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Abstract: Lithium-ion (Li-ion) batteries are complex energy storage devices with their performance
behavior highly dependent on the operating conditions (i.e., temperature, load current, and
state-of-charge (SOC)). Thus, in order to evaluate their techno-economic viability for a certain
application, detailed information about Li-ion battery performance behavior becomes necessary.
This paper proposes a comprehensive seven-step methodology for laboratory characterization of
Li-ion batteries, in which the battery’s performance parameters (i.e., capacity, open-circuit voltage
(OCV), and impedance) are determined and their dependence on the operating conditions are
obtained. Furthermore, this paper proposes a novel hybrid procedure for parameterizing the batteries’
equivalent electrical circuit (EEC), which is used to emulate the batteries’ dynamic behavior. Based
on this novel parameterization procedure, the performance model of the studied Li-ion battery is
developed and its accuracy is successfully verified (maximum error lower than 5% and a mean error
below 8.5 mV) for various load profiles (including a real application profile), thus validating the
proposed seven-step characterization methodology.

Keywords: lithium-ion (Li-ion) battery; characterization; methodology; performance modelling;
electrochemical impedance spectroscopy; DC pulses; validation

1. Introduction

Recent developments of lithium-ion (Li-ion) batteries based on new and improved chemistries
have resulted in batteries with high performance, long lifetime and increased safety [1,2]. Thus,
Li-ion batteries have become the key energy storage technology for e-mobility applications [3,4].
Furthermore, energy storage systems based on Li-ion batteries are evaluated in different projects where
they are used in grid ancillary service applications [5–7] or for renewables’ grid integration [6,8,9].
Consequently, Li-ion batteries are expected to become the major player in utility-scale applications as
stated in different surveys [10,11]. Nevertheless, Li-ion batteries are characterized by a high investment
cost in comparison to other energy storage technologies (e.g., lead acid and nickel metal hydride
(NiMH) batteries) and their performance behavior is highly influenced by the operating conditions:
temperature, load current and state-of-charge (SOC). Thus, in order to gain from the aforementioned
advantages, the Li-ion batteries have to be operated in an efficient and cost-effective manner.

This objective can be achieved by relying on accurate performance models, which are able to
estimate accurately the dynamic behavior of Li-ion batteries independently of the operating conditions;
thus, precise energy management strategies can be defined and accurate sizing of the Li-ion batteries
based systems can be realized. Moreover, by relying on accurate performance models, Li-ion batteries
can be tested by simulations considering different scenarios, thereby reducing the laboratory testing
efforts that are usually cost demanding and time consuming.
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Depending on the modelling approach followed, Li-ion battery performance models are divided
into three main categories: electrochemical models [12,13], mathematical models [14,15], and
electrical models [16–18]; furthermore, combinations between these three modelling approaches
were proposed [19,20]. These approaches are characterized by different accuracy levels and degrees of
complexity. Electrical models represent the most suitable solutions for Li-ion battery modelling when
they need to be integrated in system-level simulations because of their features such as high accuracy
and average computation complexity [21]. Thus, an electrical-based performance modelling approach
is detailed in this paper.

Electrical models use an equivalent electrical circuit (EEC), composed of combinations of resistors,
capacitors, inductors, constant phase elements etc., to describe the performance (dynamic) behavior
of Li-ion batteries. Two methods are traditionally used to parametrize the elements of the EEC.
The first method involves applying a DC pulse to the Li-ion battery and measuring the voltage response
of the battery [16,22–24]. The DC pulse-based electrical models, also referred as Thévenin-based
electrical models, use a series resistance and several resistance-capacitance (RC) parallel networks to
predict the response of the Li-ion battery to transient load events. The accuracy of the Thévenin-based
models depends on the number of RC networks used to estimate the voltage of the Li-ion battery
(i.e., the higher the number of RC parallel networks, the better the accuracy of the model), as shown
in [22,24]. For a thorough parameterization of the EEC, the DC pulses have to be applied at different
SOCs, load currents, and temperatures since the parameters of the EEC are highly dependent on the
operating conditions as illustrated in [16,25,26]. One of the disadvantages of the DC pulse technique is
represented by the fact that high charging and discharging current pulses cannot be applied at high and
low SOC levels, respectively, for low temperatures since the maximum and minimum battery voltage
values will be reached. Consequently, a full parameterization of the EEC is not possible. Furthermore,
the elements of the EEC, which are determined with this method, mostly lack physicochemical
meaning. All these disadvantages are overcome when the second method based on the electrochemical
impedance spectroscopy (EIS) technique is used for parameterization of the EEC [27]. EIS has become
in the last decade an established technique for characterizing Li-ion batteries and for modelling and
parameterizing their performance behavior [17,18,28,29]. The models developed with this technique,
referred to as impedance-based models, have the advantage that their EEC’s elements can be easily
related with physicochemical processes that occur inside the battery, such as charge transfer and
diffusion [28,30,31]. In order to parameterize an impedance-based model, EIS measurements have to
be performed at various battery SOC levels and temperatures. Furthermore, it is possible to perform
EIS measurements with superimposed DC current, in order to obtain the dependence of the EEC
elements on the load current [29]; however, these measurements can be performed only for small
currents (reduced C-rates) because, since the EIS measurements are time demanding, they will result
in changing the Li-ion battery’s SOC. Thus, the impedance-based performance model will not be able
to predict accurately the voltage of the Li-ion batteries for high C-rates, which are characteristic for
Li-ion batteries used in many e-mobility and grid applications.

