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A dynamic pricing scheme, also known as real-time pricing (RTP), can be more

efficient and technically beneficial than the other price-based schemes (such as

flat-rate or time-of-use pricing) for enabling demand response (DR) actions. Over

the past few years, the advantages of RTP-based schemes have been extensively

discussed for DR purposes in electricity markets; however, they have not been

proven mathematically according to a valid economics-based model. Instead, most

of the related literature has only relied on observations and experiences in the

markets of other commodities. Thus, to provide a reliable reference point based on

mathematical models, this paper utilizes well-known economic theories and mathe-

matical formulations to prove the impact of RTP on true enabling of DR actions in

electricity markets. Based on the theory of saving under uncertainty, it is shown

that the use of dynamic pricing can lead to increased willingness of consumers to

participate in DR programs which in turn improve the operation of liberalized elec-

tricity markets. Published by AIP Publishing. https://doi.org/10.1063/1.5009106

NOMENCLATURE

a Lowest electricity price available to consumers according to marginal cost of the retailer

b Highest electricity price available to consumers according to price cap

B Budget

d1 Amount of electricity that can be purchased with D1

d2 Amount of electricity that can be purchased with D2

D1 Budget to cover consumption of current hour with DR program

D2 Budget to cover consumption of coming hours with DR program

n1 Amount of electricity that can be purchased with N1 $

n2 Amount of electricity that can be purchased with N2 $

N1 Budget to cover consumption of current hour without DR program

N2 Budget to cover consumption of coming hours without DR program

P1 Price signal at current hour

P2 Price signal at coming hours

S1 Saving at current hour

S2 Saving at coming hours

Ut Utility function

a Elasticity

l Mean of the continuous uniform distribution

r Standard deviation of the continuous uniform distribution

r2 Variance of the continuous uniform distribution

a)E-mail: aam@et.aau.dk. Tel.: þ45-93562062.
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I. INTRODUCTION

After restructuring in the electricity industry, demand side management (DSM) programs

were divided into two groups:1,2

– Energy efficiency improvement programs

– Demand response (DR) programs

DR programs are one of the DSM techniques and become an affordable solution for increasing

productivity in the electricity industry.3–5 DR programs consist of those DSM methods that alter

the power consumption levels over time due to the changing electricity prices. As defined by

Federal Energy Regulatory Commission (FERC): “DR is the ability of customers to respond to either

a reliability trigger or a price trigger from their utility system operator, load-serving entity, regional

transmission organization (RTO)/Independent System Operator (ISO), or the demand response pro-

vider by lowering their power consumption.” Nordic Power market also provided a definition for

DR actions but in a more accurate way as: “a voluntary temporary adjustment of electricity demand

as a response to a price signal or a reliability-based action.”6 One of the other definitions provided

by the U.S. Department of Energy (DOE): “DR programs are the programs that improve the electric-

ity consumption patterns of industrial, commercial, and residential customers so as to reduce peak

loads and thereby achieve better prices as well as improved network reliability. To make the power

demand more manageable, a DR program can change the pattern of electricity usage by reducing

the peak load or shifting the consumption from the peak to the off-peak hours.”7

DR can give very outstanding aspects, such as reliability, rapidity, accessibility, etc. In Ref. 8,

the impact of DR programs on improving reliability is examined. Generally, DR programs are

divided into two main categories (price-based DR and incentive-based DR) and several subcatego-

ries (Refs. 9–11) as shown in Fig. 1.

The critical peak pricing program is a price-based DR program during a specified critical

time period, operated when high wholesale market prices or power system emergency condi-

tions are observed.12

Compared to other pricing mechanisms in price-based DR programs, dynamic pricing [also

known as real-time pricing (RTP)] has received more attention from market economists, as it

creates a relationship between wholesale and retail sales.13 RTP has been explained as a logical

reaction to competition. In general, it is a solution for utilities to prepare their consumers with

an actual market price which allows both to manage loads, decrease costs, and increase profit.

It is also an effective solution for utilities to grow their competitiveness and hold their consum-

ers.14,15 Figure 2 reviews and categorizes the aims of implementation of RTP from the view-

point of activists on the market.

