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Fault Detection and Isolation of High Temperature Proton Exchange Membrane Fuel Cell
Stack under the Influence of Degradation

Christian Jeppesen®*, Samuel Simon Araya?, Simon Lennart Sahlin?, Sobi Thomas?, Sgren Juhl Andreasen®, Sgren Knudsen Kear?

“Department of Energy Technology, Aalborg University, Pontoppidanstreede 101, 9220 Aalborg @, Denmark
bSerenergy A/S, Lyngvej 8, 9000 Aalborg, Denmark

Abstract

This study proposes a data-drive impedance-based methodology for fault detection and isolation of low and high cathode stoichiom-
etry, high CO concentration in the anode gas, high methanol vapour concentrations in the anode gas and low anode stoichiometry,
for high temperature PEM fuel cells. The fault detection and isolation algorithm is based on an artificial neural network classifier,
which uses three extracted features as input. Two of the proposed features are based on angles in the impedance spectrum, and
are therefore relative to specific points, and shown to be independent of degradation, contrary to other available feature extraction
methods in the literature. The experimental data is based on a 35 day experiment, where 2010 unique electrochemical impedance
spectroscopy measurements were recorded. The test of the algorithm resulted in a good detectability of the faults, except for high
methanol vapour concentration in the anode gas fault, which was found to be difficult to distinguish from a normal operational data.
The achieved accuracy for faults related to CO pollution, anode- and cathode stoichiometry is 100 % success rate. Overall global
accuracy on the test data is 94.6 %.

Keywords: Fault diagnosis, Classification, Pattern recognition, Fuel Cell, PEM, Electrochemical impedance spectroscopy (EIS)

1. Introduction 2 Hydrogen storage technologies are expensive and some of
the most important factors for commercial success are reliabil-
ity, cost and durability. The American Department of Energy
(DoE) has set ambitious minimum targets for the lifetime of
fuel cell applications, meaning 40,000 h for stationary and

s 5,000 h for automotive, before degrading to 80 % of rated
power [9].

In the transition from fossil fuel powered electrical grid to a
renewable energy supplied electrical grid, many fluctuating en-
ergy sources such as solar and wind have been adopted. Since
the renewable energy sources are fluctuating, energy storage
technologies are needed, and here hydrogen could play a role,
both for transport and stationary applications [1} 12 3} 14} [5].

Hydrogen storage uses electrolyzers to produces hydrogen
from the excess energy in the electrical grid, and when elec-
trical production from renewable energy sources are low the
hydrogen is fed into fuel cells, which produce electrical energy.
The most common type of fuel cells are proton exchange mem-
brane (PEM) fuel cells, which operate between 60-100 °C with
Nafion® as membrane conductor. These fuel cells require high
purity of the hydrogen supplied to the fuel cell. An alterna-
tive to PEM fuel cells are high temperature proton exchange
membrane (HTPEM) fuel cells, which operate between 150-
200 °C with phosphoric acid-doped polybenzimidazole (PBI)
as membrane conductor [6]. The advantage of HTPEM fuel
cells is that they are more tolerant towards impurities in the an-
ode gas, without a gas purification system [7]]. The HTPEM
fuel cells can thereby be deployed with a methanol reformer
system, which is an environmental friendly technology, if the
methanol is produced based on renewable hydrogen [8]].

One of the ways to improve fuel cell reliability and durability
is a well-designed on-line diagnostics scheme, which can detect
35 faults on the fuel cell and with a mitigation strategy impeding
fault factors before the fuel cell degradation is accelerated [10,
11].
On-line diagnostic algorithms are usually divided into model
based [12] and non-model based [13] methods. Common
w0 for these are that they are divided into fuel cell characteriza-
tion, feature extraction and change detection. For the non-
model based methods, the change detection part is often con-
ducted by a machine learning method. Common for many of
these diagnostics methods are that the fuel cell characteriza-
s tion often is done by electrochemical impedance spectroscopy
(EIS) [12l [13], which has the main advantage that it can be
done in-situ at low energy cost [10]. When using EIS as fuel
cell characterization technique, the model based methods uti-
lize the parameters of an electrical equivalent circuit (EEC) as
so features [[14, 15} [16]. For the non-model based methods, using
EIS as fuel cell characterization method, often uses parts of the
B X impedance spectrum as features for fault detection [17, 18} [19].
Corresponding author .
Email address: chj@et .aau.dk (Christian Jeppesen) The above methods are manly apphed on PEM fuel cells
URL: http://et.aau.dk (Christian Jeppesen) and most of them focus on detecting flooding and drying.
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When moving to HTPEM fuel cells the water management
issue are no longer present since they are operated above
100 °C, but alternative faults arise when deployed with a
hydrocarbon or alcohol-based fuel reformer, such as detecting
impurities in the anode gas. Such faults have been addressed
in the literature by model based methods using EIS as fuel
cell characterization method, and EEC model parameters as
features [20} 21]]. However, non-model based fault diagnostics
method for HTPEM fuel cells have not been investigated yet.

