Aalborg Universitet AALBORG

UNIVERSITY

Discrete Material and Thickness Optimization of laminated composite structures
including failure criteria

Lund, Erik

Published in:
Structural and Multidisciplinary Optimization

DOl (link to publication from Publisher):
10.1007/s00158-017-1866-2

Publication date:
2018

Document Version
Early version, also known as pre-print

Link to publication from Aalborg University

Citation for published version (APA):

Lund, E. (2018). Discrete Material and Thickness Optimization of laminated composite structures including
failure criteria. Structural and Multidisciplinary Optimization, 57(6), 2357-2375. https://doi.org/10.1007/s00158-
017-1866-2

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

- Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
- You may not further distribute the material or use it for any profit-making activity or commercial gain
- You may freely distribute the URL identifying the publication in the public portal -

Take down policy
If you believe that this document breaches copyright please contact us at vbn@aub.aau.dk providing details, and we will remove access to
the work immediately and investigate your claim.


https://doi.org/10.1007/s00158-017-1866-2
https://vbn.aau.dk/en/publications/ff56213b-5315-476c-8a13-0d01695b0773
https://doi.org/10.1007/s00158-017-1866-2
https://doi.org/10.1007/s00158-017-1866-2

Downloaded from vbn.aau.dk on: August 23, 2025



Discrete Material and Thickness Optimization of laminated
composite structures including failure criteria

Erik Lund*

Department of Materials and Production,
Aalborg University,
Fibigerstraede 16, 9220 Aalborg East, Denmark

Published in Structural and Multidisciplinary Optimizati
December 2017, httgidx.doi.org10.1007s00158-017-1866-2

Abstract core material like PVC foam or balsa wood are placed
inside the structure. Thus, the designer can decide on
This work extends the Discrete Material and Thicknegse type of material and layer (ply) thickness and in case
Optimization approach to structural optimization probéendf fiber reinforced materials also the fiber orientation. In
where strength considerations in the form of failure ci@ermany cases the material has to be oriented at given chosen
are taken into account for laminated composite structurgggles, e.g+45°, 0°, 45°, and 90 due to design guidelines.
It takes difset in the density approaches applied for stresRus, the design problem from the starting point is a
constrained topology optimization of single-materiallpro combinatorial problem that require integer or combinaiori
lems and develops formulations for multi-material topglogptimization. However, as it is much easier to solve
optimization problems applied for laminated compositgntinuous optimization problems using gradient based
structures. The method can be applied for both streggtimization, much work has been done using continuous

and strain-based failure criteria. The large number ofllogicknesses and fiber orientations as design variables.
constraints is reduced by the use of aggregate functiods, an . :
the developed approach is demonstrated for optimization; ue to the stfness' properties of 'the orthotro_pp ma-
problems involving both constant and varying thicknel‘gr"”lIS applied for Iamlnateql compos!tes, th? optimizatio
laminated composites. problems often have multiple solutions with the same

Keywords Discrete Material Optimization; Discreteperformancg._ For_ example, fiber orientations-4&° and
yw ’ 45° for a unidirectional (UD) GFRP may be equally good

Material and Thickness Optimization; Failure criteria, . . L2 2
Laminated composites i many design problems. G_rad|ent bas.ed opt|m|zat|9n

using thicknesses and fiber orientations directly as design
variables may easily end in a local minima due to a
1 Introduction nonconvex design space, and the material choice problem

of selecting, e.g., GFRP, CFRP or foam material cannot
Laminated composite structures consisting of Glass ke handled by this parameterization. It is important to
Carbon Fiber Reinforced Polymers (GFRFRP) make note that thickness optimization of plates and shells is
it possible to achieve ficient and lightweight structuralan ill-posed optimization problem that needs some kind
designs due to their superior strength anffreiss charac- of regularization as described for solid isotropic elastic
teristics. The large design freedom associated with thegdates in Cheng and Olfio(1981, 1982). For laminated
structures makes it attractive to apply structural optamizcomposites this is typically achieved by adding constsaint
tion techniques in the design process, and maiferdint on the allowable rate of thickness variation, i.e. ply-drop
approaches have been developed since the earliest worksstraints, or by using a patch parameterization where
like Schmit and Farshi (1973) in the seventies. An overviesvnumber of finite elements in the numerical model are
of optimization methods for laminated composites camforced to have the same thickness.

be found in Ghiasietal. (2009) and Ghiasi et al. (2010),A very popular method for optimization of laminated

where the methods are divided into constant and Varia@t?mposites is genetic algorithms (GA). Very often the
stiffness methods. One of the methods for variablénetss layer thickness of each material is fixed, and the fiber

design is the family of Discrete Material Optimizatiorb

0] h b d d amrfntations are limited to a set of discrete values. Then
(DMO) approaches by Stegmann and Lund (2005) optimization problem is reduced to a discrete stacking

Lund an(r:i] Stegmannl_ (3905%’_ and these parameterizallgh,ence problem, and Haftkaii@al and their coworkers
approaches are applied in this paper. in the 1990s developed specialized GAs for stacking

Laminated composites are built of layers of e.g. GF equence optimization, see e.g. Le Riche and Haftka
or CFRP, and in case of sandwich structures a Iight-weigitﬂbg3 1995), @rdal etal. (1994), Kogiso et al. (1994)