This paper proposes a new approach to parameterize the EEC, which combines the advantages
of the two traditional methods. Therefore, the proposed hybrid method uses the EIS technique to
parameterize the EEC and express the dependence of its elements on the SOC and temperature and the
DC pulse technique to express their dependence on the load current. Furthermore, a physicochemical
interpretation of the EEC elements and their corresponding values can be realized. Nevertheless,
building and parameterizing a performance model for a Li-ion battery is a complex process and
an extensive laboratory characterization of the targeted battery has to be performed in order to obtain
information about various parameters such as: capacity, open-circuit voltage (OCV) etc. and their
dependence on the operating conditions such as: SOC, temperature, and load current. Thus, besides
proposing a new approach of parameterizing the EEC, this paper presents a comprehensive seven-step
methodology for characterizing and modelling the performance behavior of a Li-ion battery. The
present paper is structured as follows. Section 2 gives brief information about the Li-ion battery used
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in this work and presents the experimental set-up used for characterizing the Li-ion battery. Section 3
presents the proposed seven-step methodology for characterizing and parameterizing the performance
model of the studied Li-ion battery. Based on the obtained results from the characterization test,
the performance model of the Li-ion battery is developed in Section 4. In Section 5, extensive results
obtained from the validation of the proposed performance model are presented, while concluding
remarks are given in Section 6.

2. Experimental Set-Up

At present, a wide variety of Li-ion battery chemistries are available on the market that are,
depending on their characteristics, suitable for a broad range of applications from electro-mobility
to back-up power and renewables’ grid integration [32]. Nevertheless, none of these chemistries
is superior to the others from all perspectives (e.g., energy density, specific energy, cost per cycle,
etc.) [33]. Therefore, the characterization methodology presented in this work and the proposed
performance model can be applied independently of the type of the selected Li-ion battery chemistry.
For exemplifying the proposed characterization methodology, a commercial 2.5 Ah battery based on
the lithium iron phosphate/graphite (further referred to as LFP/C), is used in this work.

During the whole characterization process, the battery was placed inside a temperature-controlled
chamber, as illustrated in Figure 1, and its temperature was continuously monitored using a PT100
sensor. Furthermore, the temperature of the chamber was adjusted in order to obtain the desired
temperature on the surface of the LFP/C battery; thus, the temperature values mentioned in this work
are the ones of the battery and not the ambient temperature values of the chamber.
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Figure 1. Lithium iron phosphate/graphite (LFP/C) battery during the characterization procedure.
EIS: electrochemical impedance spectroscopy.

3. Lithium-Ion Battery Characterization Methodology

The main objective of the proposed characterization methodology was to measure the performance
parameters of the studied battery and to determine their dependence on the operating conditions;
the operating conditions cover the sum of the conditions given by the load current, temperature, and
SOC. Based on the obtained results, which are presented throughout this section, the performance
model of the LFP/C battery was developed and parameterized (see Section 4).

In order to determine the performance behavior of the tested LFP/C battery, the seven-step
methodology, which is presented in Figure 2, was proposed. This methodology is composed of various
tests, which were carried out following the sequence illustrated in Figure 2; the first six tests are
presented throughout the next subsections, while the last step (i.e., verification test) is extensively
discussed in Section 5.
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Figure 3. Discharging capacity of the LFP/C battery measured during the preconditioning test (1C-
rate, T = 25 °C). 

The measured capacity of the LFP/C battery was stable, with a tendency of slight monotonic 
increase of approximately 0.6% during the five performed cycles; nevertheless, the battery was 
considered preconditioned since its capacity did not change more than 3% during two consecutive 
discharges [34]. 
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battery was considered quasi-stabilized); thus, the OCV error was computed according to Equation (1). 

Figure 2. Test sequence for characterization of the LFP/C battery. OCV: open-circuit voltage;
SOC: state-of-charge; and HPPC: hybrid pulse power characterization.

3.1. Preconditioning Test

The objective of the preconditioning test was to remove any possible passivation to which the
battery was subjected to, between the manufacturing time and the initial tests. Moreover, an additional
goal of this test was to stabilize the battery capacity since the solid electrolyte interface of the batteries
is not shaped after the manufacturing process and its porosity/shape changes meaningfully after the
first few cycles. Thus, the preconditioning test was composed of five successive charge-discharge cycles
performed with 1C-rate (i.e., 2.5 A) at 25 ◦C [21]. The results obtained for the case of the discharging
capacity of the tested battery are presented in Figure 3.
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T = 25 ◦C).