It is a well-established fact in the literature, that the
impedance spectrum spread during normal degradation which
applies to both the high- and the low-frequency intersect with
the real axis. This complies for both PEM fuel cells [22] 23]
and HTPEM fuel cells [24]. In the work by Hissel et al. [23]
life time EIS data from two different fuel cell stacks, were
used to design a fuzzy-clustering algorithm to determine the
type of ageing. However, to date there are no fault detecting
algorithms for fuel cells, which is robust towards the change in
the impedance spectrum due to degradation.

In this work, an impedance data driven non-model based
fault detection and isolation (FDI) method is presented. The
method is used for the detection of five different faults, which
commonly occur on a HTPEM fuel cell methanol reformer
systems. To the authors best knowledge a FDI method for
HTPEM fuel cells, have not yet been reported in the literature.
Furthermore, the described method is independent of the fuel
cell degradation, contrary to other available feature extraction
methods in the literature.

The paper is structured as follows:
In section 2 the experimental setup and the experimental pro-
cedure will be presented. In section 3, the feature extraction
and the diagnostic algorithm will be explained. The results will
be presented and discussed in section 4. Finally the concluding
remarks will be made in section 5.
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2. Experimental data foundation

Since the FDI method presented in this work is data-driven, a
fuel cell database both in healthy and faulty conditions is neces-
sary. Therefore, tests have been conducted on a short HTPEM
fuel cell stack, where real life situations were emulated using a
GreenLight Innovation fuel cell test station. The test matrix was
based on the operating parameters and conditions of a methanol
reformer-HTPEM fuel cell systems, such as the SerEnergy H3-
5000 fuel cell system, for healthy and non-healthy operations.
The fuel cell stack used for this work is a 10 cell SerEnergy1ss
short stack, shown in Figure m

As stated in the introduction, EIS will be utilized as fuel cell
characterization technique, which is well described in the lit-
erature, and is a powerfull characterization technique for fault
detection of fuel cells [10}, 26]. An electrochemical device such
as a fuel cell is a highly non-linear system, and a full mechanis-1
tic impedance model based on first principles are very complex.
EIS is therefore often used as an empirical linearization of the

C

\

Figure 1: On the right the Gamry Reference 3000 instrument used for
impedance measurements is shown. On the left the 10 cell short-stack used
for the experimental work is shown. The stack is installed in a GreenLight
G200 fuel cell test station, fuel cell faults can be emulated.

fuel cell, where a sinusoidal signal is superimposed to the DC
value, and by measuring the responding signal, the amplitude
ratio and the phase shift can be determined and on that basis the
impedance can be calculated. This is often done in galvanos-
tatic mode in fuel cells, where a small AC current perturbation
is induced on the DC current load and the voltage response is
measured. By sweeping over the desired frequency range, the
full impedance spectrum can be determined. The drawback of
this method is that the impedance is only valid at one operating
point, and therefore, EIS measurements at all the operational
points of interest are needed.

Since one of the scopes of this work is designing a FDI al-
gorithm, which is robust toward degradation, the experimental
work needs to ensure a large amount of healthy data for deter-
mining how the impedance changes during degradation.

2.1. Considered faults

In this work five different conditions identified as abnormal
fuel cell operation, are considered as faults (¢;-¢s) and listed in
Table[d]

When fuel cell systems are deployed in the field, the cathode
oxygen is normally supplied by a fan or a compressor, from the
surrounding air. It is desired to be able to detect and isolate
faults related to the air delivery system, which can be divided
into two different cases:

¢ A decrease in cathode stoichiometry (Aa;). This could be
due to a faulty fan/compressor or that the deployed sys-
tems is at high altitude.