*  Email: el@mp.aau.dk and Nagendra etal. (1996). The advantage of GAs and




many other meta-heuristic algorithms is that they returroptimization process guiding the composite laminate de-
number of near optimal designs with only minor variatiosigns from a concept to the final ply-book details, see
in performance index instead of a single design. Many ott#hou et al. (2011) and Zhou and Fleury (2012). The first
global optimization algorithms dedicated to optimizatadn phase concerns the conceptual ply layout, the second phase
laminated composites have also been developed. Stackiatermines the specific number of plies, and the last phase
sequence optimization of laminated composite structaresietermines the final stacking sequence of the laminate,
satisfy requirements on ply continuity (also referred to #&king performance demands and manufacturing constraints
blending) has been studied by many includingr@al et al. into account.
(1999), Kristinsdottir et al. (2001), Liu and Haftka (2001) Typically strength requirements are taken into account
Seresta et al. (2007), Liu etal. (2011), Zein et al. (2012),the form of strain constraints when applying lamination
Liu etal. (2015), and Zein et al. (2016). Recent work gmarameters, due to lack of information about the actual lam-
stacking sequence optimization including blending and pliypate configuration, and the failure envelope is dependent
drop design guidelines include lIrisarri et al. (2014, 2016 ply angles and thicknesses. To overcome this problem
and Peeters and Abdalla (2016). IJsselmuiden et al. (2008) proposed to find the region in
For monolithic laminates a very popular parameterizatistrain space that is safe regardless of the ply angles,
approach is to apply lamination parameters as introduceddogh that a conservative Tsai-Wu failure envelope in the
Tsai and Pagano (1968). The laminatéfsésses are linearlaminate parameter space was obtained. Unlike minimum
functions of lamination parameters, which has convexitpmpliance problems, there is no analytical proof that
advantages for gthess design problems. Furthermore, thetrength optimization with lamination parameters is canve
number of design variables is independent of the numlaerd thus global optimality is not assured. Khani et al.
of layers, so the number of design variables can be redu¢20d11) proposed a convexifying approach, where a hybrid
significantly for laminates with many layers. The relatiorapproximation for the failure index was developed.
ships between in-plane and out-of-plane lamination paramThe definition of lamination parameters is valid for
eters are available for a number of cases, such that gradimonholithic laminates, and thus the optimization proceslure
based optimization can be performedfi@ently using described above can only be applied for such single-
lamination parameters, see e.g. Miki and Sugiyama (1993aterial laminates. However, de Faria (2015) extended
Hammer et al. (1997), @dal et al. (1999), Herencia et althe definition of laminate parameters to allow for hybrid
(2008), and Bloomfield et al. (2009). laminates, and thus it should be possible to apply this
Liu et al. (2000) presented a two-step (global and bgiarameterization for multi-material laminates.
tom) strategy for minimizing the mass of composite wing In this work the aim is to be able to optimize multi-
panels subject to strain and buckling constraints, anthterial laminated composites while taking failure crite-
similar bi-level approaches have been applied by marny into account, and the Discrete Material Optimization
including Herencia et al. (2008), IJsselmuiden et al. (300®DMQO) parameterization approaches are applied, as they
and Liuetal. (2011). In the first step the laminate isan be applied for any combination of materials. In the
parameterized using lamination parameters, and a numb&tO method a number of candidate materials are defined,
of industry layup rules can be imposed on the feasibMhich could be dierent FRP materials oriented at given
region for the lamination parameters, for example lwhosen angles, e.g-45°, 0°, 45°, and 90. The discrete
restricting the design space to symmetric and balangadblem of choosing the best candidate material is con-
laminates. Nonsymmetric laminates may warp in responsgted to a continuous problem that can be sohfadiently
to an applied uniform temperature change across thesing gradient based optimizers. Multi-material interpo-
thickness. This warping can occur during cool-down frotation functions with penalization of intermediate design
the cure temperature during manufacturing and during irariable values are applied, and the first DMO interpolation
service operations, and thus many design guidelines eqgtfimctions as described in detail in Stegmann and Lund
symmetric layups. The optimization problem at the globg005) were self-balancing with the aim of obtaining a
level (first step) was solvediiiently using gradient baseddistinct choice of material. As an alternative to the self-
optimization, and a GA was used at the bottom levehlancing procedure, Hvejsel etal. (2011) introduced a
(second step) to optimize the stacking sequence in orderies of linear equality constraints to ensure that the sum
to meet the target values of lamination parameters comimfgweighting functions for the candidate materials would
from the top level. A number of eierent approaches haveequal unity. Here the distinct selection of a single can-
been developed for the bottom level problem in order tlidate was achieved by a non-linear inequality constraint.
obtain realizable laminate designs that satisfy struttukdvejsel and Lund (2011) introduced an alternative to the
constraints as well as manufacturing constraints goverregblicit non-linear constraint by proposing multi-magekri
by layup rules. The two-step approach may have sowwriations of the well-known SIMP and RAMP interpola-
drawbacks as pointed out by Zein and Bruyneel (201fi9n schemes, see Bendsge (1989) and Stolpe and Svanberg
because the stacking sequences determined at the bo{(®@®01), respectively. Blasques and Stolpe (2012) also
level do not have a direct control over the thicknessapplied such interpolation schemes for multi-material
determined at the global level. They proposed a na&wpology optimization of laminated composite beam cross
algorithm such that the optimization problem is solveskctions, and this parameterization approach has been
without splitting it into two steps as in common practice. the preferred choice in our work for constant thickness
The approach applied by Altair Engineering in thiEaminates since 2011. With these multi-material variation
commercial software OptiStruct relies on a three-phask the SIMP and RAMP interpolation schemes, linear



equality constraints are introduced to ensure that the stonthe source code, but it has recently been demon-
of design variables for the candidate materials is equatated in Wu et al. (2017) how the DMO approach can
to unity. Nonlinear interpolation functions are appliede implemented in a commercial finite element code for
by appropriate choice of penalization parameter in tkempliance problems including eigenfrequency and local
SIMP and RAMP interpolation schemes in order to makisplacement constraints. However, the DMO and DMTO
intermediate design variable values unfavourable. Approaches have only been applied for structural criteria
an alternative, Kennedy and Martins (2013) used lindde compliance, eigenfrequencies, buckling load fagtors
interpolation and added a series of non-linear equaland displacements. In this work it will be described how
constraints as a penalty term to the objective functiaie approaches can be extended to take strength critesia int
effectively penalizing intermediate design variable valuesconsideration in the optimization formulation.

An alternative to these DMO interpolation function§he inclusion of strength criteria in structural topology
is the Shape Functions with Penalization (SFP) methoptimization problems is a challenging problem due to the
proposed by Bruyneel (2011) where the author appliemtal nature of these criteria and their behaviour in the
four node shape functions known from the finite elemeobntext of topology optimization. Sved and Ginos (1968)
method to interpolate between four material candidat@asscribed how stress constraints can be violated for truss
using only two design variables. The SFP method waxpology optimization problems when the bar area goes to
later extended to include three and eight node elements, z&®, such that it can not be removed, and they discovered
Bruyneel et al. (2011). The SFP method was generalizgdgular optimal topologies. The singularity problem
by Gao et al. (2012) by introducing the Bi-valued Coding discussed in many papers, see e.g. Kirsch (1990),
Parameterization (BCP) method which has no upper lintheng and Jiang (1992), Rozvany and Birker (1994) and
on the number of applied material candidates. The ma&uo et al. (2001). The singularity problem may also appear
advantage of SFP and BCP methods is the substantidlaminate design where these singular optima are linked
reduction of the number of design variables required to the removal of zero thickness plies from the stacking
do the material interpolation compared to the other DM&equence as demonstrated in Bruyneel and Duysinx (2006).
interpolation schemes. Furthermore, no linear equalidne way to avoid the singularity problem is to use an
constraints are needed. However, the results of the BEBpproach as suggested by Chengand Guo (1997) for
method may depend on the numbering of the candid#tess topology optimization. This-approach was adopted
materials, if the number of design variables i§efient from by Duysinx and Sigmund (1998) and Duysinx and Bendsge
2,4,8,16, etc. Kiyono et al. (2017) has recently proposeq1®98) for stress constrained topology optimization of
new parameterization approach named Normal Distributioontinuum structures. Due to the local nature of stress
Fiber Optimization (NDFO) for fiber angle optimizationconstraints, such topology optimization problems are com-
It takes dfset in the same formulation as DMO, SFPutationally challenging due to the high number of design
and BCP, but only one design variable is needed to arariables and local constraints. In order to reduce the
number of candidates. The normal distribution functicsomputational gort Duysinx and Sigmund (1998) intro-
is used as a parameterization of the weighting functiomkiced a global stress measure using twitedéntP-norm
and the formulation is straightforward to implement. Anethods, such that all stresses were grouped into a single
filtering technique can be easily implemented to achiestress constraint. This reduced the computatioffalteby
fiber continuity, and good convergence properties have beeders of magnitude because the size of the mathematical
reported. programming problem became much smaller and the design

As mentioned previously, for laminated composite strusensitivity analysis was much faster due to the use of an
tures thickness variations are often needed in order te optijoint formulation. However, using only a single global
mize the design. The thickness variations are accomplisiséttss measure made itffitiult to control the local stress
by dropping plies along the length to match varying in-plahevel. This was also observed in the work by Yang and Chen
and bending loads. Sgrensen and Lund (2013) propo§k#96) where two dferent global stress measures were
an extension to the DMO method for simultaneouslgpvestigated.
determining an optimum thickness variation and materibhe e-approach consists of solving a sequence of prob-
distribution. The proposed method was developed fems for decreasing values of tlerelaxation parameter,
problems concerning mass constrained minimization afid its successful application has been demonstrated for
compliance. Sgrensen et al. (2014) extended the work anany diferent types of topology optimization problems.
proposed the Discrete Material and Thickness Optimizatién e-approach that regularizes the stress singularity for
(DMTO) method. In the DMTO approach the DMO multivanishing material selection and topology variables using
material interpolation schemes are extended by includitg DMTO parameterization and solved using a barrier
a topology (density) variable so tdfectively terminate method tailored for stress-constrained mass minimization
individual plies throughout the laminate. The DMTnas been developed in Kennedy (2016). In recent years
method was demonstrated on a generic main spar useth@anmost popular approach for stress constrained topology
some designs of wind turbine blades where the objectimptimization has been to use a SIMP type relaxation as
was to minimize the total mass while maintaining structuritroduced in Bruggi (2008). In this approach a SIMP
performance by means of constraints on buckling loauterpolation scheme is used for stress constraints, using
factors, eigenfrequencies, and displacements. suitable penalization exponents that aréesient from those

