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Abstract—The dual-loop control strategy in hybrid reference 

frame (HRF) for single-phase voltage source inverters (VSIs) in 
islanded operation mode is studied, which applies a capacitor 
voltage shaping loop in the synchronous reference frame (SRF) 
and a capacitor current shaping loop in the stationary reference 
frame (HRF-based v+ic control strategy). This strategy is able to 
achieve the purpose of active damping, fast dynamic response and 
zero reference tracking error. However, due to the inherent 
characteristics of SRF-based voltage loop and the digital control 
delay, the performance of the system is degraded and the control 
parameter design of HRF-based v+ic control strategy shows great 
difficulties. To overcome these shortcomings, in this paper, a 
systematic parameter design guideline for HRF-based v+ic control 
strategy is proposed to ensure the system stability and optimize 
the performance of the system under control delay condition. The 
mathematic model of the HRF-based v+ic control strategy is 
established with the consideration of control delay in this paper. 
Based on this model, a satisfactory region of the system stability 
indexes can be obtained by stability specifications of the system 
and the optimal control parameters can be calculated according to 
the stability indexes selected from the satisfactory region. By 
using this method, the system stability and robustness can be 
guaranteed. Finally, the experimental results are presented to 
validate the effectiveness of the presented optimal control 
parameter design methodologies. 
 

Index Terms—Control delay, single-phase inverter, hybrid 
reference frame, islanded mode, parameter design guideline. 
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HRF Hybrid reference frame. 
VSI Voltage source inverter. 
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SRF Synchronous reference frame. 
DG Distributed generation. 
PWM Pulse-width modulation. 
PR Proportional resonant. 

SRF-PI Synchronous reference frame proportional 
integral. 

OSG Orthogonal signal generation. 
PM Phase margin. 
GM Gain margin. 
MOSFET Metal-oxide field effect transistor. 
APF      All-pass filter. 
FFT Fast Fourier transformation. 
THD Total harmonic distortion. 
Variables 
iL   Inductor current. 
ic Capacitor current. 
i0 Output current. 
v Output voltage. 
vc Capacitor voltage. 
vα, vβ Voltage components in αβ-axis. 
vd, vq Voltage components in dq-axis. 
Vdc Voltage at dc-side of the VSI. 
Vinv Voltage at ac-side of the VSI. 
Parameters 
ωf Fundamental frequency. 
L Output inductor of inverter. 
rL Series resistance of the inductor 
C Capacitor of the LC filter. 
R Load resistance. 
v* 

d , v* 
q  Rated voltage in dq-axis. 

i* 
c, d, i* 

c, q Rated capacitor current in dq-axis. 
fs Sampling frequency. 
Vtri Amplitude of the triangular carrier signal. 
fg Crossover frequency at -180°. 
fc Crossover frequency at 0 dB. 
Kp, Ki Parameters of the PI controller. 
K Proportional value of the current controller. 
 

I. INTRODUCTION 
istributed generation (DG) systems, such as photovoltaic 
and wind power systems, are attracting increasing interest 

due to the high requirement of reliability and low loss of 
transmission and distribution networks in recent years. With the 
rapid development of the application of DGs, the power 
electronic inverters are being widely utilized to overcome the 
difficulties such as controlling the voltage amplitude and 
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frequency with a fast dynamic response and zero steady-state 
errors [1-4]. For the single-phase inverters, the full-bridge pulse 
width modulation (PWM) inverter, whose major requirement 
of its control system is to control the voltage to achieve the 
steady state with zero steady-state error and a fast dynamic 
response, is widely used either in grid-connected or islanded 
mode voltage regulators in the distributed power systems [5].  

To regulate the system voltage of the single-phase inverters 
in islanded mode, various control strategies have been proposed 
in recent literatures [6]-[31]. In [6]-[9], the deadbeat control is 
suggested to control the load voltage parameters such as the 
amplitude and frequency. For its simplicity in implementation 
and wide control bandwidth, deadbeat control is widely used in 
the PWM inverters. However, the parametric sensitivity, which 
exists in the system due to the high-order plant controlled by the 
deadbeat controller, can reduce the system stability margin. In 
[10]-[16], the repetitive control is presented, which shows an 
excellent control performance for periodic signals. This feature 
makes it very effective for suppressing the harmonics and 
emulating various scenarios of power grids. However, the 
low-accuracy tracking performance, slow transient response 
and poor rejection of the aperiodic disturbances are the main 
limitations of the typical repetitive controller. The discrete-time 
sliding-mode is suggested as another control strategy to ensure 
the output voltage quality in [17]-[21]. The interesting feature 
of the discrete-time sliding-mode control is its robustness, fast 
transient response and simple digital implementation. 
Moreover, it is able to provide a direct control without any 
modulation schemes. Despite the aforementioned advantages, 
this technique suffers from some drawbacks, including the 
so-called chattering phenomenon resulted from the actuator 
limitations or time discretization, which can deteriorate the 
control accuracy and performance of the system. [20], [21].  