Unlike time-of-use (TOU) pricing where electricity prices are pre-determined, in RTP

end-use prices vary according to wholesale prices throughout the day. Economists believe that

RTP-based DR action is the most straightforward and relevant tool for enabling active partici-

pation of consumers in competitive electricity markets. In a RTP-based scheme, the electricity

prices differ from those of TOU because the latter assigns average electricity prices for each

time period, while the former reflects the actual market price at the moment. Economists also

believe that the use of time-varying prices leads to a greater economic efficiency in the elec-

tricity industry and markets. Figure 3 shows the consumer risk/reward in different pricing

schemes. As can be seen in the figure, although other price-based schemes would yield lower

risks for consumers compared to a RTP-based scheme, they also result in lower rewards and

accordingly lower incentives for participation in DR programs which affect the market in a

long-run operation.16

In Ref. 16, the long-term benefits of implementing a RTP scheme in an electricity market

are discussed. Using simple simulations with actual parameters, the authors show that RTP has

significant benefits, even when demand is less flexible against price change. In Ref. 17, an exten-

sive review of utility experiences is presented about RTP programs. This review investigates 43

RTP programs presented in 2003. It has been eventuated that the most important motivation

about these programs is consumer consent by preparing opportunities to maximize profitability.
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A long-term survey of RTP usefulness is also carried out in Ref. 18 where it is shown that the

benefits of using RTP are considerable even when the elasticity of demand is low.

In Ref. 19, a retailer company offers one of three pricing methods, RTP, TOU, and flat

rate, and consumers adjust their consumption patterns with respect to prices to reduce their

energy bills. The results obtained in this article verify the superiority of RTP. In Ref. 20, the

impacts of RTP on prices, economic welfare, total demand, and peak demand hours in the

Nordic power markets are investigated. The results show that the impacts of implementation of

RTP are affirmative. In Refs. 21–26, the authors show that RTP programs can cause demands

of peak time shift to other times and so decreases the cost of energy.

FIG. 2. Aims of RTP.

FIG. 1. Categories of DR programs.
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RTP can be implemented through two general procedures: Type-I—hour-ahead basis:

announcing the real-time actual price of electricity, or Type-II—day-ahead basis: announcing

the electricity price one day before.27 In this paper, by developing the proposed method in

Refs. 28 and 29 into the electricity market, we want to explore the uncertainties impacts have

on consumption and savings. We consider a RTP-based market in which prices are announced

as an hourly signal and the consumers are uncertain about the value of these prices in the com-

ing hours. We utilize well-known economics theories and mathematical formulations to prove

that the uncertainties of electricity prices can increase the consumers’ willingness to participate

in DR programs and aim to modify their consumption and savings. The main contribution

would be to provide a reliable reference based on mathematical models showing that the use of

dynamic pricing can lead to increased willingness of consumers to participate in DR programs

which in turn improve the operation of liberalized electricity markets.

The organization of this paper is as follows. The theory of saving under uncertainty (SUT)

is introduced in Sec. II. Afterward, Sec. III explains the mathematical formulation of this theory

in association with RTP. Section IV presents a sensitivity analysis to study the effect of price

uncertainty on consumer participation in DR programs. Section V presents numerical results

and shows the validity of the proposed model. Finally, Sec. VI concludes the paper.

II. THEORY OF SAVING UNDER UNCERTAINTY (SUT)

Kenneth Ewart Boulding, who was nominated for the Nobel Prize in Economic Sciences,

states that: “…other things being equal, we should expect a man with a safe job to save less
than a man with an uncertain job.”30 From this statement, one can interpret that uncertainty

about future earnings could lead to further savings. Extending this argument to the electricity

market, it can be stated that: “when a customer feels uncertain about electricity prices in com-
ing hours, he tends to consume less to save more money for these hours.” Among all methods

of electricity pricing, this concept is most compatible with RTP (Type-I), where price signals

are announced on an hourly basis and the consumer has no information regarding future prices.