The DMO and DMTO approaches are typically implehat interpolate sfiness parameters.
mented in in-house finite element codes with full acce$he success of stress constrained topology optimization



relies on the application of clustering the large nun Parameterization
ber of local stress constraints into a lower number of
global stress constraints. Reviews of existing resultsthe following the parameterizations applied for constan
obtained using local and global stress constraints cdid varying thickness laminates are described.
be found in Leetal. (2010). It is fficult to find
a general and robust function for clustering the localq Design parameterization using DMO
stress constraints, such that the local peak values are
controlled dficiently. The most commonly used funcin case of optimizing constant thickness laminates, the
tions areP-norm functions (Duysinx and Sigmund, 199&design parameterization is based on the DMO formulation
Holmberg et al., 2013; Le et al., 2010) and Kreisselmeidty Stegmann and Lund (2005), Lund and Stegmann (2005)
Steinhauser (KS) functions (Kennedy and Martins, 20133d Hvejsel and Lund (2011). The laminated composite
Kreisselmeier and Steinhauser, 1979: i®at al., 2009: structure is modeled by layered shell finite elements, and
Yang and Chen, 1996). In many recent works the local aft structure is divided into a number of patches, congjstin
global stress constraint approaches are combined as in@h@number of finite elements, where the same layup should
regional stress measure approach by Le etal. (2010) &R@ly.- A number of candidate materials;, are defined
the block aggregation approach by Baet al. (2010). This for each material patch. The candidate materials can be,
makes it possible to reduce the large number of constraif@sexample, a unidirectional (UD) fiber reinforced polymer
efficiently by using global stress measures, but the numieRP) material oriented at fiierent chosen fiber angles
of local stresses included in each aggregate functiont@gether with possible core materials in case of designing
limited in order to improve the accuracy of the constrai§@ndwich structures as illustrated in Figure 1. The number
lumping. of layers of the laminate is denoted

This work can be considered as an extension of
stress constrained topology optimization using density ~1 (Ey)
approaches to multi-material topology optimization prob-
lems where the parameterizations applied are the DMO
and DMTO approaches for laminated composites. As
in the work of Bruggi (2008) and subsequent topology
optimization papers with stress constraints, suitableapen <———7 €=3 (B3
ization parameters are introduced in the parameterization
Combined with the use of aggregate functions for reducing ~ (Foam) (GFRP)

the large number of local strength values, it will be shown
how challenging optimization problems related to design of
laminated composite structures can be solved.
The analysis will be based on layered shell finite
elements using Reissner-Mindlin assumptions, i.e. first
order shear deformation theory. These finite elements are . y/90°

=2 (Ep)

commonly used for stress analysis of laminated composite 0

structures, as they give a good estimation of the overall x/0°

strain and stress distributions through-the-thicknesthef

laminate. However, localfects and out-of-plane stressekigure 1: Top: Potential outcome of a tapered laminated

will not be captured accurately, and thus it is advantagediigte example. Bottom: Each material candidate is

to include design rulgmanufacturing constraints that im-described by the constitutive matitc. Material candidates

plicitly limit these efects. Two manufacturing constraint§an be, for example, a foam type (left) or glass fiber

described in detail in Sgrensen and Lund (2013) for tfeinforced polymer (GFRP) fiber mats (right), charactetize

DMTO parameterization will be applied. The first is &Y the fiber orientatios.

constraint on the allowable rate of thickness variatian,a

ply-drop constraint, so to avoid abrupt changes ifiretss ~ The candidate material variableg. are defined for all

which can lead to delamination. The second is a so-call@material patches such that

contiguity constraint that defines an upper limit on the

number of identical contiguous plies, as larger transverse _ |1 if candidatec is selected in layelrof patchp

stresses may be build-up in thick plies, again leading to 2°~ 10 otherwise

larger risk of delamination failure. (1)
The remaining of the paper is organized as follows.

First, the DMO and DMTO parameterizations are presentétle constitutive matrixeq for a given layerl in a given

in Section 2. This is followed by a description of thehell elemene contained in patclp is thus determined by

failure analysis developed for computinfeztive failure

indices for the multi-material topology problem in Section

3. The gradient based optimization approach is described

in Section 4 before four flierent numerical examples are e

prese.nted and discussed in Section 5. Finally, Section 6 Z Xoie = 1 v(p,1) (2b)

contains the overall conclusions of the work. i

nC
Eg = Z XpIcEc (2a)
c=1



Xpic € {0; 1} Y(p,1,c) (2c) (2014) where the Discrete Material and Thickness Op-
) o ) ) ) timization (DMTO) approach was developed, making it

whereE is the constitutive matrix associated with materiglsssiple to simultaneously determine an optimum thickness
candidatec and (2b) is a resource constraint which ensurggiation and material distribution of the laminated cosypo
that only one distinct material candidate can be selectedjis structure. The idea is to introduce a density variable
T_he comb_inatorial problem of selecting t_he material capy govern the presence of material in a given layer, and
didate variablesc,c is converted to a continuous problemyerephy determine the thickness variation throughout the
using interpolation functions with penalization, suchtthg, ninate. The layerwise density variables can be defined
it is possible to apply féicient gradient based optimizationsjiher on element level or by groups of elements having the
algorithms for solving the multi-material topology oplixame thickness. In this work, they are defined by groups of

mization problem. The multi-material generalizations Qfiements termed geometry design domains as illustrated in
the well-known SIMP and RAMP interpolation schemegigure 2 such that

see Bendsge (1989) and Stolpe and Svanberg (2001), re-
spectively, can be used as proposed in Hvejsel and Lund 1 if there is material in layerfor domaind
(2011), see also Blasques and Stolpe (2012). Thus, th€4 = g otherwise

integer problem is relaxed by treating the design variables ©6)
Xpc @s continuous variables, i.e. the method can be
considered as a multi-material density approach. The
constitutive properties for a given laykin a given elemen¢°™e!
e associated with patcp are now interpolated as ¢

ry domain 1

e e S S R
Ea = Z w(x) Ec (3a) N I S e S S
e =t <— Layer1
Xplc = 1 V(p, I) (3b) N J
CZ:; Patch 1 ( d'd\t/ terial domain 1)
atc candidate material aomain
The weight functiorw(x) for the multi-material generalized Pis P25 Pss Pas Pes | N
SIMP scheme is given as P4 Do Pas Oas Psq Xie
wW(X) = X?ﬂc 4) P13 Pz Pz Pus Ps3 X%
whereas for the generalized RAMP scheme it is given as Pr P2 Pz Ps Ps2 X1
W(X) = Xple (5) Pu Pz Pz Py Psy .Xilc. )
1+ q(l - Xplc)

Figure 2: Example of a patch (candidate material domain 1)
combined with 5 geometry domains. The design variables
associated with the domains are listed.