The measured capacity of the LFP/C battery was stable, with a tendency of slight monotonic
increase of approximately 0.6% during the five performed cycles; nevertheless, the battery was
considered preconditioned since its capacity did not change more than 3% during two consecutive
discharges [34].

3.2. Relaxation Test

Usually, the behavior of the Li-ion batteries is altered by the concentration gradients of the ionic
charge carriers immediately after the load current is switched off [35]. Consequently, a relaxation
period, which will allow the battery to reach thermodynamic stability, has to be applied between the
switch off of the load current and the desired measurement. In order to determine the optimal length
of this relaxation period, the behavior of the OCV of the LFP/C battery was investigated; the battery
was fully charged and then discharged at three different SOCs (i.e., 80%, 50% and 20%), where it was
kept at OCV conditions for 24 h, respectively [21]. The voltage values measured, with one-second
resolution, during the relaxation period were related to the OCV value measured after 24 h (when the
battery was considered quasi-stabilized); thus, the OCV error was computed according to Equation (1).
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εOCV =
|Vi −OCV|

OCV
· 100 (1)

where εOCV represents the OCV error and Vi represents the voltage measured at every second during
the 24 h relaxation.

Based on the obtained results, which are summarized in Table 1, it was concluded that
the OCV value is only slightly influenced by a relaxation time, which varies between 15 min
and 24 h. Thus, a relaxation time of one hour was considered enough for the LFP/C battery
to reach quasi-thermodynamic stability and to allow for accurate measurement of the desired
performance parameters.

Table 1. Voltage measured at 20%, 50%, and 80% SOC after various relaxation time periods and
corresponding OCV errors.

Relaxation
Time

SOC = 20% SOC = 50% SOC = 80%

Voltage (V) OCV Error (%) Voltage (V) OCV Error (%) Voltage (V) OCV Error (%)

1 s 3.157 2.80 3.230 2.03 3.270 2.00
15 min 3.236 0.37 3.292 0.15 3.325 0.37

1 h 3.241 0.23 3.295 0.07 3.335 0.07
2 h 3.243 0.17 3.295 0.05 3.336 0.04

24 h 3.248 0 3.297 0 3.337 0

3.3. Capacity Test

The capacity of Li-ion batteries is dependent on the operating temperature and on the applied load
current [15,17]. Moreover, as presented by various researchers, the capacity of Li-ion batteries degrades
over time [36–38]; however, this analysis is out of the scope of the present paper. The objective of the
capacity test was to determine the dependence of the charged and discharged capacity of the LFP/C
battery on the two aforementioned parameters. Thus, the capacity of the battery was measured for
six different C-rates (i.e., C/4, C/2, 1C, 2C, 3C and 4C) and at four different temperatures (i.e., 15 ◦C,
25 ◦C, 35 ◦C and 45 ◦C), following the procedure which is presented in [21].

The dependence of the LFP/C battery’s discharging capacity on the C-rate and on the temperature
is illustrated in Figure 4. The discharged capacity of the LFP/C battery measured at 25 ◦C decreases as
the applied current increases; however, the decrease of the capacity for the considered C-rate interval
(C/4–4C) is lower than 1%. This behavior suggests a Peukert number very close to 1, which is in good
agreement with the results reported for a similar battery chemistry by Omar et al. [39]. Furthermore,
as presented in Figure 4, for the considered temperature interval, a slight increase of the LFP/C battery
capacity with increasing temperature was measured, which might have been caused by the increased
electronic and ionic conductivity in the electrode and electrolyte at high temperatures; similar results
were reported in [17,39,40].
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3.4. Open-Circuit Voltage versus State-of-Charge Test

Similar to most of the Li-ion battery parameters, the OCV is strongly dependent on the operating
conditions (i.e., temperature, SOC, etc.). Therefore, the goal of this test was to measure the OCV-SOC
characteristic of the LFP/C battery at different temperatures for both charging and discharging
conditions; the OCV was measured in steps of 5% SOC following the methodology described in [21].

