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Abstract: The possibility of absorbing wave energy using a submerged balloon fixed to the sea bed is investigated. The balloon
is in the form of a fabric encased within an array of meridional tendons which terminate at a point at the top of the balloon and at
some radius at the bottom. The expansion and contraction of the balloon in waves pump air via a turbine into and out of a
chamber of constant volume. A more refined model than that used by Kurniawan and Greaves [Proc. Second Offshore Energy
and Storage Symp., 2015] predicts a similarly broad-banded response, but the maximum absorption is less than previously
predicted. Both approaches are compared and discussed.

1 Introduction
To optimally absorb energy from ocean waves, it is well known
that a wave energy device needs to oscillate with optimum
amplitude and phase [1, 2]. The period and amplitude of ocean
waves are however never constant, but varying at all time scales.
The device needs to operate as close as possible to the two
optimum conditions not just for a single wave amplitude and a
single wave period, but for a range of wave amplitudes and
periods, typically from 5 to 15 s. This challenge is particularly
pertinent for point absorbers, which by definition are much smaller
than the incident wavelengths [3]. A conventional rigid-bodied
point absorber has an inherently narrow resonance bandwidth and
without any phase control is not able to capture a significant
portion of energy available beyond its natural period.

A recent study has however suggested that a point absorber in
the form of a bottom-mounted vertical cylinder whose top is free to
oscillate vertically can have an extremely broad-banded power
absorption, even in the absence of any phase control [4]. Motivated
by this, we considered a conceptually similar device, but with a
completely flexible balloon replacing the cylinder, with the aim of
reducing cost even more [5].

The balloon is of the same type as the underwater balloon used
in [6] as a compressed air energy storage. The construction is that
of a fabric encased within an array of meridional tendons which
terminate at a point at the top of the balloon and at some radius at
the bottom (see Fig. 1). In the simplest configuration, a single
balloon is connected to a chamber of constant volume via a self-
rectifying air turbine (Fig. 2a). As the balloon expands and
contracts under wave action, air is exchanged with the chamber,
driving the turbine. The chamber is not required if two balloons are
spaced at approximately half a wavelength apart (Fig. 2b). With an
array of balloons (Fig. 2c), it may be more cost-effective to have
two centralised accumulators and a single common turbine, with a
system of check valves directing air flow from the balloons
through the turbine and back to the balloons. As the balloons are
fixed to the sea bed, they are suited for nearshore locations with
water depths of about 10 m. One or two rows of balloons aligned
perpendicular to the incident wave direction will act at the same
time as breakwaters [7]. 

In this paper, the response of the device in the simplest
configuration (Fig. 2a) will be predicted numerically. The shape of
the balloon is defined by the profile of its tendons, and therefore
the challenge is in predicting how the tendons will move when the
balloon is subjected to waves. Previously, this was done by
predefining a mode shape to describe the deformation of the
tendons [5]. The mode shape was taken as the difference between
the static profile of the tendons at the mean pressure and that at a
slightly different pressure. Such approach predicted a broad-banded
response whose magnitudes were almost proportional to the
volume of the chamber.

The purpose of this paper is to extend the previous analysis to
allow the tendons to deform more naturally without any a priori
assumption on the mode of deformation. Both the previous and the
present approaches rely on the prediction of the static behaviour of
the balloon in still water, and this will be first examined. As in the
previous approach, we assume small wave amplitudes and small
deformations of the balloon to justify the use of linear potential
theory to obtain the hydrodynamic forces on the balloon and the
use of linearised isentropic relations for an ideal gas to obtain the

Fig. 1  Sketch of the balloon
 

Fig. 2  Device schematics
(a) Solo device, (b) Device in tandem, (c) Device in array
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pneumatic forces. Furthermore, the turbine is modelled as a linear
resistance.

2 Static behaviour
When the balloon is inflated, the fabric forms meridional lobes
between the tendons, keeping the tension in the fabric to a
minimum while the tendons carry most of the tension. When the
internal–external pressure difference is uniform, the balloon
assumes an isotensoid shape, which was first derived by Taylor in
his studies of parachutes [8]. Submerged in water, however, the
shape of the balloon is more like an inverted and truncated pear,
due to the increasing hydrostatic pressure with depth.