Here q is a penalization factor and. the constitutive
matrix for candidatec in the given layer. Penalization
of intermediate design variable valugg. is necessary as

the optimizer otherwise can generate superior, but nony, 3 similar way as described for the material design
phyglcal, pseudo_materlgls by comblnlng th.e propertiggriables, the density variablgg are treated as continuous
of different material candidates. With these interpolatiiaples and the constitutive properties for a given layer

schemes the design variableg. can be considered asp g given elemene associated with material patghand
volume fractions of each material candidate as seen frg@metry domain are now interpolated as

the resource constraint (3b). If holes are allowed In

the structure, then the resource constraint (3b) should n*
be changed to a less-than constraint, see examples in Ea = ZW(X’p) Ee (72)
Hvejsel and Lund (2011). . =1
This generalized RAMP parameterization for multi- _
material topology optimization leads to very many sparse Cz_; Xple = 1 Y(p.1) (7b)

linear constraints due to the resource constraint (3b), and
thus it is necessary to apply an optimization algorithm that Xpic € [0;1] v(p.1.c) (70)
can handle such linear constrainféaently. Design sensi- pa € [0;1] v(d.1) (7d)
tivity analysis of criterion function will involve derivates
of the constitutive properties, which are found analytical
by differentiation of (3a).

The weight function can be computed using a generalized
SIMP scheme as

W(x, p) = pg X3 (®)
2.2 Design parameterization ussing DMTO or a generalized RAMP scheme as
The DMO approach was extended to varying thickness B od Xplc 9
laminates in Sgrensen and Lund (2013) and Sgrensen et al. w(x. p) = 1+ 91— pa) L+ (1 - Xpic) ©)



For simplicity, the same penalization factqris applied Pagny
for material design variablesy. and density variables \
pda. The resulting parameterization is non-convex and 1
therefore the solutions obtained are typically local optim

In order to prevent holes to appear inside the laminated
structure, i.e. interior layers with zero density, a number
of explicit constraints must be added. If the bottom layer

I = 1 must have full density, i.e. be present, a series of
constraints of the fornp, > p,,,,, are added as described

in Sgrensen and Lund (2013) and Sgrensen etal. (2014)
where a number of other manufacturing constraints also are
described.

If all density variablesp, can vary freely during the
optimization, the constraints, > p,,,, are not séicient for
forcing the optimization algorithm to yield gDsolution. T T
Two different approaches have successfully been applied . | > P
for circumventing this problem, either using a dedicated @a-7 1
move limit strategy or a thickness filter approach as devel- . . .
oped in Sgrensen and Lund (2015). In this work the mof@ure 3: lllustration of functionf(oq, T) applied for
limit strategy described in Sgrensen and Lund (2013) ai@Venting voids inside the laminate.

Sgrensen et al. (2014) combined with a Sequential Linear

Progrgmm!ng (SLP) approach IS dqcumented. Bas'ca"y’dpocedure. This might be considered a disadvantage
each iteration the following constraints are applied

compared to many existing bi-level optimization procegure
paien) < floa, T), Vd, =1, 2,....n-1 (10) for monoli'thic laminates wh.ere' symmetric Iaminat'es are
enforced in the parameterization. However, with the

Here f (oq, T) is a function that controls the limit onDMTO approach multi-material laminates with varying
the density variable of the contiguous upper layer basgfckness can be optimized, and as it will demonstrated
upon the current value of the density variable below ap§ numerical examples in this paper, the DMTO approach
a threshold parametdr which is set to 0.1. The functionvery often yields nearly symmetric layups as solution to the
f(oa, T) is defined as optimization problem as such layups minimize extension-
bending couplings and yield better structural performance

fi = pa if  pa<(1-T)
fo=lpa+ Z2  else

floa, T) ={
a1 3 Failureanalysis

The function f(pg, T) is illustrated in Figure 3. With The prediction of failure for the laminated composite
these modified constraints on the density variables, itsigucture is based on linear static stress analysis, and for
possible to avoid interior holes and obtaifil Golutions simplicity only one load case is considered in the following
with the DMTO parameterization. The use of geometewen though most practical design cases should take several
design domains with the same thickness parameterizatioad cases into account. The analysis is performed using
regularizes the thickness optimization problem and thereBquivalent Single Layer (ESL) 9-node isoparametric shell
removes the mesh dependence. Adding ply-drop constrafirige elements, and the linear elastic static problem is
in the form of allowable rate of thickness variation betweesolved for displacementS using the equilibrium equation
geometry domains also regularizes the optimization prob-

lem. KD=F (12)

A number of manufacturing constraints can be ] _
considered in the DMTO approach as described !fnls the g!obal load vector and the globalki&iess matrix
Sgrensen and Lund (2013) and Sgrensen et al. (2014). Ig§letermined as
constant thickness laminates symmetric laminates can

nP
be enforced in the DMO approach, see e.g. Yanetal. K = Z Z K,
(2017) where other design guidelines like the 10% rule, p=1ecP,
etc., are taken into account. For the DMTO approach - , (13)
applied in this paper the thickness is reduced from the _ Z Z Z BTE,B,dQ,
upper layer, such that it mimics the typical manufacturing o1 6Py 121 Y% ¢

process of, e.g., wind turbine blades where the fiber mats

are placed in a single sided mould, and the taperingHere summation denotes assembly of the local element
performed on the outer layers. Enforcing symmetry aroustitness matrice&, where elemeng belongs to the list of
the midplane according to the current thickness of teeementsP,, for patchp. E, is the dfective constitutive
laminated composite is not possible during the optimizationatrix for layer| in elemente, and B, is the standard
process with the applied DMTO approach, and ths$rain-displacement matrix. When evaluating an element
symmetric laminates are not enforced by the optimizatistiffness matrix, thefeective constitutive properties for any



layer are determined using the SIMP or RAMP schemegaluated using the preferred strain- or stress-baseddail
in either Eq. 4, 5, 8 or Eq. 9 with weight functiomg. criteria. A number of dterent failure criteria have been
In stiffness driven design, e.g. for compliance problemmplemented. This includes failure criteria not associate
the penalization factog is set such that the constitutivewith failure modes like Tsai-Wu and Tsai-Hill together with
properties are reduced for intermediate design variakliteria associated with failure modes. Here the two non-
values, i.e., a below-linear penalization is used to guide finteractive criteria maximum strain and maximum stress are
optimizer to select discret¢ Dvalued design variables.  implemented together with the interactive Puck, LaRC 2-D
Next the strength of the laminated composite must bad LaRC 3-D criteria. For simplification only maximum
evaluated. The layered shell elements used for the analgsiain and maximum stress failure criteria are used for the
in general give good prediction of inplane stresses éxamples in this work. Definitions of these criteria can be
the laminated composite with linear variation within eadiound in, e.g. Grdal et al. (1999), and the result is a failure
layer. Due to the first order shear deformation theonydexFlg. that must be< 1 in order to avoid failure.
applied, constant transverse shear stresses are obtain®dhen failure indices-14. have been computed for each
for each layer, whereas no information is available abalftthe candidate materials, a resultirfteetive failure index
transverse normal stresses. Thus, the prediction of strerfgles ¢ o is evaluated using
using such layered shell elements in general is acceptable,
but local dfects from edges, ply drops, etc., can not be o’
captured with these elements and thereby by the models Flefra = ZWF'FIG'C
applied in this work. However, the procedure described c=1

in this paper has also been implemented using solid shelrhe weight functionsve, used for interpolation between
elements, such that more detailed models can be applied¢f(ire indices for the dferent candidate materials must
example in combination with adaptive remeshing of zonggke it unfavorable to have intermediate design variable
of interest as documented in Johansen and Lund (2009) 38fles, i.e. a linear or above-linear interpolation is
Johansen et al. (2009). applied. Using an above-linear interpolation téeetive
The candidate materials will initially have equal desigfajlure index is increased for intermediate design vagabl
variables and thereby equal weight functions, and a relaxggles, making such values disproportionately expensive.
effective failure indexlerra for each layed of element pyrthermore, combined with the below-linear interpolatio
e must be establish. The failure criteria used for FRipplied forw this yields the desired relaxation of stress
materials are evaluated in the material coordinate systgHted failure criteria, such that the contributiorFtias  «