For instance, the OCV-SOC characteristic of the tested battery, measured at 25 ◦C, is presented in
Figure 5. For the measured characteristic, a hysteresis effect is observed, which is more pronounced
for the 10%–40% SOC interval. This behavior of the OCV is intrinsic for Li-ion batteries based on
active materials, which perform a two-phase transition lithium insertion and extraction process, as is
the case of the LFP material [41]. The hysteresis effect is mainly influenced by the previous history
(e.g., charging/discharging C-rate and relaxation time) of the LFP/C battery and can be modelled
following various approaches reported in literatures [42,43].
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3.5. Hybrid Pulse Power Characterization Test

The impedance represents a very important performance parameter of the Li-ion batteries since
it defines the power capability of the battery. Moreover, it is the parameter which describes the
dynamic behavior of Li-ion batteries. As most of the Li-ion battery parameters, the impedance shows
a non-linear behavior depending on the operating conditions such as SOC, temperature, C-rate [44,45].
Furthermore, the battery impedance is highly dependent on the battery’s state-of-health (SOH) [44];
however, this is out of the scope of the present work. In order to account for all the aforementioned
dependences, the impedance of the LFP/C battery was measured following a modified version of
the hybrid pulse power characterization (HPPC) test. The measurement profile applied to the LFP/C
battery is presented in Figure 6 and consists of consecutive charging and discharging DC current
pulses of different C-rates (i.e., 0.1C, 0.5C, 1C, 2C, 3C and 4C); the pulse duration was set to 18 s [34]
and the relaxation time between each two consecutive pulses was set to 15 min.
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Furthermore, in order to consider the dependence of the impedance on SOC and temperature,
the test profile presented in Figure 6 was applied to the 5%–95% SOC interval (considering a 5% SOC
resolution) and for the same temperatures (i.e., 15 ◦C, 25 ◦C, 35 ◦C and 45 ◦C) considered during
measurement of the other performance parameters.

The typical voltage response of a Li-ion battery to a discharging current pulse is illustrated in
Figure 7; a similar voltage behavior is obtained for a charging current pulse. As presented in the ISO
12405-1:2011 Standard [34], the charging and discharging impedance of the battery could be calculated
for various pulse lengths (i.e., 0.1 s, 2 s and 18 s). Furthermore, the impedances corresponding to
these pulse lengths are caused by/related to different electrochemical processes inside the battery [44].
Nevertheless, in this work, impedance values determined for a current length of 18 s are presented.
Based on the current and voltage measurements, the impedance of the Li-ion battery is computed
based on Ohm’s law, as:

Ri =
∆V
∆I

=
V1 −V0

I1
(2)

where Ri represents the impedance of the battery, ∆V represents the change in the voltage due to the
applied current pulse, ∆I represents the change in the current, V1 represents the voltage measured
after 18 s, V0 represents the voltage measured just before applying the current pulse, and I1 represents
the amplitude of the applied current pulse.
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The voltage response of the LFP battery to the current profile measured at 50% SOC is illustrated
in Figure 8.
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Based on battery’s voltage response (similar to those presented in Figure 8), and considering
Equation (2), the charging and discharging impedance of the tested LFP/C battery was determined
for all the considered conditions; for example, Figure 9 presents the measured impedance of the
LFP/C during pulse charging and discharging with 1C-rate (i.e., 2.5 A) at T = 25 ◦C. Both impedance
characteristics are showing a parabolic dependence on the SOC, following a nearly flat region between
20% and 90% SOC.
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Figure 9. Measured impedance of the LFP/C battery during 18 s charging and discharging current
pulse (1C-rate, T = 25 ◦C).

3.6. Electrochemical Impedance Spectroscopy Test

EIS has developed as a reliable method for characterization and modelling the performance
behavior of the Li-ion batteries. The small-signal impedance of the Li-ion batteries is determined
by applying a small sinusoidal current (galavantostatic mode) or voltage (potentiostatic mode) and
measuring the amplitude and phase shift of the output voltage or current, respectively. This procedure
is repeated for a sweep of frequencies, and thus the battery impedance spectrum is obtained.

In this work, the EIS measurements were performed in galvanostatic mode and for the frequency
range 10 kHz–10 mHz. Furthermore, all the EIS measurements were performed without superimposed
DC current; thus, the influence of the current on the small-signal AC impedance was not determined.
As for the other considered performance parameters, the small-signal impedance was measured
at different temperatures and for the entire SOC interval (0%–100% SOC with 5% SOC resolution).
The dependence of the LFP/C battery’s impedance spectra on the SOC and temperature is presented
in Figures 10 and 11, respectively.
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4. Lithium-Ion Battery Performance Model

Li-ion battery performance models can be classified into three main categories: electrochemical,
electrical, and mathematical models, depending on the development and parameterization approach.
These modelling approaches are characterized by different degrees of complexity, different accuracy
levels and could be used for different purposes (e.g., battery design, system simulation). Nevertheless,
this work has focused on the development and parameterization of the LFP/C battery performance
model using an electrical modelling approach.

4.1. Equivalent Electrical Circuit Model

Li-ion batteries’ electrical models generally use EECs, composed of simple (e.g., resistors,
capacitors, inductors) or more complex elements (e.g., constant phase elements, Warburg elements,
etc.) and a voltage source to express the dynamic behavior of batteries. The basic configuration of
an EEC-based performance model is presented in Figure 12. The structure of the EEC can have different
configurations depending on various aspects, such as: model accuracy, model computation time, Li-ion
battery chemistry, etc.
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According to the configuration shown in Figure 12, the voltage of the battery is computed
according to Equation (3).

