to the case 

where PF,Op,5% is used, the opposite is true – the total length of weather 

windows increases with the decrease of forecast updating frequency. 

This is because lower forecast updating frequency results in lower 

forecasted met-ocean condition minima, which in turn would 

significantly lower the estimates of PF,Op,5% and thus increase the total 

number of predicted weather windows. The change of total length of 

predicted weather windows, when PF,Op,50% is used, does not show a clear 

trend and indicates limitations imposed by the choice of test case 

duration. Increasing the test case duration from the chosen 3 months 

would stabilize the results of PF,Op,50%,. However, due to heavy 

computational demand of running the hydrodynamic simulations, longer 

than 3 month test period was not considered, and thus is beyond the scope 

of this paper. Despite the shortcomings of the test case duration, some 

conclusions can still be drawn from this analysis. It is clear that the 

proposed methodology has the capacity to retain the information about 

extremes of forecasted met-ocean condition parameters and convert them 

into extremes of probability operation failure and, subsequently, into 

extremes of total length of predicted weather windows. Furthermore, 

knowing that variability of met-ocean condition forecasts effects the total 

length of predicted weather windows, this stands as good basis for more 

elaborate investigations of met-ocean forecasting uncertainty effects, 

which will be discussed in the following subsection.   

 

Effect of statistical weather forecasting uncertainties on 

probabilities of operation failure 

 

In order to explore the effects of forecasting uncertainties in more detail, 

this section focuses on the variability of probabilities of operation failure 

given a variable input of met-ocean condition forecasts. Here it should 

be noted that inherently the variability of met-ocean condition forecasts 

Hs 

Time 



increases with increasing forecast lead time (the further in time forecast 

predicts – the higher the variability/uncertainty). However, forecast time 

is not the only influencing factor – the variability of the forecasted met-

ocean conditions also depends, among other things, on the stability and 

severity of atmospheric conditions. This implies that a simple look at the 

probabilities of operation failure just based on weather forecast lead time 

is not enough to clearly see the effects of forecasting uncertainties. 

Therefore, further analysis is based on the magnitude of COVM, rather 

than on forecast lead time. Coefficient of variation of probability of 

operation failure is calculated using the following Eqs. (5-6): 
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Here COVPf,Op is the coefficient of variation of probability of operation 

failure; E[PF,Op|COVM] is the expected value of total probability of 

operation failure, calculated at a given level of COVM; VAR[PF,Op|COVM] 

is the variance of total probability of operation failure, calculated at a 

given level of COVM; Nac is the number of acceptance criteria; PF,ac(i),ens(j) 

are ensemble probabilities of acceptance criteria exceedance events, 

estimated by FORM (probabilities of certain equipment responses 

exceeding their respective maximum allowable values). 

The probabilities of operation failure were again obtained for the 3 

previously mentioned data sets of met-ocean condition forecasts. 

However, here they are analyzed together, without separating them based 

on forecast updating frequency as this maximizes the number of 

observations in each COVM bin. COVPF,Op is arranged according to the 

magnitude of COVM  and the results are shown in the following Fig.  6.  

 
Fig.  6. Results of weather window estimation for Hywind rotor lift 

operation. 

 
The red lines indicate the median of COVPf,Op blue bars are the 25th and 

75th percentiles and the black dashed lines cover the 99% range of 

COVPF,Op distribution. A clear trend of increasing COVPF,Op (in all 

measures – median, and all percentiles) is evident as COVM increases. 
This is expected as the increase in variability of input forecasted met-

ocean conditions should imply an increased in variability of probabilities 

of operation failure. This observation clearly implies that the proposed 

methodology has the capacity to transfer statistical uncertainties related 

to met-ocean condition forecasting and convert them into uncertainties 

of probabilities of operation failure and, subsequently, to variability of 

predicted weather windows. The obvious advantage of the proposed 

methodology, among others, is that forecasting uncertainties are 

converted to uncertainties of weather window predictions in a consistent 

and transparent manner, rather than by using a single α-factor as it is 

done by using state of the art techniques, based on (DNV, 2011). 