Since the balloon is axisymmetric, the shape of the balloon is
defined by the profile of just a single tendon. To obtain the profile
of the tendon, we start off by discretising the tendon into N arc
elements having identical lengths h, but unknown radii of curvature
ρi. One such element is shown in Fig. 3. The arc length h is related
to the radius of curvature ρi throughℎ = − 2����, (1)

where 2ϕi = dαi is the arc sector angle in radians. Similarly, the
distances dRi and dZi can be expressed in terms of h, ϕi, and αi. 

The radius ρi of each element is obtained by solving the force
equilibrium normal to the element, according to

�� = �2���+ 0.5��+ 0.5 , (2)

where T is the sum of tension in all tendons, while Pi+0.5 and Ri+0.5
are the internal–external pressure difference at the midpoint of
element i and the distance from the vertical axis of the balloon to
the same point. If the midpoint is above water, then Pi+0.5 = P,
which is the uniform internal pressure above atmospheric. If the
midpoint is under water, then Pi+0.5 = P + ρgZi+0.5, where the last
term is the external (hydrostatic) pressure.

The calculation starts at the top of the balloon, where R1 = α1 = 
0, and proceeds piecewise downwards along the tendon. The top
elevation of the balloon Z1 and the tendon tension T are not known
beforehand, so an iterative procedure is necessary to obtain the
correct Z1 and T to give the correct radius and elevation at the
bottom of the balloon. This means repeating the calculation with
different Z1 and T until the differences between (RN+1,  ZN+1) and
the specified (Rbot,  Zbot) are less than some small tolerances.

This method of calculating the shape of the balloon assumes
that the tendons are inextensible and that all forces are transferred
to the tendons. This is equivalent in theory to a balloon with
infinitely many tendons. Nevertheless, the calculated profiles have
been shown to be in good agreement with the actual profiles of a
scaled model balloon having 16 tendons. Further details were given
in [9].

In this paper, the length of one tendon from the top to the
bottom of the balloon is chosen to be 15 m, and the bottom radius
3 m. The bottom radius needs to be sufficiently large to minimise
pitching of the balloon in waves. The consequence however is that
there will be a hoop load at the base as well as a requirement for a
pulling-down load. It would be more attractive from practical point
of view if the tendons came to a point at the base.

The calculated tendon profiles of this balloon with 15-m tendon
length and 3-m bottom radius are shown in Fig. 4a, for various
bottom elevations. When the balloon is completely underwater, the
external pressure in the static case varies linearly with depth.
Hence, the tendon profile of a balloon with its bottom submerged a
m below the water level is exactly the same as that of a balloon
submerged a+b m below the water level, provided its internal
pressure is increased by b m of water. This is evident from Fig. 4a:
the profile of the balloon with its bottom submerged 15 m below
the water level and with 18 m internal pressure (outer solid line) is
the same as that of the balloon which sits 5 m higher and with its
internal pressure reduced to 13 m (outer dashed line). On the other
hand, when the balloon is partly submerged or surface-piercing, the
external pressure below the water level varies linearly with depth,
while above the water it is uniform. The variation of the internal–
external pressure difference from the top to the bottom of a
surface-piercing balloon is therefore unique for each bottom
submergence, resulting in a unique profile for each combination of
internal pressure and bottom submergence. 

When the internal pressure (in metres of water) is less than the
bottom submergence of the balloon, the tendon curvature is
reversed at a depth equal to the internal pressure. The internal–
external pressure difference is zero at this inflection point. Above
this point, the internal pressure is higher than the external pressure,
while below it, the internal pressure is lower than the external
pressure. Thus, above and below this point, the tendon is bulging
outward and inward, respectively.

In Fig. 5, various static parameters of the balloon are plotted as
functions of the internal pressure and bottom submergence of the
balloon. The top of the balloon generally rises as the internal
pressure decreases, except at the lowest pressures, where the top of
the balloon falls slightly due to the increased curvature of the

Fig. 3  One discretised tendon element of length h. The radius Ri is
measured from the vertical axis of the balloon. The elevation Zi is measured
from the water line

 

Fig. 4  Calculated tendon profiles of a balloon with 15-m tendon length
and 3-m bottom radius
(a) Calculated tendon profiles for various bottom submergences: 15, 10, 7.5, and 5 m,
Two profiles are shown for each bottom elevation, corresponding to the minimum and
maximum pressures used in Fig. 5, (b) Equilibrium tendon profiles for cases specified
in Table 1
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tendon as the point of inflection rises with decreasing pressure
(Fig. 5a). The volume of the balloon increases with the internal
pressure at a decreasing rate, where the volume of the balloon

hardly increases at high pressures (Fig. 5b). Since there is not much
change in volume when the internal pressure (in metres of water) is
higher than the bottom submergence of the balloon, the operating
mean pressure of the balloon should probably be lower than its
bottom submergence.

