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Abstract: Distributed renewable energy systems play an increasing role in today’s energy paradigm.
Thus, intensive research activities have been centered on improving the performance of renewable
energy systems, including photovoltaic (PV) systems, which should be of multiple-functionality.
That is, the PV systems should be more intelligent in the consideration of grid stability, reliability, and
fault protection. Therefore, in this paper, the performance of single-phase grid-connected PV systems
under an extreme grid fault (i.e., when the grid voltage dips to zero) is explored. It has been revealed
that combining a fast and accurate synchronization mechanism with appropriate control strategies
for the zero-voltage ride-through (ZVRT) operation is mandatory. Accordingly, the representative
synchronization techniques (i.e., the phase-locked loop (PLL) methods) in the ZVRT operation are
compared in terms of detection precision and dynamic response. It shows that the second-order
generalized integrator (SOGI-PLL) is a promising solution for single-phase systems in the case of
fault ride-through. A control strategy by modifying the SOGI-PLL scheme is then introduced to
single-phase grid-connected PV systems for ZVRT operation. Simulations are performed to verify
the discussions. The results have demonstrated that the proposed method can help single-phase PV
systems to temporarily ride through zero-voltage faults with good dynamics.

Keywords: single-phase photovoltaic (PV) system; grid synchronization; phase-locked loop (PLL);
zero-voltage ride-through (ZVRT); grid fault

1. Introduction

Being an important part of the modern energy infrastructure, distributed renewable energy
(DRE) systems have been developed at a fast rate. For instance, in recent years, due to the
continuous reduction of the photovoltaic (PV) module price and the strong global demand for
environment-friendly energy conversion systems, the solar PV markets have been particularly booming.
The capacity of solar PV was increased by 25% in 2014 (i.e., approximately 50 GW), bringing the global
total to 227 GW. The annual market in 2015 was nearly 10 times the world’s cumulative solar PV
capacity of the last decade. In future, the DRE systems satisfy the requirements for the generation
closer to the consumption points [1–3]. However, with the fast development of distributed renewable
power generations, stability and security have been attracting extensive attention [2].

To cope with the challenges due to a high penetration level of PV systems, many research activities
have been conducted recently to improve the integration of PV systems. In summary, it is expected that
the grid-friendly PV systems should be multiple-functional. That is, for instance, reactive power control,
maximum power point tracking (MPPT), fault islanding detection, harmonic compensation, and fault
ride-through (FRT) operation are required for PV systems [4–14]. Actually, some PV power systems
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on today’s market are already able to provide such services. Nevertheless, the PV systems should be
more intelligent in consideration of grid stability, reliability, and fault protection at a high penetration
level. A direct reflection of the increasing demands for PV systems is that many countries have revised
or have been revising the national grid regulations, where the distributed generations are required to
provide advanced grid fault-handling functionalities [15–17]. According to the requirements, the PV
systems should remain connected under grid faults, and also provide reactive power if demanded.
This is also referred to as the low-voltage ride-through (LVRT) capability [13–17]. In extreme cases,
i.e., the grid voltage dips to zero, and the disconnection from the grid is also not allowed within a
predefined short-time interval (e.g., 150 ms) [15,16], known as the zero-voltage ride-through (ZVRT)
capability [18–20]. Similarly, in zero-voltage conditions, the PV systems should also support the grid
recovery by means of reactive current injection.

Although the ZVRT operation can be taken as a special case of LVRT, a more dedicated control
strategy should be performed during the FRT operation. Especially in single-phase grid-connected
PV systems, when the fault occurs, the systems still inject sinusoidal reactive current to support the
grid without grid information. Challenging issues for the ZVRT operation in the single-phase PV
system include how to detect the grid voltage sags quickly, how to switch to the ZVRT operation mode
with no grid information, and after the fault, how to resynchronize rapidly without triggering the
overcurrent protection. As aforementioned, the single-phase grid-connected PV system is required to
operate in different modes accurately and rapidly in complicated situations. In order to implement the
ZVRT operation, the following should be considered:

• Grid voltage sag detection—grid monitoring and synchronization control strategies with high
robustness and fast dynamics;

• Power calculation and power profiles—the power and current references are adjusted fast and
accurately in both normal and FRT operation modes.