Vbat = VOC ±VEEC (3)

where Vbat represents the voltage of the battery, VOC represents the OCV, and VEEC represents the
voltage drop across the EEC, which is used to model the dynamics of the battery.

The voltage drop across EEC’s impedance is obtained as the sum of various over-voltages, which
are caused by different processes occurring inside the battery with different time constants during
charging or discharging [46]:

VEEC = Vohmic ±Vchtr ±Vdiff (4)

where Vohmic represents the ohmic over-voltage (caused by the resistance of the poles, current collectors,
electrolytes, etc.), Vchtr represents the charge transfer over-voltage (caused by electrochemical reaction
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at inner surfaces), and Vdiff represents the diffusion over-voltage (caused by a deficit or surplus of
reactants at the reaction’s location).

Thus, to model the voltage behavior of the LFP/C battery, the contributions of the VOC and of the
VEEC components have to be known. The contribution of the OCV to the battery voltage was obtained
for various conditions (i.e., SOCs and temperatures) during the battery characterization, as presented
in Section 3.4. To obtain the contribution of the VEEC to the LFP/C battery voltage, the EEC had to
be parameterized.

The parameterization of the EEC was realized by curve fitting the impedance spectra of the LFP/C
battery, which were measured at different conditions as presented in Section 3.6. The configuration of
the EEC which was used for curve fitting, and consequently to express the dynamics of the LFP/C
battery, is illustrated in Figure 13. The curve fitting procedure was based on a complex non-linear
least-square (CNLS) algorithm, where both real and imaginary components of the measured impedance
were fitted simultaneously using a least square minimization; an example of the impedance spectrum
curve fitting results is shown in Figure 14.
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the measured impedance spectra of the LFP/C battery. CPE: constant phase element.

Batteries 2016, 2, 37 10 of 19 

electrochemical reaction at inner surfaces), and Vdiff represents the diffusion over-voltage (caused by 
a deficit or surplus of reactants at the reaction’s location). 

Thus, to model the voltage behavior of the LFP/C battery, the contributions of the VOC and of the 
VEEC components have to be known. The contribution of the OCV to the battery voltage was obtained 
for various conditions (i.e., SOCs and temperatures) during the battery characterization, as presented 
in Section 3.4. To obtain the contribution of the VEEC to the LFP/C battery voltage, the EEC had to be 
parameterized. 

The parameterization of the EEC was realized by curve fitting the impedance spectra of the 
LFP/C battery, which were measured at different conditions as presented in Section 3.6. The 
configuration of the EEC which was used for curve fitting, and consequently to express the dynamics 
of the LFP/C battery, is illustrated in Figure 13. The curve fitting procedure was based on a complex 
non-linear least-square (CNLS) algorithm, where both real and imaginary components of the 
measured impedance were fitted simultaneously using a least square minimization; an example of 
the impedance spectrum curve fitting results is shown in Figure 14. 

 
Figure 13. Equivalent electrical circuit (EEC) configuration based on ZARC elements used for fitting 
the measured impedance spectra of the LFP/C battery. CPE: constant phase element. 

 
Figure 14. Measured and fitted impedance spectrum using the EEC presented in Figure 13. 

As presented in Figure 14, the EEC configuration based on a series inductance Ls, a series 
resistance Rs, and two ZARC elements (i.e., parallel connections of a resistor and a constant phase 
element) was able to accurately fit the measured impedance spectrum of the tested LFP/C battery. 
Therefore, this EEC configuration was used to fit all the measured impedance spectra (at the 
conditions discussed in Section 3.6) and thus to model the performance behavior of the LFP/C battery. 
The impedance of the selected EEC is given by: 

( ) ( )1 2

1 2
EEC

1 1 2 21 ω 1
s s N N

R R
Z jω L R

j Q R j Q R
= + + +

+ + ω
 (5) 

where R1, Q1, and N1 represent the resistance, the generalized capacitance and the depression factor 
of the first ZARC element, respectively; the same explanations are valid for the second ZARC of the 
EEC. 

A main advantage of the EIS technique over other parameterization techniques is represented 
by its feature to relate EEC elements to the physicochemical process that occur inside the battery 
[28,30]. Thus, in the present work, the first term in Equation (5) is used to describe the inductive 
behavior at high frequencies, the second term is used to calculate the over-voltage caused by the 
ohmic resistance (Vohmic), the third term is used to calculate the over-voltage corresponding to the 

5 7 9 11 13

0

2

4

6

 

Real Z [mΩ]

-I
m

ag
in

ar
y 

Z
 [

mΩ
]

Measured spectrum
Fitted spectrum

Figure 14. Measured and fitted impedance spectrum using the EEC presented in Figure 13.