Considering such a scheme, let us assume that at the current hour the retailer sends price

signal p1 to the customer; however, the customer is uncertain about the value of the electricity

price in the coming hours (signal p2). In this respect, p2 can be treated as a random variable

between two values a and b

a � p2 � b (1)

in which a and b values can be set arbitrarily by the retailer according to the marginal cost and

price caps. The greater b � a means the larger the interval within which p2 falls; in other

words, signal p2 can have more diverse values, and this implies a higher level of uncertainty.

FIG. 3. Consumer risk/reward in different electricity pricing methods.
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In statistics and probability theory, the probability distribution function reflects the proba-

bility of a random variable being within a particular range of values.31 With regards to this, we

can consider signal p2 as a random variable with continuous uniform distribution between the

two values a and b. Thus, the probability density function of this parameter can be assumed as

follows:

f ðp2Þ ¼
1

b� a
; b � p2 � a

0; p2 < a or p2 > b:

8<
: (2)

Figure 4 illustrates such a continuous uniform distribution.

This uniform distribution function has the following mean and variance:

E p2ð Þ ¼ l ¼ bþ a

2
; (3)

Var p2ð Þ ¼ r2 ¼ ðb� aÞ2

12
; (4)

Std p2ð Þ ¼ r ¼ ðb� aÞ
2
ffiffiffi
3
p : (5)

Standard deviation (Std) can also be used to determine the level of confidence in the statistical

analysis.32 It also has a direct relationship with the confidence coefficient, i.e., as Std increases,

so does the uncertainty in a given stochastic signal such as the price signal. It can be also

understood from Eq. (5) that Std is directly related to b–a, which implies that the greater b–a,

the higher would be the level of uncertainty.

Considering the above-mentioned definitions, we must now prove that “when Std is grow-

ing, the customer tends to consume less to save more money for these hours.” To this end, by

using mathematical models and techniques we will try to prove this argument, and if successful,

we will show how RTP increases the consumers’ willingness to participate in DR programs and

accordingly we will prove Bounding’s theory for electricity markets.

III. SUT FORMULATION FOR ELECTRICITY MARKET

Assume that a customer allocates a budget of B $ to the electricity bill a day ahead, and

receives the price signal on an hourly basis. At the current hour, having received the price sig-

nal p1, the customer needs N1 $ to cover his current consumption n1, which leaves him with N2

$ in the coming hours of the day

FIG. 4. Continuous uniform distribution.
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B ¼ N1 þ N2;

N1 ¼ n1p1;

N2 ¼ n2p2;

(6)

where n1 and n2 are the amounts of electricity that can be purchased with N1 $ and N2 $,

respectively. Now by extending the Boulding’s theory to the electricity market it is demon-

strated how the presence of uncertainty in electricity price (p2) would incentivize the customer

to consume less and to save more money for the coming hours.

Suppose that due to the price uncertainty, a customer saves S1 $ of his previous budget N1

for the coming hours. Thus, adjusting this budget would yield

D1 ¼ N1 � S1; S1 � 0; (7)

D2 ¼ N2 þ S1; (8)

where D1 is the adjusted budget of the current hour and D2 is the adjusted budget of the com-

ing hours. Considering the price signals p1 and p2, the electricity consumption will be

D1 ¼ d1p1;

D2 ¼ d2p2; (9)

where d1 and d2 are the amount of electricity that can be purchased now and in the future after

the budget adjustment, respectively. To prove the Bounding’s theory for the electricity market,

now it must be shown that S1 varies with the amount of uncertainty in price signals (p2) of the

coming hours and accordingly find the right answers to the following questions: “Does increas-
ing uncertainty in price signal have any effect on S1?” and if yes, “what is the magnitude and
direction of this effect?”

By substituting Eq. (7) into Eq. (8) and considering Eq. (6), it can be stated that

D2 ¼ N2 þ S1 ¼ N2 þ ðN1 � D1Þ ¼ n2p2 þ ðn1p1 � d1p1Þ: (10)

Thus, the utility function U (D1, D2) for the customer will be

U D1;D2ð Þ ¼ U D1;N2 þ ðN1 � D1Þð Þ ¼ U d1p1; n1p1 þ n2p2 � d1p1ð Þ;
B ¼ D1 þ D2; (11)

where B denotes the total budget allocated by the customer to his electricity bill.