¢> An increase in cathode stoichiometry (Aaj). This could
be due to a change in fan/compressor characteristics or a
software error.

The advantage of HTPEM fuel cells is that they are more
tolerant toward impurities in the anode gas, due to the faster ki-
netics at higher temperatures. HTPEM fuel cells can therefore
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Figure 2: (a) Impedance spectra for the 5 different faults considered in this work and normal operation impedance spectra for reference. Impedance spectra measured
at 16.5 A. (b) Impedance spectra at normal operation conditions, from beginning of experiment and end of experiment. Impedance spectra measured at 16.5 A.

be deployed in combination with a reformer, such as a methanol
reformer, without a gas purification system. However, this re-
quires that the reformer is in nominal operation. If the reformer
differs from normal operation or the reformer goes into faulty

operation, three different effects can occur: 175

¢3 The anode gas content of carbon monoxide increases from

the normal level. This could be due to a change in the tem-

perature profile of the reformer, or a fault on the reformer

catalyst. 180
Methanol vapour content in the anode gas appears, which
could be due to a change in the temperature profile of
the reformer, or a fault on the reformer catalyst. Alter-
natively, it could be due to more methanol delivered by the,,,
methanol pump than expected or a fault on the methanol
evaporation system.

b4

A decrease in the anode stoichiometry (Ay,). This could
be due to a decrease in methanol delivered by the methanol
pump or due to a fault on the reformer catalyst.

bs

The impedance spectrum for each of the five faults and the
normal operation impedance (black), is shown on Figure [2[a).
The data shown is from the experiment described in the next
section. For the impedance spectrum, the high frequency part
(approx. range 1 kHz — 100 Hz) is ascribed to charge transfer in'*’
the catalyst layer [27] and the anode activation losses [28] 29].
The intermediate frequency part (approx. range 100 Hz — 5
Hz) of the impedance spectrum is dominated by diffusion losses
and the cathode processes and the low frequency part (approx.
less than 5 Hz) is attributable to mass transport limitations [26]]200

3

and oscillation effects in gas composition within the gas flow
channels [30, 31]].

It can be seen, that the low air fault (¢;), yields the most
significant change in the impedance spectrum, caused by an in-
crease in mass transport loss and an increase in diffusion loss
on the cathode side. This is more pronounced than the an-
ode side, due to the diluting effect of nitrogen in atmospheric
air. This effect is reversed for the high air fault (¢,), where the
low frequency arch disappears. For the high CO content fault
(#3), an increase in both high, intermediate and low frequency
arches can be observed, due to CO occupying platinum sites.
The high frequency arch is increased due to a decrease in an-
ode reaction rate, the intermediate frequency arch is increased,
due to a longer path to an available free platinum site and the
low frequency arch increases due to the diluting effect yields an
increase in gas channel oscillations [32]]. For the low hydrogen
stoichiometry fault (¢5), the low frequency arch increases, due
to mass transport issues and an increase in gas channel oscil-
lations. For the high content of methanol fault (¢4) quite close
to the normal operational data (¢g), due to water and methanol
vapor mixture has more diluting effect than poisoning effect at
these concentrations, which in these experiments causes a slight
increase in the intermediate frequency arch due to the diluting
effect [33]134].

2.2. Experimental procedure

The experiments for this work is conducted on a 10-cell short
stack, based on standard flow plates and MEA’s from a SerEn-
ergy S165L stack, with a cell active area of 165 cm?, nominal
power of 41.66 W/cell and maximum rated current density of
0.5 A/cm?. The stack is installed in a GreenLight fuel cell test
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Table 1: Overview of the faults considered. The faults are investigated for the
fuel cell current set points 16.5, 24.75, 33, 41.25, 49.5 A with 6 EIS measure-
ments for each fault at each current set point.

Nr. Fault Normal Abnormal
¢1  Low Aair 2.5[-] 1.5 [-]

¢>  High Aair 2.5 [] 4 [-]

¢3  High CO 0.5 % Vol. 2.5 % Vol.
¢4  High MeOH vapor 0 % Vol. 5 % Vol.
¢s  Low Ay, 1.4 [-] 1.15 [-]

station, and shown on Figure m where the Air, H,, CO and
CO, gas flows can be controlled by mass flow controllers. The
methanol vapour delivery systems is based on a liquid HPLC
pump and a heat exchanger.