The grid synchronization is a fundamental task but a crucial technique in the connection of the
PV system to the grid. The capability of instantaneous responses of the synchronization technique
has a direct impact on the performance of FRT in terms of accuracy and dynamics. Thus, a lot of
synchronization techniques can be found in the recent publications, such as the zero-crossing detection
method [21,22], the Kalman filter (KF)-based synchronization method [23], and the discrete Fourier
transform method [24], and the phase-locked loop (PLL) methods. The synchronization based on
PLL techniques is very attractive among the various synchronization methods because of its easy
implementation, high robustness and cost-effectiveness [2,25–29].

Moreover, due to harmonic resonances and grid voltage sags caused by the high penetration of
the renewable energy system in low-voltage distributed networks, the more advanced and efficient
control strategies in single-phase PV systems are desirable in order to ride through the grid faults.
The conventional dual-loop control structure in single-phase PV systems could be applied under the
grid fault by directly calculating the current references [30]. When the instantaneous power theory is
adopted in single-phase PV systems, the single-phase instantaneous active and reactive powers (PQ)
theory [31] can be used to independently control the active and reactive power under LVRT as reported
in [11–14]. In addition, the droop control methods could be considered as an alternative for regulating
the active and reactive power under the grid fault [32], on condition that the grid is mainly inductive.

Nonetheless, in light of the above, it becomes essential to combine a fast and accurate
synchronization mechanism with a dedicated control strategy for the ZVRT operation. Thus, in
this paper, the performance of single-phase PV systems under an extreme grid fault (i.e., the grid
voltage dips to zero) is explored. First, an overview of the typical control structure of the single-phase
PV system is presented. Furthermore, the performance of the commonly-employed and recently
developed PLL methods are assessed in terms of accuracy and dynamics. A control strategy is then
proposed for the single-phase grid-connected PV system in the case of ZVRT operation. Simulations
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are performed in order to validate the performance of the proposed control strategy. Results have
verified the effectiveness of the proposed method. Finally, concluding remarks are drawn.

2. System Configuration

In the low-voltage DRE system, the single-phase configuration is a more competitive
solution [11–14]. A generic control structure of the single-phase grid-connected PV system is shown in
Figure 1, with an option of a DC-DC converter, which is used to boost up the PV panel voltage to a
suitable level of the following-stage DC-AC converter. The choice of single- or two-stage (i.e., without
or with the DC-DC converter) is dependent on the control strategy, efficiency, cost, size and weight,
etc. [13,14,30]. To guarantee a high-quality sinusoidal grid current, the inductor–capacitor–inductor
(LCL) filter is adopted to improve the switching harmonic with lighter and smaller inductors [33].
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sinusoidal current, i.e., it needs to satisfy the requirements of the grid code regarding power quality [34]. 
The control diagram of the current control loop is presented in Figure 2. The capacitor-current-
feedback is measured for active damping [35]. The error of the grid-current reference iref and the 
measured grid-current ig is sent to the current controller Gc(s). For the digital implementation, the 
time delay should be considered, and Gdelay is used to reflect the total time delay including pulse 
width modulation (PWM) processing and the delay because of computation [36]. Considering that 
the switching-frequency is much higher than the fundamental frequency of the grid voltage, KPWM is 
then the equivalent transfer function of the inverter. As a consequence, the closed-loop current 
transfer function (i.e., the transfer function for ig and iref) can be derived as 
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Maximum power point tracking (MPPT).

In normal conditions, the PV system draws the maximum power from the PV arrays (i.e., in MPPT
operation) and transfers it to the grid at unity power factor by using control strategy. The widely
employed control strategy in single-phase inverters has two cascaded control loops [3,30]. The inner
loop is a current loop, in which the grid current quality can be guaranteed and the overcurrent
protection is also ensured. The outer loop is a voltage or power control loop, in which the voltage of
the DC-side can be ensured and a reference of the inner current loop is calculated simultaneously in
the outer loop.