From Fig. 5c, we see that the tension in the tendons varies
approximately linearly with pressure, which is quite remarkable,
while the upward force on the base is proportional to the
displacement of the balloon. The variation of the waterplane radius
of the balloon with pressure is more subtle (Fig. 5d). For a balloon
with a relatively low bottom submergence, the waterplane radius
appears to increase monotonically with pressure. With a deeper
bottom submergence, the waterplane radius first increases and then
decreases with increasing pressure. The waterplane radius
decreases more quickly with pressure as the bottom submergence
gets deeper.

3 Dynamic response
The cases specified in Table 1 will be considered. The
corresponding mean tendon profiles are shown in Fig. 4b. The
balloon is assumed to sit exactly on the sea bed. Thus, the water
depth specified in Table 1 also indicates the bottom submergence
of the balloon. The balloons are assumed to be completely
axisymmetric, with the lobes neglected, and only axisymmetric
deformations will be considered.

The difference between the previous approach [5] and the
present one lies in the modelling of the deformation of the tendons,
but the pneumatic aspects are the same. For both approaches,
linearised isentropic relations for an ideal gas are used to model the
air pressure–density relationship in the balloon and in the chamber,
and the flow through the turbine is assumed to follow a linear
relationship. Then, it can be shown [4] that the pressure pc and
volume amplitude vc of the bag are related through

�c = − �c �f�c� + 1�(� + �atm) �c ≡ − �c/�, (3)

with

� = ��(� + �atm)� + i��f . (4)

Here, P is the mean internal pressure (which excludes the
atmospheric pressure Patm), γ  = 1.4 is the heat capacity ratio, pf
and mf are the complex amplitudes of the pressure and mass of air
in the chamber, Mf is the mean air mass in the chamber, vc, mc, and
pc are the complex amplitudes of the volume, mass, and pressure of
air in the balloon, while Vc and Mc are the mean volume and mass
of air in the balloon. The mass flow through the turbine for a unit
pressure difference is defined as the turbine coefficient C.

The mean absorbed power can finally be obtained from

� = �2�air |�c− �f|2 (5)

Once the deformation of the tendons is known, by which we can
calculate the pressure amplitudes pc and pf.

3.1 Previous approach

In the previous approach [5], the tendons were assumed to deform
according to a predefined mode whose shape was obtained from
the difference between the static tendon profile at the mean
pressure and a static profile obtained at a slightly different
pressure. The hydrodynamic coefficients (wave excitation force,
added mass, and radiation damping) associated with the mode of
deformation of the balloon were computed using a three-
dimensional (3D) panel method [10] by specifying either the
normal or the Cartesian components of the mode shape over the
balloon's mean wetted surface.

Fig. 5  Variations of static parameters of the balloon with internal
pressure, for various bottom submergences
(a) Top elevation, (b) Volume (solid) and displacement (dashed), (c) Sum of tension in
all tendons (solid) and upward force on the base (dashed), (d) Waterplane radius.

 
Table 1 Water depths, mean pressures, and calculated
equilibrium volumes and surface areas of the balloon in
cases a–c
Case Water

depth, m
Mean

pressure, m
Mean

volume, m3
Mean surface

area, m2

a 7.5 5 754 384
b 7.5 3 598 341
c 15 13 735 375
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Since there was only one degree of freedom in total, the
complex velocity amplitude U of the balloon was obtained by
solving the following equation of motion:

i�(� +�) + (� + �p) + 1��(� + �p) � = �e, (6)

where M is the generalised mass excluding the added mass, m is
the added mass, B is the radiation damping, K is the hydrostatic
stiffness, Fe is the wave excitation force, while Bp and Kp are the
pneumatic damping and stiffness. The generalised mass M was
expressed in terms of an integral over the mean volume of the
balloon