In this article, we have explained the real-time price according to the probability distribu-

tion function. However, we used the utility function to explain the probability of the consum-

er’s presence in the formulations. As we know, the degree of probability of the consumer’s

presence is the same as the concept of elasticity.11 In economics, elasticity refers to the degree

to which consumers change their demand in response to price. In other words, elasticity deter-

mines the extent of the consumer’s presence. There are many functions that can be selected to

express the utility function of consumers. But in this article, we used the Cobb-Douglas utility

function which is one of the most famous utility functions that economists extensively use in

macroeconomics. The general form of this function is shown below33,34

U D1;D2ð Þ ¼ Da
1

� �
� D1�a

2

� �
; 0 < a < 1;

B ¼ D1 þ D2: (12)

Parameter “a” (elasticity) determines the consumer’s presence in the DR program. So here we

determine the probability of the consumer’s presence with this parameter and then we can show

the different scenarios of the consumer’s presence with distinct probabilities by the help of dif-

ferent values of this parameter.
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In this paper, we assume that a ¼ 1
2
, thus

U D1;D2ð Þ ¼ D
1=2
1

� �
� D

1=2
2

� �
¼ d1p1ð Þ1=2 � n1p1 þ n2p2 � d1p1ð Þ1=2: (13)

Figure 5 illustrates the distribution of the Cobb-Douglas utility function.

The objective in the next step is to develop a model of choice behavior under uncertainty.

We start with the von Neumann-Morgenstern expected utility model, which is the workhorse of

modern economics.35,36 Based on this model the expected utility can be expressed as follows:

EðUÞ ¼
ð

UðD1;D2Þ f ðp2Þ dp2: (14)

Substituting Eqs. (2) and (13) into Eq. (14)

EðUÞ ¼
ð

UðD1;D2Þf ðp2Þ dp2 ¼
ðd1p1Þ1=2

b� a

ðb
a

ðn2p2 þ n1p1 � d1p1Þ1=2dp2;

¼ 2ðd1p1Þ1=2

3n2ðb� aÞ ðbn2 þ n1p1 � d1p1Þ3=2 � ðan2 þ n1p1 � d1p1Þ3=2
h i

;

¼ 2D
1=2
1

3n2ðb� aÞ ðbn2 þ N1 � D1Þ3=2 � ðan2 þ N1 � D1Þ3=2
h i

: (15)

To calculate the maximum value, the derivative should be zero and the second derivative should

be negative, thus the maximum value in terms of D1 must satisfy the following two conditions:37

dEðUÞ
dD1

¼ 0 and
d2EðUÞ

d2D1

< 0: (16)

Therefore

dEðUÞ
dD1

¼ ðbn2 þ ðN1 � D1ÞÞ3=2 � ðan2 þ ðN1 � D1ÞÞ3=2

�3D1ððbn2 þ ðN1 � D1ÞÞ1=2 � ðan2 þ ðN1 � D1ÞÞ1=2Þ ¼ 0: (17)

FIG. 5. Cobb-Douglas utility function for a ¼ 1
2
.
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Solving the above equation gives two solutions

ð1Þ ) a ¼ b

ð2Þ ) bn2 þ an2 þ 2ððN1 � D1ÞÞ � 3D1 ¼ �ðbn2 þ ðN1 � D1ÞÞ1=2ðan2 þ ðN1 � D1ÞÞ1=2:

�
(18)

The first solution is unacceptable. For the second solution, we raise both sides of the equation

to the second power and sort it in terms of D1. Now, according to the second derivative

condition for the maximum of the utility function, the optimal solution which is defined as the

amount of money that customer spends on electricity (based on the described price signal)

will be

D1 ¼
18� bn2 þ an2

2
þ N1

� 	
þ 6�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
bn2 þ an2

2
þ N1

� 	2

� 8ðbn2 � an2Þ2

12

� 	s

48
: (19)

Substituting Eqs. (3) and (4) into Eq. (19) gives

D1 ¼
18� ln2 þ N1ð Þ þ 6�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðln2 þ N1Þ2 � 8n2

2r
2

q
48

: (20)