According to Figure 1, the current control loop is responsible for the quality of the injected
sinusoidal current, i.e., it needs to satisfy the requirements of the grid code regarding power quality [34].
The control diagram of the current control loop is presented in Figure 2. The capacitor-current-feedback
is measured for active damping [35]. The error of the grid-current reference iref and the measured
grid-current ig is sent to the current controller Gc(s). For the digital implementation, the time
delay should be considered, and Gdelay is used to reflect the total time delay including pulse width
modulation (PWM) processing and the delay because of computation [36]. Considering that the
switching-frequency is much higher than the fundamental frequency of the grid voltage, KPWM is then
the equivalent transfer function of the inverter. As a consequence, the closed-loop current transfer
function (i.e., the transfer function for ig and iref) can be derived as

Gi(s) =
ig(s)

iref(s)
=

KPWMGc(s)Gdelay(s)
s3CL1(L2+Lg)+s2KPWMC(L2+Lg)Gdelay(s)+s(L1+L2+Lg)+KPWMGc(s)Gdelay(s)

(1)

where L1 is the inverter-side inductor, L2 is the grid-side inductor, Lg is the grid impedance, and C is
the LCL filter capacitor.
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3. Overview of PLL Synchronization Techniques

In the grid-connected PV system, the grid synchronization is very important in the control
system, as aforementioned [3,13,21–30]. A good synchronization can help the system operate at
unity power factor in the normal operational mode. Meanwhile, when a grid voltage fault occurs,
the PV system should respond immediately by switching to the grid fault operational mode instead of
directly shutting down. Therefore, the PLL synchronization techniques should be of fast and accurate
dynamics [25–29]. A general structure of a PLL system is shown in Figure 3. It can be divided into
three fundamental blocks: (1) Phase Detector (PD); (2) Loop Filter (LF); and (3) Voltage Controlled
Oscillator (VCO). Typically, the LF block is represented by a proportional plus integral (PI) controller
to improve the PLL filtering capability. The VCO block is represented as an integrator.
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The basic PD can be a sinusoidal multiplier. The major drawback of the basic PLL with a sinusoidal
multiplier is the output containing double-frequency ripples, which are difficult to be eliminated by
the LF, even in an ideal case [3]. Hence, many modified single-phase PLL methods are presented in the
literature [3,25–29], where the tasks have been focused on how to advance the PD unit. Each of the
PLL methods has its merits in the normal operational mode. However, in response to zero-voltage
phase-to-ground faults, the focuses should be shifted towards evaluating the steady-state phase-angle
error, dynamics, harmonic rejection and grid fault detection.

The orthogonal signal generator (OSG)-based PD and the modified mixer PD using an adaptive
notch filtering (ANF) structure are the desirable solutions, mainly beneficial from their simplicity,
robustness and effectiveness [25–29]. Several different structures are established to implement the
OSG system or the ANF function. Combined with practical ZVRT operation demands, in addition to
the fast dynamics, the capability of grid voltage sag detection is essential. Hence, two representative
single-phase PLL methods based on the PD techniques as mentioned above, respectively, will be
compared and evaluated.

3.1. Enhanced PLL (EPLL)

The enhanced PLL (EPLL) improves the performance of the basic PLL structure by employing
an ANF-based PD system [3]. A general structure of an EPLL is shown in Figure 4. The control loop
achieves phase-angle tracking and amplitude estimating, and the aforementioned major drawbacks
of the standard PLL are overcome. Assuming that the input grid voltage vin is a purely sinusoidal
waveform at the rated grid frequency, which can be defined as vin = Vgm sin θi, and the output
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estimated signal can be defined as vout = Vgm
′ sin θo

′. Therefore, the phase error output of the PD can
be expressed as

ε = e cos θo
′ = (Vgm sin θi −Vgm

′ sin θo
′) cos θo

′

=
Vgm

2 sin(θi − θo
′) +

Vgm
′

2 sin(θi + θo
′)− Vgm

2 sin(2θo
′)

(2)

Meanwhile, in order to estimate the amplitude of the grid voltage, the output signal x can be
expressed as

x = e sin θo
′ = (Vgm sin θi −Vgm

′ sin θo
′) sin θo

′

=
Vgm

2 cos(θi − θo
′)− Vgm

′

2 +
Vgm

′

2 cos(2θo
′)− Vgm

2 cos(θi + θo
′)

(3)