123, and based on the associated volume fraction of eggjyroaches 0 as function of a design variable approaching
candidate material, arffective failure index is computed.g This might not be the casevif = .
The approach follows the idea of Bruggi (2008) for stress
constrained topology optimization, such that suitablegpen Interpolation functions
ization parameters fferent than those used for evaluatin I
stiffness are used when evaluating th@eeive failure T n
index. T .
The element strain vectegﬂ in the structural coordinate /
system is computed at both the bottom and top of each la g
using 2 o5t ,
e =B,d (14) P —

(16)

whered is the element displacement vector. -/ Cw

In case of having a stress-based failure criterion, t
element layer stress vectoﬁ;yz is computed at the bottom K T
and top of each layer as o o1 o2 o5 o1 05 05 o7 o5 o5 1

Xoic O Pql

0'2’2 =E, e;yz (a5 i ) ) i _ _
Figure 4: Typical choice of interpolation functiong, w,,
The strength prediction of candidate materials may B&dwg using the generalized RAMP scheme.
evaluated using flierent stress- or strain-based failure
criteria, and thus stresses should vary in the same way a¥he main dfference between using generalized SIMP
strains as function of design variables. Thus, the weigiiid RAMP is that RAMP has a finite gradient for a design
functionsw, used for computindz, in Eq. 15 are linear variable of value 0. For a SIMP scheme, see Eqgs. 4 and
functions, such that no penalization of stresses is oldain®, the derivative goes to infinity when a design variable
In this way strain- and stress-based failure criteria can &gproaches 0 and @ g < 1 in order to obtain an above-
combined and penalized consistently. linear interpolation. Thereby a positive lower bound on
For each candidate materialof the given layer, the the design variable must be used for SIMP. For the RAMP
strain vectoregyZ and stress vectoo-é,yZ are transformed scheme a lower bound of 0 can be applied for the design
to the material coordinate system 123 of the candidatriables, which is an advantage of RAMP. Therefore all
material using appropriate standard transformation matésults presented in this work are based on the RAMP
ces, such that strain vecte}?* and stress vectariZ® are scheme, but quite similar results are obtained with the
obtained. For each candidate material a failure irfeley¢ is SIMP scheme when having a small positive lower limit



on the design variables. A typical choice of the weighesults obtained using the-norm function are presented.
functionswy, w,, andwg, using the generalized RAMPIf the failure indices to include are stored &3y, k =
scheme is illustrated by Figure 4. The values applied for the . ., n™', then theP-norm functionF|py is computed as
penalization poweq are described in detail in the following

section i P
| Flen = [Z (Flk)P] (17)
k=1
4 Optimization appfoaCh The parameteP controls the level of smoothness, and the

P-norm value approaches the value of the largest failure
Having established the parameterization and failure anglyex from above aB — oo. Thus, it is desirable to select a
ysis approach, the optimization problem to be solved cfye value o, but it also makes the optimization problem
be established and solved using standard mathematfﬁégeasingly non-linear and morefiitult to solve. In this
programming techniques. work a value of 8 is used fdP in all examples.
A number of diferent approaches for determining the
4.1 Design sensitivity analysis and SLP ap- failure indices to include in the optimization problem have
proach been implemented in this work. Some approaches are
purely based on sorting all failure indices, like including
The computation of gradients has been implemented usinfixed number of the largest values or active set strategies
both analytical and semi-analytical approaches basedwamere values exceeding a given percentage of the largest
direct diterentiation and adjoint methods. Details for thesalue are included. Other approaches are related to
methods of design sensitivity analysis can be found in etige material and geometry patches introduced with the
Haftka and Girdal (1992) and Tortorelli and Michalerisparameterization, such that values from all patches are
(1994). Failure criteria not associated with failure modéscluded in the aggregate function. For all examples
like Tsai-Wu and Tsai-Hill are continuous andffdr- presented it is specified how the failure indidek are
entiable functions, so the computation of gradients ektracted from the full set of values.
failure indices can be performed as described in e.gThe diiciency of using global strength approaches de-
Groenwold and Haftka (2006). The failure criteria usecteases when a large number of values are lumped into
in the examples in this paper are all associated whsingle global value, but this problem can be handled
failure modes, like the non-interactive maximum strainy associating a global strength measure with each ma-
and maximum stress criteria. Thus, the failure surfacesiajgeometry patch used for the parameterization. The
are continuous but have noffidirentiable points at theapproach then has similarities with the block aggregation
intersection between surfaces associated with tiferdnt approach Pas et al. (2010) and the regional stress measure
failure modes. In practice, it is very rare that such poindgpproach Le et al. (2010) used for single-material strattur
are reached in the evaluation of failure indices, and for ttepology optimization problems with stress constraints.
gradient evaluation, the sensitivity is computed assumingin case of having failure indices as objective function,
fixed failure mode. For example, if the analysis predici. solving problems with minimizing the maximum failure
failure due to compressive transverse inplane stressiridex, the P-norm overestimation of the largest failure
the material coordinate system, then the sensitivity of thielex value in general is not a problem. However, when
failure index is computed for this failure mode. failure indices are included as constraints, the overestim

The optimization problems are solved using SLP #sn typically results in a design where the true failuregrd
described in detail in Sgrensen and Lund (2013) aodnstraint is not active. This is solved using the adaptive
Sgrensen etal. (2014). The DMO and DMTO parameenstraint scaling scheme proposed in Le etal. (2010).
terizations introduce a very large number of sparse lina#fith this approach the constraint is scaled according to
constraints, see Egs. 3b and 7b, and thus it is an advanthgeratio of the current maximum failure index value and
to use an optimizer that has good support for such spattse P-norm value together with history information about
constraints. In this work the LP optimizers in IBM ILOGhe constraint scaling, see details about our implememtati
CPLEX version 12.6, see IBM ILOG (2015), and versiom Oest and Lund (2017). This adaptive constraint scaling
7.2-9 of the Sparse Nonlinear OPTimizer (SNOPT) lscheme has the advantage that lower valueP cn be
Gilletal. (2005) have been applied, both with defaultpplied, which makes the optimization problem easier to
settings. solve.

The presented approach results in a very large nhumbefhe computational cost of including strength criteria in
of failure indices that must be taken into account. Féne optimization problem is comparable to include buckling
a finite element model consisting @f elements, eachconstraints, i.e. it is computationally much more inteasiv
with n' layers, the number of failure indices is 2° - n'. than solving compliance problems. Quite ofterffagss is
Combined with the large number of design variables needesed as a surrogate objective function for obtaining a high
for the DMO and DMTO approach, it is necessary frostrength design, but the fiérence between strength and
a computational point of view to cluster a large numbestiffness optimized designs may be significant as illustrated
of the local failure indices into a lower number of globdby several examples in IJsselmuiden et al. (2008). Their re-
values. A number of dlierent aggregate functions havsults clearly indicate that the degree of correlation betwe
been implemented including@-norm, P-mean-norm and stiffness and strength driven designs of laminates depends
Kreisselmeier-Steinhauser functions. For simplicitylyonon the properties of the materials and the loading situation