� =∫∫∫��m� ⋅ � d�, (7)

where �m(�) is the density of the balloon. The mode shape �(�),
where � = (�, �, �) is the coordinates of any point on the balloon,
was written in Cartesian components as�(�) = (�(�), �(�), �(�))T= (�a(�)cos �, �a(�)sin �, �a(�))T, (8)

where �a(�) and �a(�) are the radial and vertical components of
the assumed mode shape, expressed as functions of a vertical
coordinate normalised such that its value is equal to zero at the
bottom of the bag and one at the top, and θ is the azimuthal angle.
Similarly, the hydrostatic stiffness K was expressed in terms of an
integral over the mean wetted body surface, following [11]:

� = ��∫∫�b�(� + ��)d�, (9)

where ρ is the water density, g is the acceleration due to gravity,
while n and D are the normal component and the divergence of the
mode shape S, respectively. The unit normal vector n is defined as
pointing into the balloon.

The pneumatic stiffness and damping Kp and Rp in (6) are
functions of the turbine coefficient as well as the air volumes. To
derive these coefficients, the following steps were taken. First, the
volume amplitude vc was expressed in terms of the unknown
displacement amplitude ξ  =   − iU/ω and the normal component n
of the assumed mode shape

�c = − �∫∫�s�d�, (10)

where the integral was taken over the mean surface of the balloon.
Then, the dynamic pneumatic force on the balloon was expressed
to first order as

�p = −∫∫�s�c�d� − ��∫∫�s��d� . (11)

In accordance with the form of the equation of motion (6), the
pneumatic stiffness and damping coefficients were thus given as�p = Re ��c2 + ��p (12)

�p = 1� Im ��c2 , (13)

with E as defined in (3) and νc and νp defined as

�c =∫∫�s�d� (14)

�p =∫∫�s��d� . (15)

3.2 Present approach

In the present approach, the tendons are discretised into a number
of small elements as in the static calculations. The aim is to solve
for the displacements (radial and vertical) of each element at its
midpoint without making any a priori assumptions on how each
element would move, except that the length between any two
neighbouring midpoints must not change, consistent with our
assumption that the tendons are inextensible.

The tendons are assumed to oscillate harmonically about the
mean or static position, so any time-dependent quantity y(t) can be
written as Re(Y + yeiωt), where Y is the mean and y is a complex
amplitude of the time-dependent part. The approach consists of
expanding the static equations of the tendons (2) and (1) to include
the time-dependent parts, and then subtracting the static equations
from the expanded equations, while keeping only terms up to the
first order. The resulting dynamic equations for each tendon
element can finally be obtained as

2�ℎ(����+ ����) + �e�+ �r� = �(��− 1− ��) −��− 1− ��sin �� (��� cos ��+ ���+ 12 �c), (16)

where use has also been made of the bottom boundary condition,
which requires that the pulling-down force on the base must be
equal to the net upward force on the balloon. Here, we have
defined Pi and Ri as the mean pressure and radius at the midpoint
of element i, and Ai−1 and Ai as the mean angles at the ends of
element i. The pressure amplitude pi is equal to pc if midpoint i is
above water, or pc + ρgzi if it is underwater. Furthermore, Fei and
Fri are the wave excitation force and the radiation force on element
i, while ri and ai are the complex amplitudes of the radial and
angular displacements, respectively. The radiation force Fri, as
usual, can be expressed in terms of the added mass and radiation
damping. These, as well as the wave excitation force Fei, which are
acting in the direction normal to element i, may be obtained using a
3D panel method [10] by specifying modes associated with the
normal displacement of each element of the tendons. The panel
models used in the computations are shown in Fig. 6. Equation
(16), which pertains to a bottom-fixed balloon, are a special form
of the more general equations pertaining to a heaving, floating
balloon which is treated in [12]. 

The pressure amplitude in the balloon pc is related to the
volume amplitude vc through (3). The volume amplitude vc can
further be expressed in terms of the radial and vertical
displacements ri and zi of the element midpoints. In addition, the
condition that the tendons are inextensible gives a relationship
between ri and zi. Equation (16) can therefore be formulated in
terms of only the radial displacements ri as the unknowns. The
final N independent equations can be written in matrix form and
solved using standard methods. Further details are given in [12].