Considering the steady state, the estimated outputs Vgm
′, θo

′ can then be approximated as Vgm = Vgm
′,

θi = θo
′. Consequently, the double-frequency term approaches zero. The phase angle, frequency,

and amplitude of the estimated signals will contain no double-frequency ripples [28].
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As aforementioned, compared with the conventional PLL structure, the EPLL can track the major
information both in phase and in amplitude with no double-frequency. In order to evaluate the
performance of the accuracy and stability of the EPLL, from Figure 4, the transfer functions of the
EPLL for amplitude and phase-angle estimations (denoted as GA(s) and Gθ(s), respectively) can be
derived as

GA(EPLL)(s) =
kvVgm

′

2

s + kvVgm
′

2

=
1

s + µ
(4)

Gθ(EPLL) =
Vgm

′

2
kps + ki

s2 +
kpVgm

′

2 s + kiVgm
′

2

=
Vgm

′

2
2σωrs +ω2

r
s2 + 2σωrs +ω2

r
(5)

where kv, kp, and ki are the parameters for adjusting the accuracy and the stability of the EPLL,
and 2σωr = kpVgm

′/2,ω2
r = kiVgm

′/2, µ = kvVgm
′/2. The characteristic transfer function shows that

the amplitude and phase-angle estimations are a type-II control system. Therefore, the settling time is
measured from the start time to the time in which the system stays within 5% of the steady-state errors.
The settling time ts can approximately be calculated as

ts ≈
3.5
σωr

=
14

kpVgm
′ (6)

From (4) to (6), it is clear that the control parameters kp and ki mainly affect the convergence
rate of the frequency and phase angle. The control parameter kv determines the performance of the
amplitude estimation process in the PD. Moreover, in the normal condition, the grid voltage input
signal is assumed as an input signal with a unity amplitude, i.e., Vgm = 1. Hence, in the LVRT/ZVRT
operations, the response of the EPLL depends on the amplitude estimation of the grid voltage.
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3.2. Second-Order Generalized Integrator-Based PLL (SOGI-PLL)

The second-order generalized integrator-based PLL (SOGI-PLL) is an effective approach to
implement the OSG-based PD to generate the orthogonal signals, and then the conventional
synchronization can be adopted [29]. A general structure of a SOGI-PLL is shown in Figure 5.
The quadrature signal generation (QSG) contains a pair of 90◦-shifted output signals, vα and
vβ, which are generated by a second-order adaptive filter, also known as a sinusoidal integrator
(more specific, a second-order generalized integrator (SOGI)). The OSG-based PD unit is followed by
Park transformation that gives the dq-voltages, vd and vq. The SOGI-based PD has the advantages of
frequency adaptability and harmonic rejection [26,29].
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The characteristic transfer function of the adaptive filtering based on the SOGI is given as

GSOGI−AF(s) =
ω′s

s2 +ω′2
(7)

in which ω′ is the estimated grid angular frequency. Further analyzing the SOGI-OSG-based PD block
in Figure 5, the closed-loop transfer functions can be derived as Gα = vα(s)

vin(s)
= kω′s

s2+kω′s+ω′2

Gβ =
vβ(s)
vin(s)

= kω′2

s2+kω′s+ω′2
(8)

where k is the control parameter that can regulate the bandwidth and dynamic response of the
estimated output signals. Considering the grid voltage input signal as vin = Vgm cos(ωt + φi), the time
domain outputs can be derived as vα(t) = Vgm cos(ωt +φi) + Aα cos(ω

√
1− (k/2)2t +φα)e−

kω
2 t

vβ(t) = Vgm sin(ωt +φi) + Aβ sin(ω
√

1− (k/2)2t +φβ)e−
kω
2 t

(9)

in which Aα, Aβ,φα,, andφβ are functions of Vgm,φi, and k. From (9), assuming that the instantaneous
phase angle is defined asωt + φi = θi, and the output estimated signal phase angle is defined as θo

′,
applying the Park transformation yields the signals in the dq-reference frame as [26]


vd(t) = Vgm cos(θi − θo

′)

+[Aα cos(ω
√

1− (k/2)2t +φα)e−
kω
2 t cos θo

′ + Aβ sin(ω
√

1− (k/2)2t +φβ) sin θo
′)]e−

kω
2 t

vq(t) = Vgm sin(θi − θo
′)