After simplification, we have

D1 ¼
3

8
ln2 þ N1ð Þ þ 1

8

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ln2 þ N1 � 2

ffiffiffi
2
p

n2r
� �

� ln2 þ N1 þ 2
ffiffiffi
2
p

n2r
� �q

;

d1 ¼
D1

p1

:
(21)

As mentioned, r is the Std or the square root of the variance. The last equation can be rewritten

as follows:

S1 ¼
5

8
N1 �

3

8
ln2 �

1

8

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ln2 þ N1 � 2

ffiffiffi
2
p

rn2

� �
� ln2 þ N1 þ 2

ffiffiffi
2
p

rn2

� �q
; r 2 0 ;

ln2 þ N1

2
ffiffiffi
2
p

n2


 �
;

s1 ¼
S1

p1

:

(22)

IV. SENSITIVITY ANALYSIS

This section describes the results of a sensitivity analysis to evaluate the effect of price

uncertainty on consumer participation in DR programs. In sensitivity analysis, we check the

effect of a change in one independent variable on the dependent variable, assuming that all

other variables and conditions are known and constant.38 Here, r is treated as the independent

variable and we study the effect of a change in this variable on other dependent variables D1

and S1 in Eqs. (21) and (22), respectively.

A. Sensitivity analysis of saving

In the first sensitivity analysis, we study the effect of r on the value of S1. By increasing

the value of r and consequently increasing the uncertainty of future prices, it is expected to

increase the value of saving S1. The sensitivity analysis result depicted in Fig. 6 confirms the

validity of this assumption.
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B. Sensitivity analysis of consumption

In the second sensitivity analysis, the effect of r on the value of D1 is investigated. Here,

we expect that increasing the value of standard deviation r can reduce the consumption, and

the results of sensitivity analysis verify this statement (see Fig. 7).

As can be seen from the results of both sensitivity analyses, for uncertainties of higher

than a certain threshold { ln2 þ N1ð Þ=ð2
ffiffiffi
2
p

n2Þ} there is no feasible solution, meaning that

the uncertainty is so high that the consumer’s decision-making process ends at a point of

cessation.

FIG. 6. Changes in saving as the result of an increase in Std.

FIG. 7. Changes in consumption as the result of an increase in r.
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V. CASE STUDY

Table I shows the data used for the case study that is extracted from Ref. 39. This case

study deals with implementation of the TOU DR program for a sample of aggregated residen-

tial customers in the Northwestern Energy utility. In this case study, each customer has a fixed

consumption and it is assumed that diurnal hours are divided into two periods: (1) off-peak

time and (2) peak time. It is also assumed that each time period has its own fixed and unique

price as shown in Table I.

In this paper, we apply the RTP scheme instead of the TOU scheme. According to this

scheme, it is assumed that electricity price is uncertain in the coming hours but its average

value would be equal to the price level in the TOU scheme (e.g., 16 cents per kWh). By doing

this, we want to show how price uncertainty could affect the consumption behavior over time,

although the average price is constant.

To form the probability distribution function, values of a and b are chosen in such a way

that the average electricity price for the coming hours is equals to 0.16 $. Thus, for the selected

a and b: l ¼ bþ að Þ=2 ¼ 0:16 $. As Table II shows, although selecting the proper values for a
and b results in a fixed average price l for the coming hours, the value of (b � a) would be dif-

ferent. As mentioned earlier, this difference in value is in fact the length of the interval within

which a future price signal can vary. The greater the length of this interval, the more diverse the

prices can be, which means the greater uncertainty in prices (and hence greater Std and so

increased risk).

As can be seen from the numerical results of Table II, when uncertainty (Std) increases,

user’s consumption level decreases which directly implies an increase in user’s saving. It can

be further observed that there is a significant difference in user’s saving among TOU- and

TABLE I. Consumer’s data for the current hour.

Current hour

Data for consumer Budget B ($) p1 (cents per kWh) p2 (cents per kWh) n1 (kWh)

16.42 8 16 102.6650

TABLE II. Changes in electricity saving.