Effect of biases in weather forecasts on probabilities of operation 

failure 

 

Another important aspect of using met-ocean condition forecasts to 

estimate accessibility to an offshore site is that generally forecasts may 

have inherent biases. Since FINO3 location was chosen as the test site, it 

is possible to retrieve the measurements of met-ocean conditions and 

then estimate the biases related to forecasting individual met-ocean 

condition parameters. It is done by comparing the measured met-ocean 

conditions against the forecasted ones. This analysis is based on 

guidance in (EN 1990, 2002). The bias and coefficient of variation of 

model error terms can be calculated using the following Eqs. (7-11): 
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Here bPar is the bias associated to a particular met-ocean forecast 

parameter (e.g. wind speed); Parmeas and Parforec are the measurement 

and forecasts of that parameter; Δi,Par is the lognormal error term for a 

given set of parameter measurements and forecasts; sΔ
2
par is the variance 

of the lognormal error terms and Vδ is the coefficient of variation of the 

error terms. 

 

The following Fig.  7-10 show the effect of individual met-ocean 

condition forecasting on the variability of probability of operation 

failure. Based on the figures, it can be stated that when the met-ocean 

condition forecasting model consistently under- or overestimates the 

conditions offshore (forecasting bias exists), there is an increase in 

variability of estimated probabilities of operation failure, at least when it 

comes to wave height, period and wind speed. However, the model does 

not seem to be heavily influenced by forecasting bias related to 

misalignment of wind and wave directions. The effect of forecasting bias 

can be explained by the fact that when the forecasting model miss 

predicts the met-ocean conditions, the miss prediction typically affects a 

certain number of forecast ensembles. The larger the number of miss-

forecasted ensembles, the higher the variability of the subsequently 

calculated probability of operation failure, and thus COVPF,Op increases. 

When it comes to the bias of wind-wave direction misalignment, the 

effect here does not show a trend because the influence of direction 

misalignment on the variability of probability of operation failure is 

negligible, when compared to other met-ocean parameters. However, it 

is still important not to omit the directional effects from the analysis, 

because certain combinations of all parameters can still result in a 

significant change of PF,OP. 



 

 

Fig.  7. Effect of significant wave height forecasting bias. 

 

Fig.  8. Effect of wind speed forecasting bias.  

 

 
Fig.  9. Effect of wave peak period forecasting bias. 

 
Fig.  10. Effect of wind-wave direction misalignment forecasting bias. 

The observed change in variability of PF,OP (COVF,OP) implies that 

reduction of biases in weather forecast model could improve the quality 

of weather window predictions when using the proposed methodology. 

Furthermore, a lower COVF,OP, achieved by lowering bpar (through i.e. 

site calibration of forecasts or spatial and/or temporal downscaling), 

would also result in reduction of PF,OP quantile estimates (i.e. PF,OP | p = 

95%, as per Eq.(5)) and in turn increase the number of predicted weather 

windows. 

 

UPDATED FAILURE FUNCTION FORMULATION  

 
This section describes the procedure of estimating and using met-ocean 

condition forecasting uncertainties within the proposed methodology.  

Focus here is directed towards demonstrating that usage of additional 

stochastic parameters in the failure function Eq. 2, describing the 

forecasting uncertainties, can reduce the computational demands 

resulting from usage of multi-ensemble ECMWF weather forecasts.  

 
 

 

Estimation of statistical forecasting uncertainties and formulation of 

additional stochastic variables 

 
It is possible to estimate the coefficient of variation of model error terms 

(normalized), Vδ,Par, for every parameter that is used as input to the 

hydrodynamic simulation model. For the test case, these parameters are 

as follows – significant wave height (1), peak period (2) and wave 

direction (3); wind speed (4) and wind direction (5). Also, there is 

JONSWAP spectrum parameter γ (6), which is calculated using 

significant wave height and peak period. Therefore, 6 coefficients of 

variation will be calculated, using Eqs. (8-11), and further used to define 

stochastic variables describing met-ocean parameter forecasting model 

uncertainties. It should be noted here, that Vδ,Par coefficients are 

calculated for every forecast lead time individually, for each parameter. 