Before the experiment, the fuel cell short stack was operated
in a break-in procedure as suggested by Vang et al. [35]. The
short stack break-in duration was 100 h at 33 A (0.2 A cm™?),
with Aai-=4 and Ay, =2.

The experiment duration is 35 days, where each day is struc-
tured as shown on Figure [3[a). During the first 6 h and aprox.
the last 8 h of each day, the stack is operated at 82.5 A, which
corresponds to 0.5 Acm™2. After the first 6 h of operation the
fuel cell characterization is scheduled at 16.5 A (0.1 Acm™2),
2475 A (0.15 Acm™2), 33 A (0.2 Acm™2), 41.25 A (0.25
Acm™?) and 49.5 A (0.3 Acm™?). 12 EIS measurements were
conducted at each current set point. This procedure is repeated
every day, except for day 14, 21, 28 and 35, where a faulty con-
dition is introduced. The same current set points are repeated
for each faulty operation, with 6 EIS measurements at each cur-
rent set point. An overview of the number of EIS measurements
is given in Table 2]

On day 14 the low air stoichiometry, fault (¢;) and high air
stoichiometry, fault (¢,) were induced; on day 21 high content
of CO was introduced in the anode gas, fault (¢3); on day 28
high content of MeOH vapour was introduced in the anode gas,
fault (¢4) and on day 35 the low anode stoichiometry, fault (¢s)
is induced.

The overview of the fuel cell stack voltage and current for
the entire experiment is given in Figure [3[b).

2.2.1. Gas composition

The anode gas composition is based on experience with a
H3-5000 SerEnergy methanol reformer. Hydrogen fraction is
kept constant at 75 % by volume, and for normal days the CO
content is kept at 0.5 % by volume. CO; is used as a fill gas,
meaning that at normal days the CO, fraction is kept at 24.5 %
by volume of the total anode gas flow, and at abnormal days the
CO; fraction is kept lower. The stoichiometric ratios are kept at
Aair=2.5 and Ay, =1.4 during the experiment, except for day 14
and day 35, where they are changed accordingly to Table[T]

2.2.2. Gas humidification

The anode gas is humidified by mean of a bubbler, with a
dew point temperature of 49 °C. This corresponds the anode
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Figure 3: (a) Stack voltage and current during a day with normal operating
conditions. During the characterization 12 EIS measurements is acquired at
each current set point. (b) Fuel cell stack voltage and current during the entire
810 h experiment, corresponding to 35 days of operation.
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Table 2: Overview of the set points during the fuel cell characterization experi-

ment.
No. of EIS
Nr. at each normal current set point 12
Nr. at each abnormal current set point 6 200
Total at Normal day 60
Total at Abnormal day 30
Total experiment 2010

gas water content, for the output gas of a methanol steam re-**°
former operating with a fuel steam to carbon ration of 1.5. A
mass flow controller supplies the cathode gas, from oil free air
COMPIESSOL.
2.2.3. Temperature 800

The short stack of subject in this work is oil heated and
cooled by an external cooling cart using Paratherm oil, in a
closed circuit. The temperature controller is set to keep a fuel
cell output temperature of 167 °C throughout the entire experi-
ment. When changing current set point, a current ramp of 0.05°”
As~!is applied to ensure minimum temperature variation. Fur-
thermore, a 20 min delay without any temperature deviations
of more than 0.5 °C is performed, before any EIS measurement
is conducted.

310

2.2.4. EIS measurements

For EIS measurements a Gamry Reference 3000, running in
galvanostatic mode is utilized. The AC current amplitude is
set to 7.5 % of current DC value, as recommended by Dale et315
al. [36], however, with a maximum of +3 A due to instrumen-
tal limitation. The starting frequency is 10 kHz and the end
frequency is 0.1 Hz with 10 points pr. decade, divided into log-
arithmic intervals. In Table[2] the number of EIS measurements
at each current set point and at each day are listed.

320

3. FDI Algorithm

As seen in Figure[2b), the impedance spectrum changes due
to degradation. The impedance spectrum spreads and moves
to the right during degradation, which manifest itself by anss
increase in the series resistance (the first intersect with the
real axis), and more significantly expressed by an increasing
real part of the low frequency part of the spectrum. The
observed ageing mode is common for high temperature PEM
fuel cells [37, 138l 139]. Thus, it is evident that an impedancesso
based FDI algorithm for fuel cell applications needs to be
robust towards degradation.