−[Aα cos(ω
√

1− (k/2)2t +φα)e−
kω
2 t cos θo

′ − Aβ sin(ω
√

1− (k/2)2t +φβ) sin θo
′)]e−

kω
2 t

(10)

At the steady state, the high-frequency fluctuating terms in (9) and (10) with the time constant of
2/kωwill be zero. And thus,
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{
vd(t) = Vgm cos ∆θ ≈ Vgm

vq(t) = Vgm sin ∆θ ≈ Vgm∆θ
(11)

which shows that vd estimates the amplitude of the input grid voltage, and the phase angle detected by
the PLL is provided by vq. Furthermore, the error transfer function of the PD based on the SOGI-OSG
can be approximated as [25–27]

Gεθ(vq) =
vq(s)

eθ
=

Vgm
′

τs + 1
(12)

where Vgm
′ is the estimated amplitude of the grid voltage, eθ = θi − θo

′, and τ = 2/kω. Hence, the
transfer functions of the SOGI-PLL for phase angle estimations can be derived as

Gθ(SOGI−PLL) = Vgm
skp + ki

τs3 + s2 + Vgmkps + Vgmki
(13)

As aforementioned, the dynamic response of the SOGI-PLL is also affected by the amplitude
of the grid voltage. Due to the LVRT/ZVRT operations, the relationship between the settling time
and overshoot in the dynamic response should be balanced. For the amplitude detection of the grid
voltage, the passband and dynamic response are only dependent on the control parameter k. In order to
evaluate the performance of the SOGI-OSG-based PLL, the settling time (5%) can be approximated as

ts−θ ≈ 3.5τ =
7

kω
(14)

An optimal relationship between the settling time and overshoot is achieved by taking k = 0.707.

3.3. Comparison of the PLLs

According to the aforementioned analysis, the applicability of the selected PLL methods should
be identified, which can detect the grid fault precisely and rapidly under grid voltage faults (even drop
to zero). The system and control parameters are shown in Table 1. Since a fault case of the grid
voltage occurs, the steady-state output signal should maintain at the rated frequency with small or no
fluctuation and overshoot. Therefore, the comparison will be focused on the speed and precision of
detecting the grid voltage, frequency and phase by the selected PLL systems.

Table 1. Parameters of the PLL system in the single-phase grid-connected system.

Parameter Description Value

Normal voltage amplitude Vgm = 311 V
Normal grid frequency ωg = 314 rad/s

Sampling and switching frequency fs = f sf = 10 kHz
plus integral (PI) controller of Loop Filter (LF) for all (phase-locked loop) PLLs kp = 112.7, ki = 1054

Control parameters kEPLL = 150, kSOGI = 0.707

Figure 6 shows the dynamics of the PLLs under a grid voltage drop of 0.6 p.u. Both methods
can estimate the amplitude and the frequency of the grid voltage without double-frequency ripples
in the steady-state condition, as shown in Figure 6. When comparing with the EPLL, the SOGI-PLL
approaches the steady state faster. However, the overshoot of the SOGI-PLL is observed in the progress
of the amplitude detection. Figure 7 then shows the dynamics of the PLLs under a voltage sag of 100%
(i.e., the grid voltage drops to zero). Compared with the LVRT condition, the superior performance
of the SOGI-PLL is significant, as seen from Figure 7. However, the EPLL takes the advantage in
suppressing the overshoot. Moreover, it should be noted that the estimated frequency outputs have
steady-state errors in both the SOGI-PLL and EPLL when the grid voltage drops. It will affect the
accuracy of the phase and frequency detection in the ZVRT operation.
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A comparative analysis of the EPLL and SOGI-PLL reveals that both of them can estimate the
amplitude and filter out the harmonics, resulting in clean signals for synchronization. However, the
output signals of the EPLL present large variations during transients, and the output signals of the
SOGI-PLL present large overshoots. Compared with the EPLL, the SOGI-PLL approaches the steady
state much faster, and that is more effective depending on the voltage sag depth. Thus, in general,
the SOGI-PLL system can be a promising solution for a monitoring and synchronization technique
used in single-phase applications, especially in the case of LVRT/ZVRT operations. However, the
steady-state error in the case of zero-voltage faults is also observed.