This is done by estimating the variance of all 51 ensemble members of 

the parameter in question around its’ mean, (Eq. 8). The following Fig.  

11 shows the distributions of coefficient of variation of model error terms 

for all 6 input parameters.  

  



Table 2. Parameters of additional stochastic variables. 

Variable Par. Distr. Mean Coefficient of  

Variation 

Sig. Wave Height XHS LN 1 Vδ,Hs 

Wave Peak Period XTP LN 1 Vδ,Tp 

Wind Speed XWS LN 1 Vδ,Ws 

Wave Direction XHSDIR LN 1 Vδ,HsDir 

Wind Direction XWSDIR LN 1 Vδ,WsDir 

JONSWAP γ Xϒ LN 1 Vδ,γ 

Add. model unc. XM LN 1 0.03..0.05 

 

Now it is possible to construct a set of 6 stochastic variables for each 

forecast day and forecast lead-time, representing the uncertainties related 

to individual met-ocean parameters. Typically, for FORM analysis, 

model uncertainties are expressed as lognormally distributed stochastic 

variables with mean of 1 and a coefficient of variation – in this case  

Vδ, Par.  Table 2. shows a summary of these stochastic variables. 

 
Fig.  11. Coefficients of variation of model error terms. 

 

The failure function using all the additional stochastic variables would 

be as follows: 

 

)()( %95 XEXXXXXXXXR PMWSDIRHSDIRWSTPHS   (12) 

Here EP=95% denotes the equipment response variable, parameters for 

which are determined by simulating only 1 set of forecasted met-ocean 

condition parameters (using a desired quantile of met-ocean parameter 

distribution) instead of all 51 ensemble members. For the demonstration 

case in the following subsection, the quantile p is set to p=95%. 

 

Having defined the additional stochastic variables, it is possible to use 

the information about the statistical uncertainty, gained from ECMWF 

ensemble forecasts, directly in the weather window prediction model. 

The results of such analysis are presented and discussed in the following 

subsection. 

 

Effect of additional stochastic variables  

 

This subsection presents and discusses the results of using Eq. (12) to 

obtain weather windows from simulated response data related to 95% 

quantile estimates of input met-ocean parameters. The following Fig.  12 

shows the effect of adding additional stochastic parameters, where the 

leftmost grouped bars show results from the analysis performed with Eq. 

(12) containing only one additional stochastic parameter for significant 

wave height uncertainty (XHs). Every other group of bars indicates an 

addition of one more stochastic variable. The last group of bars –

“Target” – shows the results of simulating all 51 ensemble members of 

the met-ocean condition forecast and using the 95% quantile of 

probability of operation failure as basis for weather window estimation. 

The results in Fig.  12 are normalized with respect to “Target” total 

length of predicted weather windows. 

 
Fig.  12. Effect of additional stochastic variables on weather window 

predictions (95% quantile of PF,Op). 

 

It is clearly visible that adding more stochastic variables decreases the 

total length of predicted weather windows. However, the results are 

converging towards the “Target”. The zoomed in section shows the 

results when full Eq. (12) is used (uncertainties related to all 6 input 

parameters are included in the analysis). Here, if the bars at +Xγ would 

be at height “1”, it would be an indication that such mapping is possible: 
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Here LWin is the total length of predicted weather windows for the test 

period; INPP=95% is the 95% quantile estimates of met-ocean condition 

parameter forecasts, used as input to hydrodynamic simulation model; 

PF,OP,P=95% is 95% quantile probability of operation failure obtained from 

simulation results of all 51 ensemble members of ECMWF met-ocean 

forecast; INPAll_ensembles is the full 51 ensemble member forecast used as 

input to hydrodynamic simulation model. 