The proportional-resonant (PR) control method is popular 
for the single-phase inverters thanks to the ability to eliminate 
the tracking error while regulating the AC signals [22], [23]. 
When tracking a sinusoidal reference, this control strategy does 
not require decoupling structures and it is able to ensure the 
system with zero steady-state error at a frequency even with the 
variations of the circuit parameters [24], [25]. However, the 
poor dynamic performance and the requirement of the very 
high switching frequency limit the application of this technique 
[26], [27]. To overcome these drawbacks, the synchronous 
reference frame proportional-integral (SRF-PI) controller, 
which is a well-developed technique in three-phase PWM 
converters, is taken into consideration for the single-phase 
inverters. In [28], [29], incorporating the SRF-PI controller into 
the single-phase PWM inverters is proposed, which provides 
the zero steady-state error through the conventional PI 
controller in synchronous reference frame. For this controller, 
two orthogonal signals are generated by the orthogonal signal 
generation (OSG) techniques with respect to the fundamental 
frequency of the single-phase signal and then transformed into 
the synchronous reference frame. A conventional PI regulator, 
which is followed by the coordinate transformation, regulates 
the synchronous reference frame signals to ensure a zero 
steady-state error and then, the signals are transformed back to 

the stationary frame by an inverse Park’s transformation [30], 
[31]. 

Employing a single-loop instantaneous voltage feedback 
control is probably the simplest way to regulate the inverter 
output voltage with zero steady-state error. However, in the 
industrial applications, a typical LC filter, which is usually 
incorporated into the PWM converter to suppress the harmonic 
contents of the output voltage from the inverter, may introduce 
a resonance peak and reduce the stability margin of the PWM 
inverters. To solve this problem, in renewable energy system 
applications, dual-loop control strategies are introduced into 
the inverters [32]. For these strategies, the inner loops, which 
are usually the current loops, use the current of the filter 
inductor or capacitor current as the feedback signal to damp the 
resonance peak of LC filter, and outer loops, which are 
normally the voltage loops, use the filter capacitor voltage as 
the reference signal to regulate the output voltage [33].  

In [34], a dual-loop control strategy based on the hybrid 
reference frame is proposed, which adopts a capacitor voltage 
shaping loop with the SRF-PI controller and a capacitor current 
shaping loop in the stationary reference frame (here named 
HRF-based v+ic control strategy). This control strategy is able 
to achieve the steady-state with zero steady-state error and 
actively damp the resonance peak of the LC filter. However, the 
control parameter design method of the HRF-based v+ic control 
strategy is not comprehensive in [34] since it neglects the 
impact of control delay, which is mainly brought by the 
computation and pulse width modulated (PWM) delays [35]. It 
has been reported that the control delay cannot be ignored 
because it reduces the system phase margin and influences the 
system minimum phase properties [36], [37]. In [38], a 
systematic parameter design with control delay consideration 
for v+ic control strategy is proposed, but the voltage loop 
applies the PR controller in the stationary frame instead of 
SRF-PI controller. In [39], a parameter design guideline of the 
control strategy working on the SRF is suggested while taking 
into account the control delay. Nevertheless, as for SRF-based 
voltage control and the parameter design of the HRF-based v+ic 
control strategy under the impact of the control delay has not 
been fully addressed in the existing literatures. 

This paper aims to provide a systematic parameter design 
guideline for the single-phase inverters using HRF-based v+ic 
control strategy with consideration of control delay. The main 
contributions of this paper are summarized as follows: 

1) This paper presents the dual-loop control strategy in the 
hybrid reference frame for stand-alone single-phase inverters, 
which applies a capacitor voltage control loop in synchronous 
reference frame and a capacitor current shaping loop in the 
stationary reference frame. The mathematic model of the single 
-phase inverter with this strategy is established under control 
delay scenario. 