4. Control Strategy in Zero-Voltage Ride-Through Operation

Once the grid phase-to-ground fault is detected by the grid synchronization, the photovoltaic
(PV) system should switch to the grid fault operational mode with reactive power injection to support
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the grid recovery. In different countries, to fulfill various local conditions under national realities,
the suitable grid code has been proposed [15–17]. Figure 8 exemplifies the voltage profiles for the
possible fault condition in some countries, where the PV systems should operate under the specific
condition when the grid voltage is above the curves [15–17].
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where UN and IN are the nominal grid voltage and the nominal inverter current, ΔU is the depth of 
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According to the requirements in Figure 8, it is clear that different from the anti-islanding
protection, the ZVRT requires that in a short-time interval (e.g., 150 ms) even with a grid voltage
amplitude of 0 V in Germany and China [15,16], the system should remain connected. Thus, in order to
support the grid recovery, the controller should provide additional functionality to adjust the current
reference for reactive power injection. The reactive current injection profile in China is presented in
Figure 9 [16]. As it is shown in Figure 9, the required reactive current Iq to support the grid voltage
in the Chinese grid regulations is defined. The characteristic in the grid code is the injected reactive
current increased with the depth of the grid voltage sag (i.e., the fault severity). At certain critical
points, it should inject one p.u. of the reactive current. The required reactive current Iq in the Chinese
grid code can be given as [16]

Iq =


0 (∆U ≤ 0.1UN)

1.5IN(
∆U
UN
− 0.1) (0.1UN ≤ ∆U ≤ 0.8UN)

1.05IN (∆U ≥ 0.8UN)

(15)

where UN and IN are the nominal grid voltage and the nominal inverter current, ∆U is the depth of
grid voltage sag, and Iq is the required injected reactive current when the fault occurs.
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As in the above discussions, it is known that the current reference should be properly generated
under grid faults. Hence, the conventional dual-loop control structure for single-phase PV systems
can be applied, where the current references can be directly calculated. The control diagram of the
single-phase dual-loop control structure is shown in Figure 10. Based on the single-phase instantaneous
power control theory, the current reference of the inner control loop can be obtained through the active
power and reactive power references (i.e., P* and Q*), as shown in Figure 10. As aforementioned,
the reactive current injection is dependent on the voltage sag depth. It is calculated considering the
amplitude detection of the PLL system.
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where iα* is the grid current reference ig*, vgα, vgβ, igα, and igβ are the orthogonal components in the αβ-
frame, P* and Q* are the active power and reactive power references, respectively. 

For the inner current control loop, a hybrid controller including a proportional resonant (PR) 
and a harmonic compensator (HC) is selected considering both control complexity and power quality 
[6,13,14,30]. The PR controller overcomes the most drawbacks of the classical PI controller, which is 
steady-state error [30]. In addition, the HC controller provides a good capability of harmonics 
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According to the single-phase PQ theory [13,14,31,34], the active and reactive power can be
controlled independently in the outer power control loop, and then the grid current references are
generated, being a dual-loop control structure [30]. In order to regulate the power reference, an OSG
system is needed to generate the quadrature components, vα and vβ. The grid current references are
given by [

iα∗

iβ∗

]
=

2
v2

gα + v2
gβ

[
vgα vgβ
vgβ −vgα

][
P∗

Q∗

]
(16)

where iα* is the grid current reference ig*, vgα, vgβ, igα, and igβ are the orthogonal components in the
αβ-frame, P* and Q* are the active power and reactive power references, respectively.

For the inner current control loop, a hybrid controller including a proportional resonant (PR)
and a harmonic compensator (HC) is selected considering both control complexity and power
quality [6,13,14,30]. The PR controller overcomes the most drawbacks of the classical PI controller,
which is steady-state error [30]. In addition, the HC controller provides a good capability of harmonics
rejection. As a consequence, the hybrid PR with HC controller shows a better performance. The current
controller relating PR controller Gc(s) and HC controller Gh(s) can be expressed as

GPR+HC = Gc + GHC = kp +
kis

s2 +ω2
0︸ ︷︷ ︸

PR

+ ∑
h=3,5,7

kihs

s2 + (hω2)
2︸ ︷︷ ︸

HC

(17)

where kp is the proportional gain, ki and kih are the resonant and harmonic compensator gains, h is the
harmonic order, andω0 is the fundamental frequency.