4.2 Continuation approach calculated as suggested by Sigmund (2007) as

All numerical examples shown in Section 5 are solved Mgng = 4 241 Ve pet (1 - pa)
using a continuation approach for the generalized RAMP 2.di Vel
scheme. Due to the non-convexity of the optimization ,

problem, any gradient based optimization approach is/ikdfhere Ve is the layer volume of theth element. The

to end in a local minimum. Even for fiiless topology Measure of candidate non-discreteness is calculated ac-

optimization problems using a single isotropic material a°rding to Serensen etal. (2014), and repeated here for

the SIMP interpolation, a continuation approach may heigmpleteness
in obtaining a strong local minimum because thérséiss

-100% (18)

penalized problem is non-convex. This is illustrated in the Vel Va 53 Qil(ll__xic)
recent paper by Aage et al. (2017) where a 3D compliance Mend = S Va Fa ——-100%  (19)
el

optimization problem with more than 1 billion design

variables is solved. They had to slowly raise the SIMP .

penalization power in steps of 0.25 from 1 to 3, distributdd  Numerical examples

over a total of 400 design iterations, in order to obtain

a strong local minimum. The same observations dfe the following a series of numerical examples are
made for the density approach in this paper. Starting thgsented. The material properties used for all exampées ar
optimization problems with high penalization parametegéven by Table 2. The candidate materials include glass-
will quickly force the design to a sub-optimall0solution. €Poxy (GFRP) UD material, glass-epoxy biax material
Applying a continuation scheme results in more desig&0ss-ply), and PVC H130 foam.

iterations but better solutions. The sensitivity to choice ) )
of penalization parameters for the presented approd@p!e 2: Properties of UD GFRP, biax GFRP and PVC
seems to be similar to the sensitivity observed for stand&#g30 foam material (ESAComp, 2016)

topology optimization problems using a density approach.

, i o
el ofa rect antl convergence n desion sariables b ST Units U BiaxPVC 130
9 9 9 ' PY6ung's moduluE,, [GPa] 38.024.0 0.148

fore their values are increased in the continuation ap[br,oa%

but this may yield quite many iterations. Therefore tl"§ ung's modulusts, [GPa]  9.024.0 i

hear modulu&;» [GPa] 3.6 3.6 -

values ofg are updated after a fixed number of iterationghear modulus [GPa] 3.46 3.5 i

This will be specified in the numerical examples (it ig, ~ modulu§23 (GPa] 36 35 ]

typically 10-30). If the convergence criterion applie%oisson’s ratio 13 0 3'00 1'1 0.45
12 - . . .

is fulfilled before the final continuation step, then the Densityo [kg/mP]18701870 130

parameter is increased, _s;uch that the final contmuatll%lng tensile strength, [MPa] 930 84 48
values ofg always are applied.

o . Long. compressive streng¥y [MPa] 570 260 3.0

The values used for the penalization parametein o<y tensile strengtti [MPa] 33 84 )
the continuation approach are listed in Table 1. Valugs;ney. compressive strengtiiMPa] 110 260 }
of g used for interpolation of mass, mass matrix f%-plane (12) shear streng81,[MPa] 70 60 29

eigenfrequency analysis, and stresstiss matrix applied 15ns. (13) shear streng®i; [MPa] 70 35 _
for linear buckling analysis are also given. These valuep of, 4o (23) shear streng®y; [MPa] 42 35 i}

represent a good tradéfdetween computational cost a”q_ong. tensile straify, [%] 2 450.35 324
quality of the solution obtained. The optimization probten]_ong_ compressive straie  [%] 1.51.08 203
are always initialized with equal weighting of the cand@atr, sy tensile straiey [%] 0.370.35 _
materials as the optimization procedure otherwise tylyicalr 55y, compressive straig.  [%] 1.221.08 i}
converge to a local minimum. In-plane (12) shear straipa, [%]  1.94 1.66 4.4

Transv. (13) shear straing, [%0] 194 1.0 -
Table 1: Continuation approach used for RAMP schemeransy. (23) shear straips,  [%] 1.2 1.0 R

Weight function Values off Applied for

Wi 1,4,20 Stifness matrix ) .. .

W, 0 Stresses 5.1 Fiber angle optimization of clamped
WE| 0,-0.4,-0.8 Failure indices single-layer square plate with uniform
Wi 0 Mass and mass matrix pressure

W, 1,4,20 Stress dthess matrix

The first example illustrates how fiber angle optimization of
a clamped single-layer square plate with uniform pressure
The convergence criterion of having a relative changedan be performed. This example is a standard test example
design variables less than 0.1% is applied for all exampledere symmetric fiber angle distributions are expected
In order to measure the obtained level of discretenessfaf the optimized solution, and as such it is a very
the design variables, two measures of non-discretenessgared benchmark example for testing the performance for
computed. The measure of density non-discretenesglitference material parameterizations, i.e. DMO material



patches. Manufacturability is not considered for thigatch problem which is simply parameterized too coarsely.
benchmark problem. The problem is defined by Figure Bhis optimization problem fulfills the convergence criteri
The candidate materials are GFRP UD with5°, 0°, 45°, of having a relative change in design variables less than
and 90 fiber orientations, and the objective is to minimiz6.1% after 16 iterations, even though the measure of
the maximum failure index in the plate. candidate non-discretenebk,,q is more than 96%. The
maximum failure index listed in the examples is always
computed for the (rounded)/D design. In general, the
number of iterations needed increases with the number of
design variables. This is expected for such strength ilate
optimization problems as they are much morfidlilt to
solve than compliance problems.

N NSNS SSSSSSSNSN7 77777777777 7777

Figure 5: lllustration of the clamped single-layer square:iiisiiiinyz7272772777
plate. The plate is subjected to a uniform pressure at
upper surface with a magnitude of 1 MPa. The thickness|gf/7777/7272722 3331y
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The plate is discretized with 32 x 32 9-node isopard*

metric shell finite elements, and the example is solved for (@) 2x2 DMO patches
five different DMO material patches, where the plate |
divided into 2x2, 4x4, 8x8, 16x16, and 32x32 materiak:
domains having the same fiber angle. Failure indices are
computed at the bottom and top of each layer, such that
a total number of 2,048 failure indices are computed.
is chosen to include the two largest values of each pa
in the P-norm function used for computing the aggregat
global strength measure. The number of failure criter
ng, included thereby varies for each parameterization. Thg’
penalization parameter varies according to Table 1, and
it is changed after every 10 iterations. The optimization
problem is solved using SLP using a 10% adaptive moy
limit strategy as described in Sgrensen et al. (2014). T
results obtained when failure indices are computed usip
the maximum strain failure criterion are presented in
Table 3. In order to compare the DMO solutions witk
the fiber angle distribution obtained with continuous fibe
angle optimization (CFAQO), the 32x32 parameterizatio
i.e. when fiber angles can vary within each element, is alg
solved with CFAO.

Table 3: Tabular overview of results of all parameterizadio
for the single-layered clamped plate example when usi
the maximum strain failure criterion. The maximum failur
index is for the final (rounded)/0 design. # denotes the

total number of iterations.

E%ure 6: Optimized fiber angle distributions for single-
Fayer clamped plate examples. The FE model consists of
32 x 32 9-node shell elements.