As presented in Figure 14, the EEC configuration based on a series inductance Ls, a series resistance
Rs, and two ZARC elements (i.e., parallel connections of a resistor and a constant phase element)
was able to accurately fit the measured impedance spectrum of the tested LFP/C battery. Therefore,
this EEC configuration was used to fit all the measured impedance spectra (at the conditions discussed
in Section 3.6) and thus to model the performance behavior of the LFP/C battery. The impedance of
the selected EEC is given by:

ZEEC = jωLs + Rs +
R1

1 + (jω)N1 Q1R1
+

R2

1 + (jω)N2 Q2R2
(5)

where R1, Q1, and N1 represent the resistance, the generalized capacitance and the depression factor of
the first ZARC element, respectively; the same explanations are valid for the second ZARC of the EEC.

A main advantage of the EIS technique over other parameterization techniques is represented by
its feature to relate EEC elements to the physicochemical process that occur inside the battery [28,30].
Thus, in the present work, the first term in Equation (5) is used to describe the inductive behavior at
high frequencies, the second term is used to calculate the over-voltage caused by the ohmic resistance
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(Vohmic), the third term is used to calculate the over-voltage corresponding to the charge-transfer
process (Vchtr), while the last term is used to determine the over-voltage corresponding to the diffusion
process (Vdiff). Consequently, based on the aforementioned aspects, the battery voltage Equation (3)
was rewritten as given in Equation (6). Furthermore, considering Equation (6), the configuration of
the EEC, which was used to model the performance behavior of the LFP/C battery, is presented in
Figure 15.

Vbat = VOC + Ibat(jωLs + Rs +
R1

1 + (jω)N1 Q1R1
+

R2

1 + (jω)N2 Q2R2
) (6)
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4.2. Dependence on Load Current

Besides being dependent on SOC and temperature—dependences obtained from the EIS
measurements (see Section 3.6)—the parameters of the EEC are also dependent on the load current
as illustrated in Figure 15. Nevertheless, because all the EIS measurements were performed without
superimposed DC current (see Section 3.6), the effect of the load current on the parameters of the
EEC was not determined. Among the parameters of the EEC, the charge transfer resistance R1 shows
a highly non-linear dependence on the load current. This non-linear dependence of the charge-transfer
resistance, and of the corresponding over-voltage, on the LFP/C battery current is presented in
Figure 16.
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Theoretically, the exponential dependence between the Li-ion battery current and the potential
can be determined from the Butler-Volmer equation given in Equation (7) [47].

i = i0

(
e
αnF
RT ·η − e−

(1−α)nF
RT ·η

)
(7)

where i is the electrode current density, i0 is the exchange current density, α is the symmetry factor, n is
the number of electrons, R is the universal gas constant (8.3144 J·K−1·mol−1), F is the Faraday constant
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(96,485.339 C·mol−1), η is the overpotential (i.e., the difference between the electrode potential and
equilibrium potential).

However, information about various parameters given in Equation (7) were not available and
require specialized laboratory equipment in order to determine them. Consequently, in order to
determine the dependence of the LFP/C battery voltage on the load current, the following approach
was followed: a comparison was performed between the battery voltage response measured over
a period of 18 s in the laboratory (during the HPPC tests—see Section 3.5) and the simulated voltage
response. The obtained difference was considered to describe the impact of the current on the voltage
of the LFP/C battery. The aforementioned procedure was repeated for all SOCs, temperatures,
and C-rates, which were considered during the battery impedance measurement by HPPC test.
The obtained voltage correction factors, assigned to the effect of the current on the LFP/C battery
voltage were stored as a 3D look-up table; for instance, Figure 17 presents the look-up table
implementation of the voltage correction factors for the 25 ◦C dimension.
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4.3. Model Implementation

Based on the voltage Equation (6) and considering the dependences of the performance parameters
on the operating conditions, the performance model of the LFP/C battery was implemented according
to the block diagram proposed in Figure 18.
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The inputs of the proposed performance model for the LFP/C battery are the applied load current,
the initial SOC and the temperature, while the output of the model is the estimated battery voltage;
additionally, the model can return information about the battery SOC at every moment. Furthermore,
since no thermal model was developed for the LFP/C battery, the temperature of the battery is
considered constant during the whole simulation.
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The parameterization of the proposed performance model was performed based on the results
obtained from the characterization test, which was presented in detail in Section 3. The parameters
of the LFP/C battery were implemented as 2D look-up tables (i.e., capacity, OCV, EEC’s parameters)
and 3D-look-up table (i.e., Butler-Volmer correction voltage) in order to consider their dependences
on the operating conditions (i.e., SOC, temperature, and load current). Because for similar operating
conditions, the capacity of the Li-ion batteries is different between charging and discharging case
(i.e., Coulombic efficiency different than 100%), two separate look-up tables were implemented for
the charging and discharging capacity, respectively. Because of the hysteresis effect (see Figure 5),
which is inherent to LFP/C battery chemistry, a similar approach was followed for implementing the
OCV characteristic; however, for other Li-ion battery chemistries, a single look-up table is enough to
model the OCV characteristic for both charging and discharging cases.