In this work, a feedforward artificial neural network (ANN)
classifier fault detection and isolation (FDI) methodology isas
proposed, for detecting the faults listed in Table[I] The princi-
ple of the methodology is illustrated in Figure[d] where the four
different steps are listed. This is a supervised machine learning
approach, and therefore the 2010 EIS measurements, from the
experiment described in section [2.2] needs to be labeled withso

5

the 6 different cases (¢o-¢s), prior to the training, validation
and testing of the ANN classifier.

The proposed FDI methodology initially takes a real time
EIS measurement from a deployed fuel cell system, runs the
acquired impedance spectrum through a pre-processing layer,
which will be described in section Hereafter three selected
features will be calculated based on section [3.2] which are used
as input to the ANN classifier algorithm. The ANN classifier
algorithm which is trained is explained in section[3.3]

3.1. Data pre-processing

After the EIS measurement is acquired, a pre-processing
step of the methodology is applied. The purpose of this step is
to prepare the impedance spectrum for the feature calculation.
Some of the EIS measurements, especially at higher currents
are slightly noisy, for the low frequencies. The primarily reason
for this, is the +£3 A current limit of the Gamry galvanostat used
for the experimental characterization. This makes the relative
AC current amplitude smaller compared to the DC component
of the fuel cell current, and thereby decreasing the signal to
noise ratio. The impedance spectrum is therefore filtered, for
noise rejection.

The filter used in the pre-processing step is a zero phase but-
terworth filter, by filtering the impedance spectrum in both for-
ward and reverse direction [40], going from high to low and
again back to high frequency. Two examples can be seen in
Figure Eka), where a low noise spectrum can be seen (red) and
a high noise spectrum (magenta). For the low noise spectrum
it can be observed that the phase between the unfiltered and the
filtered data is low, and for the high noise spectrum it can be
noted that the filter rejects the noisy measurement points.

3.2. Feature extraction/selection

For dimensional reduction of the measurements space, for
FDI algorithms for fuel cell applications using EIS as charac-
terization, there are in general two different approaches, feature
extraction or feature selection.

Feature selection is preformed, by directly choosing k of
the d dimensions which yield the most information needed
for the fault classification, where d is the dimension of the
measurements space [18, 41]. Alternatively, k features can
be calculated based on the measurement space, as a feature
extraction. Some of the most common dimensional reduction
methods described in machine learning literature are statisti-
cally based methods such as principal component analysis and
linear discriminant analysis [13 41]]. Alternatively, feature
extraction can be performed by fitting an electrical equivalent
circuit to the impedance spectrum, and using the parameters as
features [20, |42]], mathematically representing the impedance
spectrum by more generic model, or extracting features which
are based on knowledge of the fault nature.

This work will be based on simple knowledge based feature
extraction. In Figure [5(b), a common impedance spectrum is
illustrated, with the four (a-d) knowledge based features found
in the literature. The four features are listed here:
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Figure 4: Flow chart of the proposed artificial neural network fault detection and isolation methodology.

(a) The internal series resistance, often extracted as the value
of the first intersect with the real axis [[17]]

(a) (b) The difference between the internal resistance and the real

0,025 | T i part of the second intersect with the real axis, or put differ-
pc = 16.

—%—Ipg = 16.5 (Filtered) a5 ently, the span of the impedance spectrum [19} 25]].
002 . Ipc=133 i
—s—1Ipc =33 (Filtered) (C)

The second intersect with the real axis, sometimes denoted
as the polarizing resistance or just the maximum amplitude
of the impedance spectrum [[19, |43].

-0.015

-0.01

(d) The maximum angle of the impedance spectrum [17, 43]
350 or the frequency at the maximum angle [[19]].