2) A systematic method for designing SRF-PI controller and 
current controller is proposed for the HRF-based v+ic control 
strategy with consideration of the control delay. This method 
designs a satisfactory region, which is specified by the phase 
margin (PM) from 30° to 60° and the gain margin (GM) greater 
than 3 dB with the consideration of control delay of 150 µs. 
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With this predefined region, the control parameters of the 
SRF-PI controller and the current controller can be easily 
obtained, and it is more convenient and explicit to optimize the 
system performance according to the satisfactory region.  

3) Implementation of the HRF-based v+ic control strategy 
with the designed control parameters on a single-phase inverter 
system has been presented to validate the effectiveness of the 
proposed parameter design methodologies. 

This paper is organized as follows. In Section II, the control 
structure of the single-phase inverters with HRF-based v+ic 
control strategy and the equivalent model of the SRF-PI 
controller in the stationary reference frame are presented. The 
mathematic model of the HRF-based v+ic control strategy is 
established as well. In Section III, a systematic parameter 
design guideline for the standalone single-phase inverters using 
HRF-based v+ic control strategy with consideration of control 
delay is proposed, which is conducted by specifying the 
satisfactory region of the stability indexes according to the 
stability margin. In Section IV, the experimental results are 
presented to validate the effectiveness of the proposed design 
approach. Finally, Section V concludes this paper. 

II. CONTROL STRUCTURE OF THE SINGLE-PHASE INVERTERS 

A. Control Structure of the Single-Phase Inverter with the 
HRF-based v+ic Control Strategy 

Fig. 1 illustrates the control structure of the single-phase 
inverter using the HRF-based v+ic control strategy operated in 
the islanded mode. As shown in Fig. 1, for the power circuit of 
the single-phase inverter, an insulated-gate bipolar transistor 
(IGBT) full-bridge configuration, followed by an LC filter, is 
set as a VSI to produce PWM sinusoidal voltage Vinv. A linear 
load is in parallel with the capacitor. In the power circuit of the 
single-phase inverter, rL denotes the series resistance of the 
inductor, il denotes the inductor current, ic denotes the capacitor 
current, i0 denotes the load current and vc denotes the capacitor 
voltage of the LC filter.  

Single-phase inverter

S3 S4

S1 S2

Vdc

L
Vinv

il i0

ic

+
- C Load

K
+

v

vαvβ

qvdv
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qv

*
dv*

,c di

+-

PWM modulator

APF

αβ dq
PI

PI

αβ

dq

vc

*
,c qi

*
,ci α +

-

-

÷
×

HRF-based v+ic control strategy

Voltage loop in the 
synchronous reference frame 

Current loop in the 
stationary reference frame 

rL

 
Fig. 1.  The control structure of the single-phase inverter using the HRF-based 
v+ic control strategy [34]. 
 

Meanwhile, the HRF-based v+ic control strategy for the 
full-bridge single-phase inverter is presented in Fig. 1 as well, 
which includes an SRF-PI voltage controller to regulate the 
output voltage and a capacitor current loop in the stationary 
reference frame to provide active damping and fast dynamic 
response [34]. As shown in Fig. 1, it can be observed that the 

capacitor voltage and its orthogonal signal are transformed into 
synchronous frame by using Park transformation, which is 
followed by a PI controller. It should be mentioned that, the 
orthogonal signal is generated by an all-pass filter (APF), 
which causes a 90° phase delay at the fundamental frequency ωf 
and has unity-gain magnitude for all frequency ω with respect 
to the capacitor voltage [40]. This technique is easy to achieve 
and the structure of a first-order APF is illustrated in Fig. 2. 

∫ 2
+

−

+
−

fω
v vα= vβ

 
Fig. 2.  The structure of a first-order APF [34]. 
 

Since only α-axis quantities belong to the real system, the 
α-axis signal is fed forward to shape the voltage loop and at the 
same time, as the reference signal of the inner current loop 
when the HRF-based v+ic control strategy is conducted. It 
should be noted that the capacitor current (ic) is selected as the 
feedback signal of the inner current loop. And the controller of 
the inner current loop is a proportional controller instead of a PI 
controller, which is popular in current feedback control [41]. 
By applying a proportional controller, the phase delay problem 
can be easily solved compared to the PI controller and it is able 
to accelerate the dynamic response of the system. 