Scenario # DR program a b l b-a Std (r) Saving (cents) Consumption (kWh)

1 TOU 0.16 0.16 0.16 0 0 0 102.6650

2 RTP 0.15 0.17 0.16 0.02 0.0058 0.5872 102.5916

3 RTP 0.14 0.18 0.16 0.04 0.0115 1.3912 102.4911

4 RTP 0.13 0.19 0.16 0.06 0.0173 2.7376 102.3228

5 RTP 0.12 0.20 0.16 0.08 0.0231 4.6384 102.0852

6 RTP 0.11 0.21 0.16 0.10 0.0289 7.108 101.7765

7 RTP 0.10 0.22 0.16 0.12 0.0346 10.1696 101.3938

8 RTP 0.09 0.23 0.16 0.14 0.0404 13.8512 100.9336

9 RTP 0.08 0.24 0.16 0.16 0.0462 18.1888 100.3914

10 RTP 0.07 0.25 0.16 0.18 0.0519 23.2288 99.7614

11 RTP 0.06 0.26 0.16 0.20 0.0577 29.0328 99.0359

12 RTP 0.05 0.27 0.16 0.22 0.0635 35.6776 98.2053

13 RTP 0.04 0.28 0.16 0.24 0.0692 43.268 97.2565

14 RTP 0.03 0.29 0.16 0.26 0.0750 51.9424 96.1722

15 RTP 0.02 0.30 0.16 0.28 0.0808 61.8976 94.9278

16 RTP 0.01 0.31 0.16 0.30 0.0866 73.4232 93.4871

17 RTP 0 0.32 0.16 0.32 0.0924 86.9768 91.7929
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RTP-based DR actions, which highlights the fact that “where dynamic pricing is applicable, it
would be a worthwhile effort to deploy RTP-based DR programs.”

To get a better insight into the relationship between the aforementioned variables (Std,

user’s saving, and consumption behavior), simulation results for relative changes in consumption

and saving levels as a function of Std are shown in Fig. 8. Here the term “relativity” is used to

describe the quantitative changes of dependent variables under different operating conditions

(i.e., dynamic pricing condition compared to a TOU-based scheme). It is clearly understood

from the results that the consumption level decreases relatively as Std increases (which implies

higher risks), which in turn increases the user’s saving, as expected. In other words, as the

uncertainty in the future energy prices increases, consumers tend to participate more in DR pro-

grams and their contribution level is further increased by utilizing the RTP mechanism (com-

pared to a TOU-based scheme).

Figure 9 demonstrates the effect of an average electricity price and its uncertainty level on

consumer’s energy saving. As it is observed, with a constant Std, by increasing average

FIG. 8. Changes in consumption and savings versus standard deviation.

FIG. 9. Changes in energy savings versus changes in Std and average electricity price for the coming hours.
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electricity price for the coming hours, the customer feels that prices are relatively good and he

is better off consuming electricity now than later, hence the amount of savings decreases.

It is noteworthy to mention that one of the most serious issues that consumers have uttered

in the RTP programs is that they are at continuous “risk/reward” due to price variations unlike

flat rate and partly TOU programs. The “risk” is deemed to be that a consumer consumes large

amounts of energy regardless of price changes, so he may receive an electricity bill larger than

his budget. On the other hand, this consumer can alter his electricity consumption pattern

according to price variations to achieve “rewards.”

VI. CONCLUSION

In this paper, it was mathematically proven and demonstrated that an electricity market

based on a real-time pricing (RTP) scheme would increase the consumers’ willingness to partic-

ipate in demand response (DR) programs. By using the theory of saving under uncertainty, it

was also shown that increasing the uncertainty of price information would reduce the actual

electricity consumption and accordingly increase the electricity savings for consumers. In other

words, compared to other price-based mechanisms, implementing the RTP scheme in a given

liberalized electricity market would increase the uncertainty in electricity prices for the coming

hours and subsequently decrease the electricity consumption by enabling DR actions. However,

it should be noted that implementing a RTP-based DR program increases the risk-level at the

demand-side so much that any negligence on the part of the consumer could lead to a signifi-

cant increase in his electricity bill. Thus, to effectively set up such a scheme which benefits

both supply and demand sides and improves the market operation, it is crucial to have proper

communication infrastructures as well as adequate access to smart appliances such as smart

washing machines, dishwashers, thermostats, etc., to enable the customer to adapt to hourly

changes in the electricity prices.
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