The features (a-d), which are shown in Figure [5] and listed
above, are often used for detecting flooding and drying of low
temperature PEM fuel cells [17, |19} 43]. The faults considered
0.0LF . in this work are listed in Table [T] and are for HTPEM appli-
ss  cations. Some of the features above like the series resistance
0015¢ 1 are therefore not useful for this algorithm. In addition, it can
be seen that some extracted features change with degradation.
This is illustrated in Figure Eka), where 4 different extracted

‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ features are plotted with respect to degradation. In Figure[6fa),
0025 003 0035 004 R%?S [8]05 005 006 0065 007 the top left is the internal series resistance (represented as
(b) the high frequency intercept) plotted with respect to fuel cell

| operational time, and the top right is the real value of the
0.1 Hz impedance point plotted. In Figure[6{a), the two bottom
figures shows how the internal magnitude of the spectrum
changes relatively to the operational time. It can be seen that
the features shown in Figure [6(a), change with the operational
time and thereby the degradation. It is not desirable to use
features, that change with time, since the design of thresholds
become difficult. When features change with time, the fault
detection becomes more prone to false alarm or false detection.

0.02 - b

x X X X x
4 X x x

Im(2)

(b)

x A self-cognizant diagnostic methodology could solve this
problem, by adapting to the change in features as result of
degradation. Alternatively, a set of features that are constant
. v . . . . . . a5 for healthy operation and independent of degradation could be
Re(z) chosen, if possible.
P
. Different methods to extract features from the impedance
Figure 5: (a) Impedance spectra f.or 16.§ and 33 A at day 2, before and after spectrum have been analyzed in this work, as shown in
preprocessing. (b) Features found in the literature ((a)-(d)) and the two features 1 .
(f» . f3) used for this work. Figure [6(a). Two features extraction methods were found
s to be independent of degradation and suitable for detecting
the faults listed in Table [I and are chosen based on user
experience. The two suggested feature extraction methods




Table 3: Description of the three features, which is used as input to the ANN

classifier.
Feature No. Description
h DC component of fuel cell current
b3 Z (z(100Hz) - z(1kHz))
fz / (z(0.1Hz) — z(1Hz))

Table 4: Based on empirical analysis, how the features f> and f3 changes, for
the faults ¢; - ¢s.

a
00235 @os bo ¢ ¢ ¢3 b4 ¢
= o0 EOWW f2 - - - T ! -
S 00225 3 5o LT B !
5 T 006
= 0022 —Ipc=165 | S WM
= Inc = 24.75|| &
& 00215 e ] & 0% o are listed in Table 3] as f> and f3 and in combined with the
0021 —Ic =195 004 DC component of the current. The features f, and f; are
0 200 400 600 80 0 200 400 600 800 45 the angles between the frequencies decades 1 kHz to 100 Hz

(f1) and 1 Hz to 0.1 Hz (f;). Since the features are angles
of the spectrum, they are relative and do not change with

0.027

§°'°26 respect to degradation, as illustrated for feature f3 in Figure

go.ozs [Blb). In Figure [B[b) it can also be seen that the feature f3 is

% ao dependent on the fuel cell current, and for this reason, the DC

00 component of fuel cell current is chosen as the third feature (f;).

0.023 .

0 Fczggcrat?ggal g In) 80 0 FC iogcrat?fgal tﬁg ] 80 The behavior of the features f, and f; under normal and

(b) faulty conditions, is shown in Figure [7(a), for the entire data

1 T ws  setat 16.5 A. As stated in Table[d] it can be seen that faults ¢;

ol e s | and ¢4 are correlated with feature f> and the faults ¢;, ¢, and s

' o are correlated with feature f3. The faults ¢, ¢ and ¢s are re-

08l Inc =495 | | lated to the delivery of fuel and oxidant, and is therefore mainly

. linked to mass transport effects (given in the range of f3). The

% 07+ 4 a0 faults ¢3 and ¢4 are related to the anode reaction, and the ef-

) fect is therefore seen in the high and intermediate frequency

T o8] part, which affects the angle between the 1 kHz — 100 Hz, and

,L\ osl // J | thereby the feature f,. Furthermore, it can be observed that a

= [ high methanol vapour in the anode gas (¢4), is quite close to the

=) 04 ‘ | s normal operation data set. Thus, it is expected that that fault is
= : H harder to detect and isolate.