B. Analysis of the SRF-PI Controller 
Since the voltage loop works in the synchronous reference 

frame, which blocks the analysis of the whole closed-loop 
system and the appropriate design of the control parameters, it 
is essential to establish an equivalent model of the SRF-PI 
controller in the stationary frame. In [34], the stationary 
reference frame equivalent of the SRF-PI controller is derived 
by Monfared et al, which gives a better insight on the 
single-phase inverter using the HRF-based v+ic control strategy 
and has a significant effect on parameter design and stability 
analysis of the system. 

vα
vβ

αβ
qv
dv

αβ
( )       0

    0      ( )
PI

PI

G s
G s

⎡ ⎤
⎢ ⎥
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*
di
*
qi

*iα
*iβdq

dq

 
Fig. 3.  The block diagram of the SRF-PI controller [34]. 
 

The block diagram of the SRF-PI controller is shown in Fig. 
3, where the GPI(s) denotes the transfer function of the PI 
controller, that is, GPI(s)=Kp+Ki/s. With two inputs and two 
outputs, which are both in the stationary reference frame, the 
equivalent of the structure shown in Fig. 3 can be written in 
time-domain as [34]: 

 

*

*

cos( )  sin( )( )
sin( )    cos( )( )

cos( )      sin( ) ( )( )       0
*

( )    0      ( ) sin( )    cos( )

f f

f f

f fPI

PI f f

t ti t
t ti t

t t v tG t
v tG t t t

α

β

α

β

ω ω
ω ω

ω ω
ω ω
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=⎢ ⎥ ⎢ ⎥
⎢ ⎥⎢ ⎥ ⎣ ⎦⎣ ⎦

⎧ ⎫⎧ ⎫⎡ ⎤ ⎡ ⎤⎡ ⎤⎪ ⎪ ⎪⎪
⎢ ⎥⎨ ⎨ ⎬⎬⎢ ⎥⎢ ⎥ −⎢ ⎥⎣ ⎦ ⎪ ⎪⎣ ⎦⎪ ⎪⎣ ⎦⎩ ⎭⎩ ⎭

  (1) 

where * denotes the convolution. 
Taking the Laplace transform from both sides of (1) and 

substituting the transfer function of PI controller yield [34]: 
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3 2
* 3 2 1 0

3 2 2 3( ) ( ) ( ) ( )
f f f

a s a s a s ai s v s H s v s
s s sα α αω ω ω

+ + += =
+ + +

     (2) 

where 
3 2

2 3 2
1 02

P P f i

P f f i P f f i

a K a K K

a K K a K K

ω

ω ω ω ω

= = +⎧⎪
⎨

= + = −⎪⎩

，

，
         (3) 

Hence, the H(s) is the transfer function of the SRF-PI 
controller in the stationary reference frame, which has a 
significant influence on facilitating the analysis of the whole 
system and designing the control parameters of the inverter. 

C. Mathematic Model of the HRF-based v+ic Control Strategy 

i0
v

ic
+- H(s) 1/Vdc KPWM +- +

-

v

il
+- K

ic
Inner current loop

1
sC

1

LLs r+
v

v*
*
ci

GD(s)

 
Fig. 4.  Control scheme of the HRF-based v+ic control strategy in the stationary 
reference frame. 
 

Fig. 4 illustrates the control scheme of the HRF-based v+ic 
control strategy in the stationary reference frame. Kpwm is the 
transfer function of PWM inverter, which is defined as Vdc/Vtri, 
where Vdc is the amplitude of the input dc voltage and Vtri is the 
amplitude of the triangular carrier signal [42]. GD(s) denotes the 
transfer function of the control delay for this system, which can 
be expressed as dT se− ⋅ with Td=1.5/fs and fs=10 kHz [38]. 
Generally, the form of the GD(s) has three approximations, and 
to acquire a high bandwidth for the inverter in islanded mode, 
the approximation shown as (4) is preferred [38]. 

1
2( )

1
2

d

d

T s
D

d

T s
G s e

T s

− ⋅
−

= =
+

        (4) 

Assuming that the linear load resistance is R and the i0 in the 
block diagram of Fig. 4 can be expressed as: 

0 /i v R=           (5) 
In addition, according to [35], the amplitude of the triangular 

carrier signal Vtri is set as 1 pu. Hence, combining with (5) and 
Kpwm= Vdc/Vtri, the closed-loop transfer function of the inner 
current loop can be written as: 

* 2

2

1/
( )

              

dc pwm Dc
i

c D L L

D

D L L

K V K G RCsi
G s

i LRCs KG RCs r RCs Ls r R
KG RCs

LRCs KG RCs r RCs Ls r R

⋅ ⋅
= =

+ + + + +

=
+ + + + +

    (6) 

Hence, the block diagram of the HRF-based v+ic control 
strategy can be simplified as Fig. 5. 

v
+- H(s)

v

( )iG s
v* 1

sC

 
Fig.5.  The block diagram of the HRF-based v+ic control strategy. 
 