The fiber angle distributions obtained are illustrated in
Figure 6. Most of the DMO fiber angles are as expected,
except for a few angles for the 32x32 patch model. One
would expect symmetric solutions for this example as the

Parameterization Ner  maxFl Mgg [%] #lIt

2 x 2 DMO patches 8 0.682 96.15 16

g X g Bmg patcﬂes igs gggg 83?) 46 four candidate angles have equal weighting initially, bug d

162( 16 DM}:())atc tef] 512 0‘ 044 O. 02 88 to the non-convexity of the problem a few angles converge
32 i 32 DMO Egtghgz 2048 0'235 0'07 152to a local minimum. This is also demonstrated for the
Elementwise CFAO 2048 0167 - 93 solution obtained using continuous fiber angles. The initia

fiber angles areQ and the solution obtained is definitely a

local minimum. However, due to the larger design freedom
From Table 3 it is seen that most of the discretizatiomgth continuous fiber angles, the maximum failure index is

converge to a A solution, except for the 2 x 2 DMOIlower than for the DMO solution. The distribution of failure
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indices for the bottom of the optimized plates is shown in lteration History for 16x16 DMO paiches
Figure 7. The fiber angle distributions in the corners of 14[ ‘ ‘ ‘ ‘
the plate are dierent from the classical analytical grillage

solutions obtained in Rozvany (1972). Thidtdience is x !
expected to be due to the assumptions in the analyticgl 1}
grillage theory. The fiber angle distributions in the comer §
of the plate are similar, if the objective is to minimize &
compliance, whereas ftierences are seen in many other,g 0.6}

Objective: Failure Index —

0.8+

(S}
parts of the plate. L o4
(e}
0.2
Max Strain T Max Strain
Fl i Fl
Bottom jant Bottom 0 L L L L
m 0682 m 0292 0 20 40 .60 80 100
Rt R Design iterations
| o 402 | o175
‘ B 5% R B o L . . .
g gz 3 007 Figure 8: Iteration history for 16x16 DMO patch model
when using the maximum strain failure index
(a) 2x2 DMO patches (b) 4x4 DMO patches _Tab_le 4: Tabular overview of DMO results of all parameter-
izations for the single-layered clamped plate example when
b strain wesran USING the maximum stress failure criterion.

Bottom

Parameterization Nrr  maxFl Mg [96] #It

2 x 2 DMO patches 8 0.778 96.11 20

gt 4x4DMO patches 32  0.327 0.00 30
8 x 8 DMO patches 128 0.343 0.02 45
(c) 8x8 DMO patches 16 x 16 DMO patches 512 0.305 0.02 65
- e e S o sran 32X 32 DMO patches 2048 0.277  0.03 131
B i Hig e R e S
Boue B o1 These examples have also been solved using the general-
‘ oo 088 ized SIMP scheme with a lower limit of 1&on the design
i i ' variables, and the results and performance are quite simila
to the above results obtained with generalized RAMP.

(e) 32 x 32 DMO patches (f) Continuous angles

_ _ o _ 5.2 Five-layer cantilever beam
Figure 7: Maximum strain failure index at bottom of
optimized Sing|e_|ayer C|amped p|ates' The remaining examples illustrate the performance of the

DMTO approach, i.e. simultaneous determination of
A typical iteration history is shown in Figure 8 forthickness variation and material distribution. The first

the model with 16x16 DMO patches. The change 8f<amplg is another beljchmark examp!e asthe solution.f,.can
penalization power after iteration 10 and 20 is seen Qg verlfled.by exhaustl_ve search. Again, manufacturability
cause a large increase in the failure index value, but d10t considered for this benchmark problem. The example
optimization algorithm converges to a distinct choice & defined in Figure 9.
fiber angles.

Next the same example is solved using the maximum
stress failure criterion in order to document that bothistra
and stress based failure criteria can be applied. The gesult
are shown in Table 4. In general, the results are very
similar to the results obtained using the maximum strain
failure criterion, except for the 8x8 patch parameterati
that ends in a local minimum. For other choices of move
limits, this problem can converge to the same fiber angle
solution as shown in Figure 6 which again illustrates the %
non-convexity of the optimization problem. The sensijivit
to move limit values for the SLP algorithm is similar to the
sensitivity seen for other topology optimization problem&igure 9: Five-layer cantilever beam subjected to Iéad
The move limits have to be ficiently small, such that the= 10 N and discretized by five 9-node shell elements. Ply
linear approximations applied arefoiently accurate. The thicknesg is 0.001 m.
number of iterations used is more or less the same for both
criteria. The objective is to minimize the maximum failure index
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of the five-layer GFRP cantilever beam, subject to the magslds exterior ply drops which in general should be
constraint that 185 of the domain can be occupied bwvoided when designing varying thickness laminates, see
material. Again the candidate materials are GFRP UWbg. Cairnsetal. (1999) and Mukherjee and Varughese
oriented at-45 , 0°, 45°, and 90, but now the same (2001). However, it is outside the scope of this paper
material should be selected for each layer, i.e. only ote present DMTO parameterizations aimed at generating
material patch is defined. The thickness can vary for eachimterior ply drops, as the main objective is to present the
the five geometry domains (here equal to the finite elemémtlusion of strength criteria in existing DMO and DMTO
discretization), however, slope constrains are addeddo gfarameterizations.
problem in order to limit the thickness changes. These slope
constraints specify that the thickness can only increase@_g Corner hinged eight-layer plate
one layer between the geometry domains. Details about the
linear inequalities used for specifying slope constraiats Next a corner hinged eight-layer GFRP plate is considered.
be found in Sgrensen and Lund (2013) and Sgrensen et al.
(2014). The bottom layer must always exist, i.e. it
has full density. The two largest failure indices of each°%
geometry domain are included in the computation of the
P-norm global failure index, such that 10 failure indices are .
included in total. -
The result of the optimization is seen in Figure 10
(a) where layer thicknesses are scaled by a factor of 20.
The problem is also solved with the additional constraint
that no identical contiguous plies are allowed. This is
a manufacturing rule used in many cases in order to
avoid a number of layers with the same fiber angle, as
this may result in a larger build-up of transverse stresdeigure 11: Corner hinged eight-layer plate. Ply thicknsss i
causing delamination. The formulation of such line&.001 m.
inequality constraints for specifying limits on contigsou
plies can also be found in Sgrensen and Lund (2013) and he objective is to minimize the maximum failure index
Sarensen et al. (2014). The result of this case is showrofithe eight-layer GFRP plate, subject to the mass constrain
Figure 10 (b). In both cases the starting design has fthht half of the domain can be filled with material. The
density of all layers, i.e. the starting point is infeasjblé&ottom layer must exist, i.e. it has full density, and the
and the optimization problem is solved using the SliAaterial choice should be the same for each layer in order to
approach described in Sgrensen and Lund (2013) with 18%se manufacturability. It should be noted that the DMTO
move limits. As in the previous example, the penalizatigrarameterization applied results in exterior ply dropsigivh
parameteq varies according to Table 1 and is changed aftier general should be avoided due to risk of delamination.
every 10 iterations. Thus, an improved DMTO parameterization would be
useful, if the optimized design should directly be ready for

pngl o5 manufacturing. Hoyvgver, the mqin ain_1 of thi_s paper is to
‘ B o docqment the pOSS!bIlIty of including failure criteria fitre
\ multi-material density approach, and the development of an
(2) DMTO design with ply drop constraint improved DMTO parameterization is left for future work.
As in the previous examples the candidate materials are
Angl es GFRP UD with-45°, 0°, 45°, and 90 fiber orientations,
E 615 and for the thickness parameterization 24x24 geometry
[].45 domains are defined. The plate is discretized with a 48 x
(b) DMTO design with ply drop constraint and no identical 48 mesh of 9-node shell elements, such that each geometry
contiguous plies allowed domain consists of 2x2 elements. Four contiguous identical

) o i . .. layers are allowed, and slope constraints are specified,
Figure 10: Optimized fiber angle and thickness distribwgiog,,cn, that the layer thickness can only change by one layer
for five-layer cantilever beam example. The thicknesses g¢&yeen geometry domains. In total the problem has 36,864
scaled by a factor of 20. potential failure indices computed using the maximum

strain criterion and 1,041 design variables. Failure ieslic

The solutions are found after 31 and 52 iterationsxceeding 50% of the largest failure index in a given
respectively, and in both cases full convergence is obdiainigeration are included in the computation of tRenorm
i.e. Mgng = Mcng = 0.0%. The two solutions shown agregylobal failure index, taking the conditions into accouratth
with the global integer optimum determined by exhaustivg least 300 values and at most 1000 failure index values are
search. For the second case, ##5° and-45° candidate included.
angles are equally good to select due to symmetry, so thégain all layers have full density for the initial design,
material choice for layer 2 and 4 can be interchanged wabch that the starting point is infeasible. The penalizatio
the same result for the computed failure index. parameterg varies according to Table 1 and is changed