During ZVRT operation, the system loses all the grid information. The PV system should switch
to the ZVRT operation mode from the normal condition or the LVRT operation mode, when the grid
voltage sags to zero. The injection current from the grid-connected inverter should totally be reactive
current in order to support the grid recovery. As the requirement of the grid code, the system must
achieve the voltage fault detection, operation mode switch, and reactive current injection as soon as
possible. The fast dynamics and accuracy of the grid fault detection are then essential.
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However, in the ZVRT operation, the estimated grid voltage is in an undefined and abnormal
condition caused by no grid information. As discussed previously, the steady-state error of the
PLL estimated frequency output is not zero in the case of ZVRT faults. Therefore, the common
implementation of PLL methods does not provide the ride-through ability. A feasible solution is to
adjust the parameters of the LF (i.e., kp, ki) to reduce the steady-state error. However, the dynamics
will be sacrificed during fault ride-through, making it not very practical. Hence, a novel approach
is proposed.

Basically, the idea is that the detected grid voltage controls a switch to change the operational
mode of the PLL, as shown in Figure 11. According to the Chinese grid code [16], the system should
inject only reactive current in the case of voltage faults (below 0.8 p.u.). Therefore, the voltage sag of
0.8 p.u. can be set as the threshold to change the PLL operational mode. More specifically, when the
grid voltage level is above 0.8 p.u., the PLL continuously estimates the grid phase angle, frequency, and
amplitude. Once the grid voltage sags (i.e., below 0.8 p.u.), a fixed frequency (i.e., being the nominal
grid frequency) is imposed to the VCO, and then the phase angle for the control system is generated,
as shown in Figure 11.
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5. Performance Evaluation

The performance of the control strategy in ZVRT operation is examined in this section.
The SOGI-PLL system is used to detect the fault condition by monitoring the grid voltage frequency
and the amplitude [13,14]. The entire system is simulated in MATALB/Simulink. A PV array block in
MATLAB/Simulink/Renewables/Solar is used to implement an array of photovoltaic (PV) modules.
In normal MPPT operation mode, the active power reference P* is the tracked MPPT output power
of the PV panels. In the faulty grid operation mode, the PV panels should reduce its output power
when the grid presents a voltage fault. The reduced power level is dependent on the voltage sag depth
and the nominal current. The parameters for the system are listed in Table 2. The parameters of the
SOGI-PLL are the same as those in Table 1. The results are shown in Figures 12–14.

Table 2. Simulation parameters of the single-phase grid-connected PV system.

Parameter Description Value

Normal voltage amplitude Vgm = 311 V
Normal grid frequency ωg = 314 rad/s

Sampling and switching frequency fs = f sf = 10 kHz
PV rated power Pmax = 3 kW (i.e., 1.5 kW/PV string)

DC-link capacitor CDC = 3000 µF
LCL filter L1 = 3.6 mH, C = 2.35 µF, L2 = 4 mH

Hybrid proportional resonant (PR) and harmonic compensator (HC) controller kp = 65, ki = 5000, kih = 500
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Figure 12. Performance of the PV system with normal SOGI-PLL during ZVRT: (a) grid voltage and 
current; (b) active and reactive power; (c) amplitude estimation; (d) frequency estimation. 
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Figure 13. Performance of the PV system with modified PLL-based SOGI-OSG during ZVRT: (a) grid 
voltage and current; (b) active and reactive power; (c) amplitude estimation; (d) frequency estimation. 
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Figure 14. A single-phase PV system under grid voltage fault with modified PLL-based  
SOGI-OSG: (a) grid voltage and current; (b) active and reactive power; (c) amplitude estimation;  
(d) frequency estimation. 