From Fig. 5, the open-loop transfer function of the block 
diagram of the HRF-based v+ic control strategy can be 
expressed as: 

2( ) ( ) D
open

D L L

K G RG s H s
LRCs KG RCs r RCs Ls r R

⋅ ⋅
= ⋅

+ + + + +
 (7) 

With the above analysis, it is evident that the design of the 
control parameters is of vital significance to ensure the stability 
and optimal performance of the standalone inverter system. 

III. PROPOSED PARAMETER DESIGN GUIDELINES 
Since no parameter design guideline has been proposed for 

the single-phase inverters with HRF-based v+ic control strategy 
under control delay consideration, in this section, the design 
method of the control parameters is presented in detail. The 
presented approach is conducted by specifying the available 
region of the stability indexes, which is obtained according to 
the constraint of stability margin. With the particular region, the 
satisfactory stability indexes can be determined and the control 
parameters can be calculated with the selected stability indexes. 

Fig. 6 illustrates the bode diagram of H(s) for different values 
of Ki with Kp=1. It can be observed that the value of Ki has no 
influence on the magnitude and phase frequency properties of 
the H(s) at the high frequency range. Since the stability margins, 
corresponding to the phase margin (PM) and the gain margin 
(GM), are both defined at the high frequencies, the Ki can be 
selected as zero to simplify the H(s), which yields: 

( ) pH s K≈           (8) 
Hence, the open loop transfer function of the HRF-based v+ic 

control strategy can be simplified as: 

2( ) p D
open

D L L

K K G R
G s

LRCs KG RCs r RCs Ls r R
⋅ ⋅ ⋅

=
+ + + + +

    (9) 
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Fig.6.  The bode diagram of the H(s) with different values of Ki. 
 

When designing a stable system, the phase should be above 
-180° when the magnitude curve across 0 dB at the crossover 
frequency fc on the bode diagram to ensure PM>0, and the 
magnitude should be below 0 dB when the phase curve across 
-180° at the frequency fg on the bode diagram to ensure GM>0 
[35]. The expressions of the PM and GM can be written as [35]: 

2180 arctan ( )
copen fPM G j ω πω == ° + ∠    (10) 

220lg | ( ) |
gopen fGM G j ω πω == −        (11) 

Substituting s=jω into (9) yields: 
1

2 3

(1 )
( ) p

open

K KR jA
G j

A jA
ω

−
=

+
      (12) 
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where the parameters A1, A2 and A3 are denoted as: 

1 2
dTA ω=           (13) 

2 2 2 2
2 2 2 2

d d d
L L

T T T
A r R LRC KRC r RC Lω ω ω ω= + − + − −  

(14) 
3

3 2 2 2
d d d

L L
T T T

A KRC r RC L r R LRCω ω ω ω ω ω= + + + + − (15) 
Hence, the phase angle and the magnitude of the open-loop 

transfer function can be expressed as: 
1 2 3

1 3 2

( ) arctanopen
A A A

G j
A A A

ω +
∠ =

−
        (16) 

      
2
1
2 2
2 3

1
( )open p

AG j K KR
A A

ω +
=

+
     (17) 

Since the phase curve cross -180° at fg, it can be obtained that 
( )1 2 3 2

0
gf

A A A
ω π=

+ =           (18) 

Therefore, according to (18) and combining with (13), (14) 
and (15), the parameter K can be calculated as: 

2
1

2 2 2

( )d L L g

d g

L T r R CRr B f
K

CR CRT fπ
− − + − +

=
+

    (19) 

where the variable B1 is denoted as: 
2 2 2 2 2

1 4L d d dB r CRT T L CLRTπ π π= + +      (20) 
From (19), it can be inferred that the K is proportional to fg, 

which means that once the appropriate fg is selected, the control 
parameter K can be easily determined. 

TABLE I 
PARAMETERS OF THE INVERTER 

Symbol Values 
DC Link Voltage (Vdc) 50V 
Sampling and switching period(Ts) 100µs 
Fundamental frequency (ω0) 100π rad/s 
Filter Inductance (L) 4000µH 
Filter Capacitance (C) 2.2µF 
ESR of the Inductor (rL) 0.1Ω 
Control delay (Td) 150µs 

 
Using the parameters listed in TABLE I, substituting (16) 

and (19) into (10), the relationship among the PM, fc and fg can 
be obtained, which is illustrated in Fig. 7. In industrial 
application, the PM is preferred to be 30°~60° to achieve a 
good tradeoff between the system dynamic response and the 
requirement of a strong robustness. According to this, when 
considering the control delay, which is 150 µs in this paper, the 
available region constrained by PM=30° and PM=60° can be 
specified as the shadowed area shown in Fig. 7.  