It should be noted that the DMTO parameterizaticaiter every 30 iterations. A 10% move limit is applied.
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The problem needs 58 iterations before the convergelid Multi-criteria optimization of main spar
criterion is fulfiled. The choice of material is distinct, from wind turbine blade

i.e. Mg = 0.0%, while the measure of density non-

discreteness iMgng = 3.1%. The mass constraint is activd he final study is related to a complex multi-criteria
for the optimized design, and with the parameterizati@®timization example of designing a simplified main spar
applied combined with the value of the mass constraintfrem a wind turbine blade. It was studied in detail for
couple of geometry domains do not obtain a distinct numt8e DMTO formulation in Sgrensen et al. (2014), and here
of layers. Results are shown for a round¢tl Gesign. In the example is extended with the inclusion of strength
this case the mass constraint is accidently still fulfilled fconstraints. It is outside the scope of this paper to describ

the rounded design, but this is in general not the case udiig example in detail, as it is mainly included in order
simple rounding. to demonstrate the behaviour of the optimization process

The choice of fiber angle and thickness distribution of tf\{\éhen many dferent structural criteria are included.

final design is illustrated using a solid model in Figure 12
where thicknesses are scaled by a factor of 20.
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Figure 12: Optimized design of corner hinged eight-layer
plate: Figure 14: Simplified model of main spar from wind turbine
The solution resembles a cross ply laminate with varyir?gljade'
thickness, except that 9Bas been selected for both layer 7 The geometry of the 25 m simplified main spar is shown

and 8. A slight asymmetry is introduced which is expected cjo re 14. The model is clamped at the circular root end

to be due to the mass constraint. Note that the layup,igy the applied loads resemble the most critical extreme
symmetric, except for the fiber angle chosen for the sm pwise bending situation, happening in a so-called 50

amount of material in the upper layer 8. Thus, even thougil, . st scenario. The loads are taken from experimental

a symmetric layup is not enforced by the parameterizatiqQgts “of the real wind turbine blade and are applied as
the optimization approach yields such a layup with higQ igyinuted load, corresponding to a resulting load of
performance. 164.7 kN, see details in Overgaard et al. (2010). The finite
element model consists of 7,168 9-node shell elements with
v Strain 20 layers everywhere. The inner geometry of the main spar
F""'”;i;::f;m is used as reference, and ply thickness of each of the 20
renecor  lAyersis 0.0025 m, resulting in a maximum total laminate
2use0r thickness of 0.05 m. A total number of 448 patches are
e applied for parameterization of both material and thicknes
s meoe  SiX different candidate materials commonly applied in the
s.oe0e004  WiNd turbine industry are defined. The first four candidates
represent GFRP UD plies withd5°, 0°, 45°, and 90 fiber
orientations relative to the axial direction of the mainrspa
Figure 13: Failure index distribution for optimized desighhe Sth candidate represents a GRFP biax ply and the last
of corner hinged eight-layer plate. candidate represents a lightweight isotropic foam madteria
such that a sandwich structure is a possible outcome of
the optimization problem. The problem thereby involves
The maximum strain failure index of the final design 62,720 design variables.
illustrated in Figure 13, again using a solid model where The objective is to minimize mass while fulfilling a
thicknesses are scaled by a factor of 20. A quite uniformumber of structural constraints. The lowest linear bungkli
distribution of the failure indices is seen, taking into@aet load factor must be 3 and the lowest eigenfrequency must
that the same fiber angle must be chosen for each layer.be > 1 Hz. For both eigenvalue criteria the five lowest
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values are included in the optimization problem. The tihe dficiency of the approach. This includes minimiza-
displacement must be 1 m and the failure indices must beion of the maximum failure index in single- and multi-
< 1. The total number of failure indices is 286,720 failurayer plate examples, and a challenging example of mass
indices which are reduced to 448 constraints ustrgorm  minimization of a main spar from a wind turbine blade,
functions, each consisting of the 10 largest failure indéxking strength, buckling load factors, eigenfrequenay an
values within each patch. Finally, a maximum number dfsplacement constraints into account.
8 consecutive identical layers are allowed, and ply dropThe DMTO parameterization applied results in exterior
constraints enforce that thickness changes between gatgie drops, that produce internal and local stress concen-
is limited to the thickness of one layer. trations not captured by the shell finite elements applied
The problem is solved with 10% move limits and thas a consequence of geometric discontinuities and shear
g values are updated according to Table 1 for every B@. Factors that féect the performance of laminated
iterations. The iteration history is given by Figure 15. Theomposite structures with ply drops include thicknesslys, p
convergence criterion is fulfilled after 87 iterations, e stacking sequences, ply drop geometries and manufacturing
the measure of candidate non-discretenebig = 0.13% considerations, and a continuation of the work presented

and the measure of density non-discretenesbisy = in this paper would be to develop an improved DMTO
0.20%. Thus, the optimized solution is very close to a puparameterization that can generate interior ply drops with
0/1 design. improved strength performance. The DMTO approach is

The lowest linear buckling load factor is 3.02, the tiptill a tool to be applied in the conceptual design phase
displacement is 1.00 m, and the maximum failure ind@é postprocessing is needed for the final manufacturable
is 0.99, i.e. these three constraints are at or very closel@sign.
their allowable values. The lowest eigenfrequency is 3.38
Hz and it is never active during the optimization process.

The structural criteria are conflicting in the sense, that tha‘CknOWIedgementS

buckling load factor will be increased by having sever
layers at the top and bottom of the main spar witty°, 45,
and 90 fiber orientations, whereas thé fiber angle (axial
direction) will be the main preferred choice for the oth
structural criteria. Thus, the distribution of fiber angéesl
thicknesses is a tradfdetween conflicting criteria, and
it is quite similar to the design presented in Sgrensen et al.

(2014), except that the mass is increased by approximaﬁ)eferences
100 kg to 1273 kg when failure criteria are included in the

and thicknesses of the 448 design domains with up to 2Q2017). Giga-voxel computational morphogenesis for
layers is not shown here due to the similarities with the gtryctural designNature 550(7674), 84—86.

design presented in detail in Sgrensen et al. (2014).

The iteration history given by Figure 15 illustrates hof@endsge, M. P. (1989). Optimal shape design as a material
the failure criterion constraint increases significantlyanw  distribution problemSructural Optimization 1(4), 193—
the q penalization parameter is changed after 30 iterations203.

Subsequently, the mass is increased in order to Obtaiglgsques J. P. and M. Stolpe (2012). Multi-material
feasible solution, and most of the design variables hav opolog’y c.)pti.mization. of laminated éomposite beam

converged af_ter 6 0 iterations when tlnp_parameter 'S cross sections. Composiste Sructures 94(11), 3278
changed to its final value. This multi-criteria design 3289

optimization problem illustrates that failure criterianche
successfully included in complicated laminated composioomfield, M. W., C. G. Diaconu, and P. M. Weaver (2009,
design problems with conflicting structural criteria. apr). On feasible regions of lamination parameters for
lay-up optimization of laminated compositeBroceed-
. ings of the Royal Society A: Mathematical, Physical and
6 Conclusions Engineering Science 465(2104), 1123-1143.
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