During the fitting process of the measured impedance spectra, it was found out that only Rs, R1,
R2, Q1, and Q2 are dependent on the SOC and temperature at which the EIS measurements had been
performed. Consequently, these parameters were implemented into the performance model as 2D
look-up tables since their values are dependent on the SOC and temperature; Figure 19 exemplifies the
look-up table implementation of the series resistance Rs. The other parameters of the EEC, Ls, N1, and
N2 were found to be constant, independent of the operating conditions: Ls = 1.8 × 10−8 H, N1 = 0.5,
and N2 = 0.8.
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Finally, the estimated voltage of the LFP/C battery was obtained by summing up the contributions
from the OCV, the voltage drop across the EEC, and the Butler-Volmer correction voltage, as illustrated
in Figure 18.

5. Validation of the Performance Model

In order to verify the accuracy of the developed performance model of the LFP/C battery and
to validate the proposed characterization procedure, different load current profiles were considered.
The accuracy of the developed performance model was evaluated by computing the coefficient of
determination R2 which was obtained by comparing the measured and estimated battery’s voltage
profiles, according to Equation (8).

R2 = 1−

n
∑

x=1
(Vmodel (x)−Vmeas (x))2

n
∑

x=1

(
Vmodel (x)−Vmeas

)2
(8)

where Vmodel is the estimated battery voltage, Vmeas represents the measured battery voltage, x
represents the present observation, and n represents the total number of observations.
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Moreover, the mean (ε) and the maximum (εmax) deviation between the measured and estimated
battery voltage profiles were computed according to Equations (9) and (10) for the three considered
verification cases.

|ε| = |Vmeas (x)−Vmodel (x)| (9)

εmax = max
(

100 · |Vmeas (x)−Vmodel (x)|
Vmeas (x)

)
(10)

5.1. Pulse Discharge

The first validation of the developed performance model was carried out using a discharging
current pulse profile. From a fully charged state, the LFP/C battery was discharged with 1C-rate
(i.e., 2.5 A) in steps of 10% SOC; between two consecutive discharging current pulses, a relaxation
period of 15 min was applied. The measured and estimated voltage profiles of the LFP/C for this
verification case are illustrated in Figure 20. The developed performance model was able to estimate
very accurately the voltage of the tested LFP/C battery, with a maximum error εmax = 3.66% and
a mean error ε = 6.8 mV.
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Figure 20. Measured and estimated voltage profiles during pulse discharging of the LFP/C battery
(Ibat = 2.5 A, T = 25 ◦C).

The distribution of the voltage deviations, expressed as relative error values, is presented in
Figure 21, showing that the model has a slight tendency of over-estimating the voltage behavior
of the tested LFP/C battery; the main contribution of this tendency is represented by the voltage
estimation error after the current pulse is cut off. The dynamic behavior of the performance model
might be improved (thus the accuracy of the model will further increase) by considering an EEC with
more ZARC elements (or R-C parallel networks) [24]; however, this will cause a high increase of the
computation time of the performance model.
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5.2. Dynamic Pulse Charging and Discharging

In real applications (e.g., e-mobility, grid support etc.), Li-ion batteries are subjected to complex
charging-discharging profiles. Consequently, the developed performance model was verified for
a current profile, which was composed of charging and discharging pulses of different C-rates, over the
whole SOC interval; the considered current profile is presented in Figure 22. To allow for a non-biased
verification, the C-rates, which were used for this dynamic profile, are different than the C-rates used
to compute the Butler-Volmer correction voltage (see Sections 3.5 and 4.2).
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Figure 22. Dynamic current profile used for verification of the LFP/C battery performance model.

The measured and estimated voltage profiles obtained by applying the dynamic current profile,
presented in Figure 22, are illustrated in Figure 23. For this case, the proposed model is able to predict
the voltage of the LFP/C battery with a mean error of ε = 6.4 mV and maximum error of εmax = 4.89%.
Furthermore, the distribution of the relative error, presented in Figure 24, shows in this case a tendency
of the developed model to under-estimate the voltage of the battery; as shown in the zoomed view of
Figure 23, this under-estimation of the voltage was mainly caused by the inability of the model to react
to sudden and large variation of C-rates (i.e., 3.5C-rate to 1C-rate).
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Figure 23. Measured and estimated voltage profiles during dynamic pulse charging and discharging
of the LFP/C battery (Ibat = 2.5 A, T = 25 ◦C).