Similarly, at the crossover frequency fc, the magnitude of the 
system can be written as 

2| ( ) | 1
copen s j fG s π= =          (21) 

Substituting (21) into (17), it can be obtained that: 
2 2
1 2

2 2 2 1
p

d c

D D
K

KR Tπ ω

+
=

+
       (22) 

where the parameters D1 and D2 are denoted as: 
3 3

1 [2 ( ) 2 ( ) ] 4L d L c d cD L r R T r K CR f CLRT fπ π π π= + + + + −  
(23) 

2 2 2 2 2 2
2 2 4 2 ( )L d c c L d cD r R T Lf CLRf K r CRT fπ π π= + − − + −  

(24) 
From (22), it can be concluded that the Kp is related to K and 

fc. Hence, once the appropriate K and fc are selected, the control 
parameter Kp can be determined. 

Substituting (17), (19) and (22) into (11), the relationship 
among the GM, fc and fg can be obtained, which is illustrated in 
Fig. 8 to give a straightforward view. To ensure the stability of 
the system, the satisfactory region about GM is constrained by 
GM=3 dB. 

In Fig. 8, the satisfactory region constrained by GM≥3 dB 
with control delay consideration is shown by the shadowed area, 
which is convenient to select the optimal fc and fg. 
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Fig. 7.  The relationship of fc, fg and PM. 

500
1000

1500
2000 1000

1500

2000

2500

-20

-15

-10

-5

0

5

10

 

fg(Hz)

fc(Hz)

 

-15

-10

-5

0

5

10

5

0

500

2000 1000fc(Hz) fg(Hz)
-15

GM=3dB 
5

-5
-10
-15
-20

1500
1000

2000
1500

0

-5

-10

Constrained by 
 GM≥  3dB

GM(dB) 

 
Fig. 8.  The relationship of fc, fg and GM. 

 
Moreover, the K and Kp of the system should be positive.  

And the relationship of the Kp, fc and fg is illustrated in Fig. 9. 
From Fig. 9, it can be observed that when fg is equal to 1910 Hz, 
different Kp can be obtained from 3.32 to 7.14 with the 
variations of fc. When fg>1910 Hz, the values of Kp are between 
0 and 2 and when fg<1910 Hz, the values of Kp are negative. For 
the control parameter K, since it is proportional to fg, when fg is 
greater than 1907, the value of K is greater than 0. 

According to the above analysis, the satisfactory region of fg 
and fc can be determined, which is plotted in the shadow in Fig. 
10. In Fig. 10, point A is selected in the satisfactory region with 
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fc= 1110 Hz and fg=1916 Hz. Substituting the selected fc and fg 
into (19) and (22), respectively, yields: 

K=0.89, Kp=1.71        (25) 
Moreover, as shown in Fig. 10, point B, C and D are selected 

on the edge of the satisfactory region. Point E and F are selected 
out of the region, which are out of the constraint line about K 
and Kp and the constraint line about PM and GM, respectively. 
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Fig. 9.  The relationship of fc, fg and Kp. 
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The corresponding system performance indexes of Point B, 
C, D, E and F are shown in Table II. From the indexes of point 
B, C and D, it can be obtained that the max range of fc is from 
1070 Hz to 1310 Hz and with the increase of fg, the range of fc 
decreases. Point E satisfies the specifications of the stable 
margin with PM=41.88° and GM=3.94 dB, but the values of K 
and Kp are negative. Point F results positive K and Kp, but the 
PM and GM are smaller than 30° and 3 dB, respectively, which 
are consistent with the theoretical analysis. 

TABLE II 
SYSTEM PERFORMANCE INDEXES 

 Point A Point B Point C Point D Point E Point F 
fc(Hz) 1110 1310 1170 1070 1170 1650 
fg(Hz) 1916 1910 2260 1910 1670 2120 
K 0.89 0.34 30 0.33 -23 19 
Kp 1.71 5.06 0.07 4.40 -0.06 0.12 
PM(deg) 57.50 40.71 60.82 60.85 41.88 26.60 
GM(dB) 4.04 3.04 3.00 4.25 3.94 1.54 

For the control parameter Ki, as mentioned earlier, it mainly 
affects the magnitude at the fundamental frequency instead of 
the stability of the system. Hence, Ki is selected as 10 to ensure 
the zero steady-state error at the fundamental frequency. 
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Fig. 11.  The bode diagram of the open loop transfer function of the system with 
K=0.89, Kp=1.71 and different Ki. 
 