  

The possibility to define such mapping would significantly reduce the 

computation time requirements of the methodology. Instead of running 

all 51 ensemble members of ECMWF met-ocean condition forecast as 

input to hydrodynamic model, it would be sufficient to estimate the 95% 

quantile of each individual met-ocean condition parameter from the 

ensemble forecasts, and simulate only those.  The implications for this 

particular test case and test duration would be running only 2300 

simulations (92 days x 25 forecast lead times x 1 ensemble member, 

containing the 95% quantile estimates) instead of 117 300 (92 days x 25 

forecast lead times x 51 ensemble members) simulations, resulting in a 

very significant simulation time reduction, which as mentioned before, 

is the most significant drawback of the proposed methodology. 

 

Looking back at Fig.  12 it is clear that despite the fact that the results 

are converging to the “Target”, there are still uncertainties that are not 

accounted for by stochastic variables, related to met-ocean forecasting 

uncertainties – there is a slight mismatch between the “Target” and +Xγ 

bars. This could be related to additional modelling uncertainties of the 

hydrodynamic simulation model, etc. It is possible to account for these 



additional uncertainties, that are not covered by XPar,I, by introducing 

another global lognormally distributed stochastic variable  XM and 

calibrate VXM such that the mismatch between “Target” and +XM bars is 

minimized. The following Fig.  13 shows the effect of additional 

modelling uncertainty and the results of a crude calibration. 

 
Fig.  13. Effect and calibration of XM stochastic variable. 

 

It is clear that by adding another stochastic variable XM it is possible to 

remove the mismatch between the desired “Target” and “+XM” bars and 

thus prove that mapping from Eq. (13) is indeed possible. The true value 

of VXM lies between 3 and 5%, however, for practical uses VXM should 

be set to 5% - it introduces some additional conservatism by only 

reducing the total length of predicted weather windows by ~15%. 

 

CONCLUSIONS 

 
This paper briefly described a novel methodology for weather window 

estimation, based on statistical analysis of offshore operation and 

equipment response. The methodology uses simulated offshore 

equipment and vessel responses under forecasted met-ocean conditions 

to establish probabilities of operation failure and, subsequently, uses 

probability of operation failure to estimate weather windows suitable for 

operation. However, the focus of the paper was directed towards 

investigation of effects of weather forecasting uncertainties on weather 

window predictions and probabilities of operation failure.  

 

It was demonstrated that the met-ocean condition forecasting 

uncertainties can significantly influence the results of weather window 

predictions. These uncertainties increase the variability of probability of 

operation failure estimates, which in turn reduce the total number of 

predicted weather windows for the test period. It was also demonstrated 

that the methodology can retain information about the extremes of 

forecasted met-ocean parameters and transferring those extremes into 

extremes of weather window estimates. Furthermore, the methodology 

is capable to also retain and transfer the information related to weather 

forecasting uncertainties into uncertainties of probabilities of operation 

failure – with increasing met-ocean parameter forecast variability there 

is a greater variability in estimated probabilities of operation failure. This 

is important because it allows for more explicit and more transparent 

inclusion of forecasting uncertainties into weather window predictions 

when compared to the standard α-factor methodology. Additional 

improvements to the failure function, accounting for weather forecasting 

uncertainties within the novel methodology, were proposed. The 

improvements involved using additional stochastic variables, 

representing the met-ocean condition forecasting uncertainties, in the 

failure function. Such failure function update gives an opportunity to 

substantially (up to 50 times, in this case) reduce the computation time 

requirements of the proposed methodology only altering the resulting 

weather window estimates by ~15%. 

 

 It should be noted that more studies with different offshore operation 

models are necessary to validate that the methodology produces 

consistent results irrespective of choice of operation. Furthermore, a 

longer test period should also be used for further validation of the 

proposed methodology. Keeping this in mind, it is still apparent that the 

proposed approach looks promising and with further development could 

be used as decision support for offshore operation planning. 
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