03r p . In Figure[7|b), the entire feature space with the entire data set

is plotted. Here, it can be seen that the value of the features f,

02f | and f3 changes with f;, and therefore, it is necessary to include

a0 the DC component of the fuel cell current as a feature.
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3.3. ANN classifier and the training

Figure 6: (a) Selection of features that change with degradation. All data for As fault detection and isolation classifier, a feed forward neu-
g:’;g;:l"Cfglr"::;?rlaézzl;ifi‘;ature J3 for normal operational data, as function of 11 petwork is trained for the task. In Figure[8} an overview of
' the offline training is illustrated. Firstly, the experimental data

#s  from the experiment described in section 2.2} is labeled with a

fault identifier (¢o-¢s) and the features (f; - f3) are calculated

for each of the 2010 EIS measurements. Next, the data set is

divided into training data, validation data and test data. The

test data is manually selected for ensuring that each fault case

a0 1s equally represented. For each day at non-healthy operation

two EIS measurements are reserved for testing at each current

set point, and for each day at healthy operation one EIS mea-

surement is reserved for testing at each current set point. The
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Figure 7: (a) Feature space {f> , f3} for the entire experiment at 16.5 A. (b)
Feature space { fi , f>, f3} for the entire experiment.
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Figure 8: Offline procedure for the training of artificial neural network in the
dashed square. For the online procedure, an EIS measurement is acquired, the
feature extraction is calculated, and the features is used for input to the artificial
neural network.

Table 5: In percentage, how the entire dataset (2010 EIS measurements) is
divided in the training, validation and test data subsets. Test dataset in selected,
and the remaining data in randomly divided into training and validation data
subsets.

% of data
Training data 76 %
Validation data 14 %
Test data 10 %

remaining data set is split randomly with 85 % for training and
15 % for validation. An overview of the allocation of the overall
data is given in Table[5} Devoting 76 % of the dataset to training
is similar to other studies described in the literature [[17].

The training data is used in the training process of the ANN
classifier, the validation data is used as a stop criteria for the
training algorithm and the test data is used for human expert
approval of the ANN classifier performance.

The feed forward ANN consists of one hidden layer with
10 neurons and with a tansig transfer function and an output
layer with one outlet for each of the fault cases, with a soft-
max transfer function. No normalization of any of the inputs is
performed.

As training the scaled conjugate gradient optimization al-
gorithm is utilized. As stop criteria for the training there are
three options; 10 number of validation checks, where the ANN
performance has not increased, the gradient becomes less than
107° or the performance becomes 0, where the performance is
calculated as the Cross-Entropy.
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Table 6: The result of the test data, listed in a confusion matrix. The results are
listed in %. Global accuracy is 94.6 %.

Target class

do P 105) ¢3  ds Ps
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4. Results and discussion
500
4.1. Training results accuracy and performance evaluation
The proposed ANN classifier methodology presented in the
previous section, in combination with the proposed features,
has in general proven to be well suited for fault detection and
isolation, of the five faults (¢;-¢s) listed in Table [T} 505

The results of the test data (10% of the entire dataset) are
listed in a confusion matrix between the ANN output and the
actual target class, in Table @ It can be seen that the faults ¢,
@2 and ¢3 and ¢s have 100 % success rate. As it can be seensio
in Table[6] the ANN classifier has problems distinguishing be-
tween high methanol content fault and normal operation data.
This is supported by Figure 2[a), where it can be seen that the
impedance spectrum of high methanol vapour concentration in
the anode gas fault (¢4), is quite close to the impedance spec-sis
trum of the normal operation data (¢y).

To improve detectability of fault ¢4, the methanol concentra-
tion could be increased. However, a methanol vapour concen-
tration of 5% is considered a well-established fault and would
not be considered as early detection. Furthermore, it is expectedszo
that a higher than 5% methanol vapour concentration would
yield an impedance signature comparable to the high CO con-
centration fault (¢3), and therefore, a higher than 5% methanol
vapour concentration fault would only move the problem to
distinguishing between high CO and high methanol concentra-szs
tions.

The global accuracy of the test data classification using the
proposed methodology is 94.6 %. This is good in line with pre-
viously reported values in the literature, for LTPEM fuel cell
FDI. Hissel et al. [25]] reported a 89 % accuracy and Zheng etss
al. [19]] reported a 100 % accuracy, both using a Fuzzy Clus-
tering Algorithm. Onanena et al. [17] did a comparison of
k-nearest neighbor and linear discriminant analysis with two
different ways of feature extraction, which yielded a 93.9 % -
99.6 % accuracy for different methods. 53

4.2. Discussion

One of the benefits to this methodology, compared to using
the parameters of an equivalent electrical circuit, is that it is not
necessary to acquire the entire spectrum, but only impedance
at four frequencies. To acquire an incomplete impedance spec-
trum is less time consuming than acquiring the full spectrum,sso

9

which is an advantage since there are less risk that the fuel cell
moves away from steady state operation. In this work, the en-
tire impedance spectrum was acquired, and therefore, if only
the relevant frequencies were measured, the pre-processing part
of the methodology would need to be changed, e.g. by calculat-
ing the average of the impedance at the neighboring frequency
points.