Fig. 11 illustrates the bode diagram of the open loop transfer 
function of the system with K=0.89, Kp=1.71 and different Ki. It 
can be observed that all the cases are able to guarantee the 
stability of the system with zero steady-state error and Ki=10 
has the optimal filtering performance around the fundamental 
frequency. Moreover, when Ki=10, the crossover frequency fc 
of the system is 1110 Hz, fg is 1916 Hz, PM is 57.50° and GM is 
4.04 dB, which all satisfy the aforementioned specifications. 

According to the above analysis, the step-by-step parameter 
design method can be summarized as: 

Step 1: Specify the phase margin and the gain margin of the 
system, determine the satisfactory region of fc and fg according 
to (10), (11) and define K>0 and Kp>0; 

Step 2: Choose the optimal values of fc and fg from the 
satisfactory region; 

Step 3: Calculate the control parameter K and Kp with the 
selected fc and fg according to (19) and (22); 

Step 4: Choose a proper Ki and validate the selected Ki. 
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Fig. 12.  The variation tendencies of the PM and GM of the systems. 
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Fig. 12 illustrates the variation tendencies of the PM and GM 
of the systems using the HRF-based v+ic control strategy and 
single-loop voltage control strategy, respectively, with respect 
to the system delay Td variation. It can be observed that the PM 
and GM of both systems decrease when Td increases. However, 
when Td increases to 180 µs, the PM and GM of the system 
using single-loop voltage control strategy are smaller than 30° 
and 3 dB, respectively, while the system using HRF-based v+ic 
control strategy remains a good stability margin with a PM of 
about 44° and a GM of about 4 dB.  

IV. EXPERIMENTAL EVALUATION 
To evaluate the effectiveness of the HRF-based v+ic control 

strategy with the designed control parameters, a downscaled 
single-phase inverter system is set up, which consists of a 
power dc source of 50V, a full-bridge MOSFET power module, 
an LC filter, gate drivers and sensors. The control algorithm is 
implemented in TMS320F28335 controller and the reference 
signal of d-axis in synchronous reference frame is set to 40V.  

Vdc:[50V/div] vc:[25V/div]

i0:[2.5A/div]Time:[20ms/div]

1-st
3-rd 5-th 7-th 9-th

FFT:[10dBV 50Hz/div]

THD=3.68%

 
Fig. 13.  Experimental waveforms of the steady-state performance of the 
inverters when K=0.89, Kp=1.71 and Ki=10 under nominal load (R=20Ω). 

 
In the first case, the steady-state performance and transient 

performance of the inverter with K=0.89, Kp=1.71 and Ki=10 
are investigated, which are shown in Fig. 13 and Fig. 14, 
respectively. In these figures, the channel 1 shows the DC link 
voltage Vdc, channel 2 shows the capacitor voltage vc and 
channel 3 shows the load current i0. 

In Fig. 13, it can be observed that the system achieves an 
excellent steady-state performance and the reference voltage 
can be tracked accurately by the output voltage of the system. 
The harmonic spectrum is shown as well. From the fast Fourier 
transformation (FFT) analysis, it can be obtained that the total 
harmonic distortion (THD) under this situation is 3.68%, which 
shows a satisfied performance under this scenario. 

Fig. 14 illustrates the transient performance of the inverter 
with K=0.89, Kp=1.71 and Ki=10. Fig. 14 (a) shows the 
transient waveforms in response to turning on the inverter. As 
shown in Fig. 14 (a), the system tracks the reference voltage in 
4 ms with slight overshoot of about 2V during the transient 
process, which shows a fast dynamic response and a strong 
robustness. Fig. 14 (b) shows the transient response of the 
inverter from nominal load to 200% nominal load condition. It 
can be observed that during the transient process, slight ripples 
occur and the system achieves the steady-state in 3 ms, which 
shows a fast transient performance as well. 
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Time:[10ms/div]

Step point

Overshoot

 
(a) 
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(b) 

Fig. 14.  Experimental waveforms of transient performance of the inverter 
when K=0.89, Kp=1.71 and Ki=10 (a) transient waveforms in response to 
turning on the inverter; (b) transient waveforms undergoes nominal load to 200% 
nominal load step change. 
 