Simulation results in the case of ZVRT operations with the normal SOGI-PLL and the modified 
PLL based on the SOGI-OSG are shown in Figures 12 and 13. It can be seen that at t = 0.6 s, a phase-
to-ground fault occurs (i.e., the grid voltage sags to 0 V). Once the zero-voltage grid fault is detected, 
the system is controlled to continuously inject currents in order to support the grid recovery. When 
the grid voltage recovers to normal conditions at t = 0.75 s, both methods guarantee a seamless 
operation transition to the unity power factor mode. In contrast, the frequency of the injected reactive 
currents in the ZVRT operation with the normal SOGI-PLL has been observed with small steady-state 
errors. When the grid voltage recovers, the overshoot of the amplitude and frequency estimation in 
the ZVRT operation with the normal SOGI-PLL is more obvious. However, in the ZVRT operation 
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Figure 14. A single-phase PV system under grid voltage fault with modified PLL-based  
SOGI-OSG: (a) grid voltage and current; (b) active and reactive power; (c) amplitude estimation;  
(d) frequency estimation. 
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to-ground fault occurs (i.e., the grid voltage sags to 0 V). Once the zero-voltage grid fault is detected, 
the system is controlled to continuously inject currents in order to support the grid recovery. When 
the grid voltage recovers to normal conditions at t = 0.75 s, both methods guarantee a seamless 
operation transition to the unity power factor mode. In contrast, the frequency of the injected reactive 
currents in the ZVRT operation with the normal SOGI-PLL has been observed with small steady-state 
errors. When the grid voltage recovers, the overshoot of the amplitude and frequency estimation in 
the ZVRT operation with the normal SOGI-PLL is more obvious. However, in the ZVRT operation 
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Simulation results in the case of ZVRT operations with the normal SOGI-PLL and the modified PLL
based on the SOGI-OSG are shown in Figures 12 and 13. It can be seen that at t = 0.6 s, a phase-to-ground
fault occurs (i.e., the grid voltage sags to 0 V). Once the zero-voltage grid fault is detected, the system is
controlled to continuously inject currents in order to support the grid recovery. When the grid voltage
recovers to normal conditions at t = 0.75 s, both methods guarantee a seamless operation transition to
the unity power factor mode. In contrast, the frequency of the injected reactive currents in the ZVRT
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operation with the normal SOGI-PLL has been observed with small steady-state errors. When the grid
voltage recovers, the overshoot of the amplitude and frequency estimation in the ZVRT operation with
the normal SOGI-PLL is more obvious. However, in the ZVRT operation with the proposed modified
PLL structure, both the steady-state error and the overshoot have been reduced. Furthermore, the
recovery response time has been improved slightly.

As it is further shown in Figure 14, a recurring grid voltage fault is evaluated. It can be seen in
Figure 14 that at t = 0.4 s, a phase-to-ground fault occurs when the grid voltage drops to 0.6 p.u., similar
to the case in Figure 13a, and the system switches to the LVRT operation mode to adjust the active and
reactive power injection to the grid. When the voltage continues to drop to zero at t = 0.6 s, the system
has been switched to the ZVRT operation mode. The active and reactive power are both zero since the
grid voltage is zero. However, the reactive current should still be injected for grid support. It is obvious
that the power response drops slightly. The overshoots of the estimated amplitude and frequency are
small, when the voltage recovers to 0.4 p.u. at t = 0.75 s, as shown in Figure 14c,d. Furthermore, when
the voltage continues to recover to 0.7 p.u. at t = 0.9 s, the system increases the active power injection
to 70% of its rated power. Until the fault is cleared at t = 1.1 s, the system goes back to the normal
operational mode. Compared with the case where the grid voltage directly drops to zero as shown in
Figures 12 and 13, the proposed control method guarantees a good dynamic performance under the
recurring grid voltage fault.

6. Conclusions

The performance of single-phase grid-connected PV systems in the ZVRT operation has been
explored in this paper. Typical techniques of monitoring and synchronization using PLL systems
have been compared and analyzed in detail. The selected PLL methods have been compared in
terms of accuracy and dynamic response to the ZVRT operation. The benchmarking has revealed
that the SOGI-PLL system is a promising solution for monitoring and synchronization in single-phase
applications under the LVRT/ZVRT operations. However, the steady-state error during the ZVRT
operation should be reduced or eliminated. Then, a control strategy based on the modified SOGI-PLL
system has been proposed in this paper for single-phase grid-connected PV systems in the ZVRT
operation. The performances of the single-phase grid-connected PV systems in the case of ZVRT
operations with the proposed control strategy have been evaluated. Results have validated the
effectiveness of the proposal in terms of fast dynamics and accurate responses.
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