One of the major issues with EIS as reported in literature is
complex data processing and time consuming process. Here in
the present work the frequency domain is reduced and hence
the data processing and the measurement time is relatively
smaller. The accuracy level of the measurements in separating
out the different faulty conditions are quite high which makes
the process more promising and efficient. The FDI methodol-
ogy from the present study could be easily implemented in the
existing fuel cell system with minor modification provided the
training is carried out offline. The study takes into account the
degradation of the cell which makes the algorithm robust and
minimal human interference as required in some others FDI
methods proposed in the literature’s.

This work builds on a data driven method, and there is no
knowledge of how the methodology would perform if utilized
on a different stack from another production batch. Therefore,
for deploying this methodology in the field, a larger database
with impedance data from different production batches is
needed, since there is no information of the impedance variance
from stack to stack in the literature.

Furthermore, this analysis was carried out on a 10 cell short
stack, but normally a fuel cell of this type is deployed in the
field in a 60 or 120 cells configuration. The experimental pro-
cedure would therefore need to be reinitialized for a full-size
stack. Moreover, the impedance spectrum of full-size HTPEM
stack is not reported in literature, for the faults considered in
this work. This could be subject of future studies.

The experiments for this work were performed on laboratory
scale, with a Gamry galvanostat for impedance measurements.
This implementation is quite expensive, and is therefore not
suited for in-field implementation. However, some EU projects
work on implementing the EIS characterization method on the
onboard DC/DC converter (D-code project Grant: 256673).
This requires great attention to the bandwidth of the DC/DC
converter and requirements to the onboard computer. In this
work all data processing was done offline, which would not be
the case for a system in the field.

Based on this work, there is no evidence how the algorithm
will perform for faults at intermediate fault amplitude. For-
example, a larger concentration of CO (¢3) could resemble the
low anode stoichiometry fault (¢s5) or a lower concentration
of CO could resemble the high methanol vapour concentration
fault (¢4). This could be subject of future studies.

5. Conclusions

In this work a methodology for fault detection and isolation
of low and high cathode stoichiometry, high CO concentration
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570
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590

in the anode gas, high methanol vapour concentration in thess
anode gas and low anode stoichiometry was proposed, for high
temperature PEM fuel cells. The fault detection and isolation
methodology is data driven based on the impedance spectrum.

The fault detection and isolation is divided into 4 steps; ac-ew
quiring of EIS measurement, pre-processing of data, feature
extraction and artificial neural network classification of fault
class. The pre-processing of the impedance spectrum is con-
ducted by a zero phase Butterworth filter, which is used to re-sos
move outliers. The extracted features used in this work are the
DC component of the fuel cell current, and two angles between
the impedance at 100 Hz and 1 kHz and between 0.1 Hz and 1
Hz. 610

A broad selection of features is analyzed with respect to
degradation, and it is found that the selected features do not
depend on the fuel cell degradation. Therefore, unlike many of
the selection feature extraction methods commonly found in the®'s
literature, there is no need to retrain the artificial neural network
classifier, during the life time of the fuel cell stack.

The experimental data foundation is based on a 35 day ex-
periment, where the first week is fault free and hereafter a new®
fault is introduced on the last day of the week, for the remainder
3 weeks. This results in 2010 unique EIS measurements under
the influence of degradation.

The proposed fault detection and isolation methodology is®°
based on an artificial neural network classifier, which is trained
on 76 % of the entire data-set and validated on 14 % of the
data-set. 10 % of the data-set is used for testing the algorithm.

Overall global accuracy on the test data is 94.6 %, which
is considered a good result, and it can be concluded that the
artificial neural network together with the suggested features,
is feasible for fault detection and isolation. The achieved ac-
curacy for faults related to CO pollution, anode- and cathode
stoichiometry is 100 % success rate. It can be concluded that
the proposed algorithm has difficulties distinguishing between
the high methanol vapour concentration in the anode gas fault
and normal operational data. "
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