Batteries 2016, 2, 37 15 of 19 

current profile, which was composed of charging and discharging pulses of different C-rates, over 
the whole SOC interval; the considered current profile is presented in Figure 22. To allow for a non-
biased verification, the C-rates, which were used for this dynamic profile, are different than the C-
rates used to compute the Butler-Volmer correction voltage (see Sections 3.5 and 4.2). 

The measured and estimated voltage profiles obtained by applying the dynamic current profile, 
presented in Figure 22, are illustrated in Figure 23. For this case, the proposed model is able to predict 
the voltage of the LFP/C battery with a mean error of ε  = 6.4 mV and maximum error of εmax = 4.89%. 
Furthermore, the distribution of the relative error, presented in Figure 24, shows in this case a 
tendency of the developed model to under-estimate the voltage of the battery; as shown in the 
zoomed view of Figure 23, this under-estimation of the voltage was mainly caused by the inability of 
the model to react to sudden and large variation of C-rates (i.e., 3.5C-rate to 1C-rate). 

 
Figure 22. Dynamic current profile used for verification of the LFP/C battery performance model. 

 
Figure 23. Measured and estimated voltage profiles during dynamic pulse charging and discharging 
of the LFP/C battery (Ibat = 2.5 A, T = 25 °C). 

 
Figure 24. Distribution of the relative error obtained during dynamic pulse charging and discharging 
verification case. 

0 1000 2000 3000 4000 5000
-15

-10

-5

0

5

10

Time [s]

C
ur

re
nt

 [
A

]

2000 2200

-5

0

5

Charging to 
next SOC

Charging/Discharging 
profile applied at each SOC

0 1000 2000 3000 4000 5000
2.6

2.8

3

3.2

3.4

3.6

Time [s]

V
ol

ta
ge

 [
V

]

 

 

Measurement
Simulation

3600 3800 4000
3.2

3.3

3.4

 

 

-4 -2 0 2 4
0

200

400

600

800

1000

1200

Relative Error [%]

N
um

be
r 

of
 O

cc
ur

an
ce

s

Figure 24. Distribution of the relative error obtained during dynamic pulse charging and discharging
verification case.
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5.3. Field-Measured Profile

The third verification of the developed performance model was performed using a realistic current
profile, which was measured on field on LFP/C batteries providing primary frequency regulation (PFR)
in the Danish energy market [5]. The considered current profile with a length of two hours is illustrated
in Figure 25. The comparison between the estimated and measured voltage of the LFP/C battery, when
the field-measured current profile was considered, is presented in Figure 26. The performance model
of the LFP/C battery estimates generally with good accuracy (ε = 8.4 mV and εmax = 4.54%) the voltage
of the battery. Nevertheless, the model has the tendency to over-estimate the voltage response of the
LFP/C battery, when sudden and large variation of the load current have occurred (i.e., changes in the
current from below 1C-rate to 4C-rate); this behavior is illustrated in Figure 27, where the distribution
of the relative error obtained by comparing the measured and estimated voltage profiles is plotted.
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Figure 25. Field-measured current profile used for the verification of the performance model.
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Figure 26. Measured and estimated voltage profiles obtained for the field-measured current profile at
T = 25 ◦C.
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The developed performance model is able to accurately estimate the voltage behavior of the tested
LFP/C battery—regardless of the applied current profile—returning a maximum error lower than 5%
and a mean error below 8.5 mV as summarized in Table 2.

Table 2. Performance model accuracy for different load profiles. PFR: primary frequency regulation.

Profile Mean Error, |ε| Maximum Error, εmax R2

Pulse discharging 6.8 mV 3.66% 0.9917
Dynamic profile 6.4 mV 4.89% 0.9255

PFR profile 8.4 mV 4.54% 0.7724

6. Conclusions

A seven-step characterization methodology for measuring the performance characteristics
of the Li-ion batteries was proposed in the first part of this work. For exemplification of the
procedure, a commercially available 2.5 Ah LFP/C battery was used. The results obtained during
the characterization test were used to develop and parameterize the performance model of the
LFP/C battery.

In order to model the dynamic behavior of the battery, a novel hybrid procedure was proposed.
Thus, the developed performance model combines information obtained from the electrochemical
impedance spectroscopy (EIS) test (i.e., dependence of the impedance on SOC and temperature) and
HPPC test (i.e., dependence on the load current), respectively. The proposed hybrid performance model
was verified using different representative dynamic current profiles. The obtained results, maximum
error lower than 5% and a mean error below 8.5 mV, have suggested that the developed model is
able to estimate with high accuracy the voltage of the LFP/C battery, independent of the considered
test conditions. Thus, it can be concluded that the proposed seven-step generalized characterization
procedure for Li-ion batteries was validated.

Even though the proposed characterization procedure was illustrated for a certain Li-ion battery
chemistry (i.e., LFP/C), it can be applied to any type of Li-ion battery chemistry with the amendment
that the values of the test conditions (i.e., temperature and load current levels) have to be adjusted in
order to match the manufacturer data-sheets.
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