3.3 Comparison of results

Fig. 7 shows the power absorption performance of the bottom-
mounted balloons for the cases specified in Table 1. The result is
presented in terms of the absorption widths as well as the mean
absorbed power per incident wave amplitude squared. 

Both the previous and present approaches predict a broad-
banded power absorption, but it is clear from Fig. 7 that the
previous method largely overestimated the absorbed power. With
the present method, the highest absorption is attained by the
balloon in case b, but the maximum absorption width with a
chamber volume of 2000 m3 is only about 1.3 m, which is about
12% with respect to the waterplane diameter. As with the previous
method, increasing the chamber volume also increases the
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absorbed power, but at a decreasing rate, such that the maximum
absorption width for case b is only slightly above 2 m (or 20%
relative to the waterplane diameter) even when very large chamber
volumes are used.

The higher power absorption of the balloon in case b compared
with a and b seems to agree with the fact that the change in volume
around the mean pressure is greater for the balloon in case b than
for the balloons in cases a and c (see Fig. 5b).

For case c, the present method also predicts a cancellation
period at which the absorbed power is zero and below which very
little power is absorbed by the balloon. In [5], an explanation
behind this cancellation has been suggested. Such cancellation is
not uncommon in wave–body interactions and in the present case
has to do with the fact that the balloon is completely submerged.
As the balloon expands, its lower part deforms normally outward,
but its upper part deforms normally inward (compare, for example,
profiles a and b of Fig. 4b). It is reasonable to expect that there is a
particular period, which is dependent on the mean geometry of the
balloon, where the waves radiated by the upper and lower parts
cancel out. This means that no waves will be radiated by the
balloon at this period, and since wave absorption requires wave
radiation, no power is absorbed at the same period.

Looking at Fig. 8, we can see a correlation between the power
absorbed by the balloon and its volume amplitude. The volume
amplitude of the balloon is found to be relatively small, and to
absorb an appreciable level of power the balloon has to respond
with greater amplitudes, which seems possible for this bottom-
mounted balloon only if the incident wave amplitudes are higher.
In addition, the pressure amplitudes are found to be only about half

the incident wave amplitude, in contrast to the case of a heaving
balloon, where the pressure amplitudes in the balloon can be up to
twice the incident wave amplitude [12]. 

With the previous method, the smallest amplitudes of the
displacement of the bag top are obtained for case b, but the
opposite is true with the present method, where the amplitudes are
the largest for case b. This clearly indicates that the deformations
of the balloon predicted using the two approaches are quite
different. Indeed, we see from Fig. 9 that the actual deformations of
the balloon obtained using the present method differ from the mode
shape used in the previous method. The difference is especially
greater above the waterline. 

4 Concluding remarks
The possibility of absorbing energy from the waves using a
bottom-mounted balloon has been investigated. Compared with the
wave power incident on the balloon, the power absorbed by the
balloon is found to be very small. The latest results have been
obtained using a method which puts no restrictions on the way the
tendons move, apart from ensuring that the length of the tendon
must not change. The previous method, on the other hand,
prescribes the way the tendons move, and is found to overestimate
the absorbed power quite substantially. The inadequacy of the
previous method has been highlighted by comparing the prescribed
mode shape and the actual deformations predicted by the present
method.

This study suggests that it might be better for such balloon as
considered here to be floating and heaving in the water rather than

Fig. 6  Left to right: panel models of the balloon for cases a–c. Axes units are in metres. The interior mean water surface for the surface-piercing cases a and
b is discretised as well for the purpose of removing irregular frequency effects

 

Fig. 7  Absorption widths and mean absorbed power per incident wave amplitude squared, for cases a–c and different chamber volumes: 500, 1000, and
2000 m3. Solid lines are obtained with the present method, dashed lines with the previous method. The absorbed power increases with larger chamber volume.
For the absorption widths, the theoretical maximum λ/2π for point absorbers is also shown as the monotonically increasing solid line. All results are obtained
with turbine coefficient C = 0.012 ms
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fixed to the sea bed. It would also be interesting to see if two
bottom-mounted balloons exchanging air between them (Fig. 2b)
could have better performance than a single balloon exchanging air
with a constant-volume chamber as treated here. In addition, other
geometries radically different from those considered here, such as a
completely submerged balloon with a very large diameter at the
base, deserve a further study.
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