Then, the steady-state performance and transient response of 
the inverter with K=19, Kp=0.12, Ki=10, which corresponding 
to the point F in Section III, are investigated in Fig. 15 (a) and 
(b), respectively. From Fig. 15, it can be observed that the THD 
of the system under the steady state is 4.42% and the transient 
response time is about 7 ms, which mean that compared to the 
case when K=0.89, Kp=1.71 and Ki=10, the parameters 
corresponding to point F can also achieve the steady-state but 
with a relatively poor performance on the stability and the 
transient response. 
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i0:[2.5A/div]Time:[20ms/div]

1-st
3-rd 5-th 7-th 9-th

FFT:[10dBV 50Hz/div]

THD=4.42%

 
(a) 
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vc:[25V/div]

i0:[2.5A/div]

Time:[10ms/div]
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(b) 

Fig. 15.  Experimental waveforms of the inverter when K=19, Kp=0.12 and 
Ki=10 (a) the steady-state performance; (b) transient performance in response 
to turning on the inverter. 
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THD=4.00%

 
Fig. 16.  Experimental waveforms of the steady-state performance of the 
inverter when K=0.89, Kp=2 and Ki=10. 
 

Fig. 16 illustrates the experimental waveforms of the 
steady-state performance of the inverter when Kp increases. In 
Fig. 16, Kp is increased to 2 and it can be observed that slight 
oscillations appear in the capacitor voltage and the load current 
with the voltage THD of about 4.00% under this scenario. 
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Fig. 17.  Experimental waveforms of the steady-state performance of the 
inverter with K=0.7, Kp=1.71 and Ki=10. 
 

The effectiveness of the selected K is evaluated as follows. 
The experimental waveforms of the steady-state performance 
of the inverter when K decreases and increases are shown in Fig. 

17 and Fig. 18, respectively. As shown in Fig. 17, when K 
decreases, the capacitor voltage can not track the reference 
voltage accurately and the corresponding THD is 4.15%. When 
K increases, which is shown in Fig. 18, the waveforms of vc and 
i0 is distorted with the voltage THD of 4.74%, which means that 
the inverter is slightly oscillating. 
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Fig. 18.  Experimental waveforms of the steady-state performance of the 
inverter with K=1.2, Kp=1.71 and Ki=10. 
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Fig. 19.  Experimental waveforms of the steady-state performance of the 
inverters with K=0.89, Kp=1.71 and Ki=10 under RL load (R=10Ω, L=3.8mH). 
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Fig. 20.  Experimental waveforms of the steady-state performance of the 
inverters with K=0.89, Kp=1.71 and Ki=10 under nonlinear load (L=3.8mH, 
C=2000µF, R=50Ω). 
 

Finally, the steady-state performance of the inverters with 
K=0.89, Kp=1.71 and Ki=10 under RL load and nonlinear load 
is studied. Fig. 19 shows that the single-phase inverter is able to 
achieve the steady state under RL load conditions and the THD 
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of the system under this situation is 4.09%.  Fig. 20 shows the 
system performance under the nonlinear load conditions. It can 
be observed that the system achieves the steady state with the 
THD of 5.15%, which shows a good performance with the 
designed parameters. 

V. CONCLUSION 
This paper investigates the HRF-based v+ic control strategy 

for stand-alone single-phase inverters which applies a capacitor 
voltage loop with the PI controller in the SRF and a capacitor 
current loop with the proportional controller in the stationary 
reference frame. Taking account of control delay, the control 
structure of the HRF-based v+ic control strategy is analyzed in 
detail, and the parameter design guideline for the SRF-PI 
controller for the voltage loop and the proportional controller 
for the current loop is presented. Moreover, the mathematic 
model of the HRF-based v+ic control strategy is established 
taking into account the control delay.  

To achieve optimal performance of the system, a detailed 
parameter design guideline is proposed for the HRF-based v+ic 
control strategy for the SRF-PI controller and the proportional 
controller under condition of the control delay. By specifying 
the phase margin and the gain margin of the system, the 
satisfactory region of the stability indexes can be obtained. And 
the control parameters can be calculated with the stability 
indexes selected from the region. With the designed parameters, 
the system has a fast transient response and a strong robustness 
against the time delay. The experimental results are presented 
to validate the effectiveness of the parameter design method, 
which can be widely applied for the single-phase inverters of 
DGs in the islanded mode. 
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