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For radio channels with broad bandwidth resource, such as those often used for ultrawideband (UWB) and millimeter wave
(mmwave) systems, the Wide-Sense Stationary Uncorrelated Scattering (WSSUS) and spatial stationary assumptions are more
critical than typical cellular channels with very limited bandwidth resource. This paper studies spatial stationarity and bandwidth
dependency of the Multipath Component (MPC) parameters, and the concept of local region of stationarity (LRS) is used as the
measure of the physical stationarity region. LRS calculation results based on channel measurements show that the size of LRS
is bandwidth dependent in all measured bands, 2–4GHz, 14–16GHz, and 28–30GHz. The results in this paper point out that
an inappropriate choice of bandwidth in channel parameter estimation could violate spatial stationary assumptions. The paper
indicates LRS sizes for different bandwidths in the three bands.

1. Introduction

Wide-Sense Stationary Uncorrelated Scattering (WSSUS) [1]
and spatial stationarity (called Homogeneous Channels in
[2]) are often the assumed preconditions in the estimation
of the Multipath Components (MPCs) of wireless radio
channels. Given the wireless channel impulse response in
the representation of ℎ(𝑟, 𝑡, 𝜏), then those assumptions limit
the wireless channel to be stationary or quasi-stationary in
a certain range of space (𝑟), time (𝑡), and delay (𝜏). Once
any one of the assumptions is violated in the postprocessing
of measurement data, the MPC parameter estimation results
could be distorted and blurred.

The frequency resource between 3GHz and 10GHz is
often used for ultrawideband (UWB) systems and is denoted
as the Low Band (LB) in this work. Such UWB channels
normally have a fractional bandwidth of more than 20%.The
MPC parameters in this case are frequency dependent [3, 4],
and the US assumption is incorrect for the whole bandwidth
of such a UWB system. Besides that, the wide bandwidth
allows a desirable extremely high spatial resolution of channel
sounding on one hand, but, on the other hand, it may become
very sensitive to themeasurement locations and therefore the
spatial stationary assumption could be violated as well.

For the frequency resource between 6GHz and 60GHz,
denoted here as the High Band (HB), it is expected to be
used in future millimeter wave (mmwave) systems. For such
mmwave system channels, the bandwidth resources are about
7GHz in the 60GHz band (unlicensed) and about 1 GHz in
the 28GHz and 38GHz bands [5, 6]. Since the fractional
bandwidth is about 10% or less, it could be defined as a
narrowband channel and the space-alternating generalized
expectation-maximization (SAGE) [7] estimates of some
real channel measurements in certain scenarios do show
narrowband properties [8]. However, the absolute bandwidth
resource of the HB channels is comparable with that in
UWB channels in the LB frequency range. Therefore, it is
also very sensitive to the measurement locations and the
spatial stationary assumption could be violated in the data
postprocessing likewise.

Former studies on the spatial stationarity focusmainly on
different frequencies [9, 10]. The contribution of this paper is
the study of the spatial stationarity for different bandwidths,
which is based on two channel measurement campaigns.The
focus is the size difference of the local region of stationarity
(LRS; see Section 2) for different bandwidths assumed in
the data postprocessing. Both UWB and mmwave channels
within the LB and HB frequency ranges are covered.
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Figure 1: Sliding window along antenna array.

Section 2 introduces the method of calculating the LRS.
In Section 3, two channelmeasurement campaigns atAalborg
University are described, and the LRS results are discussed.

2. Local Region of Stationarity

There are two approaches to estimating the physical station-
arity region: one is based on the Covariance Matrix Distance
(CMD) [11–13] and the other is based on the correlation
coefficient of the Averaged Power Delay Profiles (APDPs)
[14]. The CMD method estimates the correlation matrix and
is more suitable in the consideration of MIMO channels and
depends on the type of antenna system used in the channel
measurement. For the APDP method, this is not the case
since it only looks at the PDP and only indirectly at the
interantenna correlation. On the other hand, the correlation
matrix is a narrowband measure, and hence the wideband
properties must be included by averaging over different
frequencies (see [12]). The concern of MIMO system is not
absolutely necessary in the study of the stationarity, and our
study is based on assuming different bandwidths for the data,
where some cases are narrowband while some are wideband.
Therefore, the most straightforward approach is to use the
APDP method for processing the data.

In this paper, we follow both the concept and the defini-
tion of the LRS based on APDP in [14]. In the following we
assume that the channel is static during themeasurements, so
that we can describe it as ℎ(𝑟, 𝜏)without considering the time
dimension 𝑡. For an antenna array consisting of𝑁 antennas,
the impulse responses acquired by the antennas in the array
are ℎ(𝑟

𝑖
, 𝜏), 𝑖 = 1, . . . , 𝑁; see Figure 1.

Here we define 𝑃
ℎ
(𝑟, 𝜏) as the APDP of an 𝑛-antenna

subarray in one sliding window along the antenna array as
(1) and define 𝑃

ℎ
(𝑟 + Δ𝑟, 𝜏) as the APDP of another antenna

subarray, as it moves along the array with a distance of Δ𝑟.
The correlation coefficient of the APDPs is defined as (2),
and 𝑐(Δ𝑟) is the correlation coefficient between the APDPs
acquired from two antenna subarrays in a distance of Δ𝑟.
𝑑LRS in (3) determines the stationary interval as the phys-

ical stationarity region in which the correlation coefficients

between the APDPs, that is, 𝑐(Δ𝑟), are all higher than the
threshold 𝑐th. We assume the MPC parameters are stationary
or quasi-stationary in the spatial dimension inside such
physical stationarity region, which we called LRS, and it is
used to roughly estimate the size of the physical stationarity
region:

𝑃
ℎ (𝑟, 𝜏) =

1

𝑛

𝑛

∑

𝑖=1

󵄨󵄨󵄨󵄨ℎ (𝑟𝑖, 𝜏)
󵄨󵄨󵄨󵄨
2
, (1)

𝑐 (Δ𝑟) =
∫𝑃
ℎ (𝑟, 𝜏) ∗ 𝑃ℎ (𝑟 + Δ𝑟, 𝜏)𝑑𝜏

max {∫𝑃
ℎ (𝑟, 𝜏)

2

𝑑𝜏, ∫ 𝑃
ℎ (𝑟 + Δ𝑟, 𝜏)

2

𝑑𝜏}

, (2)

𝑑LRS = max {Δ𝑟|𝑐(Δ𝑟)>𝑐th} . (3)

The value of threshold 𝑐th which determines the size
of the LRS is not studied here, because it depends on
the channel scenarios and the accuracy requirement of the
MPC estimation algorithms used in the data postprocessing,
which is beyond the scope of this paper. For convenience of
explaining our purpose, we assume 𝑐th = 0.5 is the threshold
in this paper.

Using the larger value of ∫𝑃
ℎ
(𝑟, 𝜏)
2

𝑑𝜏 and
∫𝑃
ℎ
(𝑟 + Δ𝑟, 𝜏)

2

𝑑𝜏 in the denominator of (2) is to assure the
correlation coefficient is smaller than 1. And the purpose of
using the APDP in the equation is for eliminating fast fading
as mentioned in [14].

3. Local Region of Stationarity for
Measured Channels

Two indoor measurement campaigns were performed in the
APNet Section, Department of Electronic Systems, Aalborg
University. The indoor scenarios were widely different in
these two campaigns. One was in the basement in a big,
mostly empty space; the other one was in a filled laboratory.
In addition, the antennas used were different as well. The
measurements in the basement were made in both LB and
HB frequencies, whereas in the laboratory area only HB
frequencies were used.

3.1. Setup of the Indoor Channel Measurement Campaign in
the Basement. AVNAcombinedwith a large virtualUniform
Circular Array (UCA) was used, simultaneously measuring
the frequency band of 2∼4GHz in the LB and the frequency
bands of 14∼16GHz and 28∼30GHz in the HB. The volume
of the empty space in the basement is 7.85m × 7.71m; see
Figure 2. Both transmitter (Tx) and receiver (Rx) were using
a commercial biconical antenna fromA-INFO SZ-2003000/P
[15], which has an omnidirectional radiation pattern in the
H-plane (horizontal plane) from 2GHz to 30GHz, and the
E-plane (elevation plane) in different frequencies also shows
good consistency. Both Tx and Rx test stations were fixed
at 1m height. The Tx was a single fixed antenna. Using a
mechanical positioner, the Rx formed a large virtual UCA
consisting of 720 antenna locations around a circle with
the radius of 0.5m. The space between two adjacent virtual



International Journal of Antennas and Propagation 3

Rx Tx

Metal board

Window Wooden board

Start
point

UCA with 

A
re

a fi
lle

d 
w

ith
 ta

bl
es

be
hi

nd
 a 

w
oo

de
n 

bo
ar

d

Corridor

7
.7
1

m

𝜑 = 0.5m

7.85m

1.
09

m

3.6m

5m

(a) (b)

Figure 2: (a) Floorplan of the basement, (b) photo of real channel environment.
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antenna locations was 0.0044m, less than 𝜆/2 (0.005m) at
30GHz. The measurement contains both line-of-sight (LOS)
and non-LOS (NLOS) scenarios. A metal board was placed
between Tx and Rx for the NLOS measurement.

3.2. LRS for LB and HB Channels in the Basement. The
calculations are based on 16 consecutive virtual antenna
locations in sliding windows along half of the virtual UCA,
where each can be seen as an approximately linear antenna
subarray; see Figure 3. The distance between two virtual
linear antenna arrays was calculated by trigonometry. The
physical distance between the two ends of the virtual linear
antenna array is less than 0.07m.We assume that, within this
distance, the channel is stationary and the MPC parameters
do not change. The far field distance for a single biconical
antenna is about 3m, based on the equation of 2𝐷2/𝜆 at
30GHz.

The LRS calculations are based on the measured data
filtered for different bandwidths: 2 GHz, 800MHz, and
200MHz, centered in each of the three measured bands. All
the calculations are based on normalizedAPDPs (𝑃

ℎ
(𝑟, 𝜏) and

𝑃
ℎ
(𝑟 + Δ𝑟, 𝜏) have the same power).Themaximumdifference

in total power between ∫𝑃
ℎ
(𝑟, 𝜏)
2

𝑑𝜏 and ∫𝑃
ℎ
(𝑟 + Δ𝑟, 𝜏)

2

𝑑𝜏

in different sliding windows is about 10 dB, for both LOS and
NLOS scenarios.

The correlation coefficient 𝑐(Δ𝑟) of the APDPs obtained
for different frequency bands is shown in Figure 4. The size
of LRSs in the 2GHz bandwidth case is clearly different from
the LRSs in the 200MHz and 800MHz bandwidth cases, and,
generally, the broader the bandwidth, the smaller the size of
the LRS.

3.3. Setup of the Indoor Channel Measurement Campaign
in the Laboratory. A VNA combined with a large virtual
Uniform Linear Array (ULA) channel sounding system was
used in theHB frequency range of 27.5–32.5GHz.The volume
of the laboratory is 8.75m times 5.7m, filled with three
test benches and two large cupboards; see Figure 5. The
transmitter (Tx) was a 𝜆/4 single monopole omnidirectional
antenna in the middle of a 10 cm × 10 cm ground plane, fixed
at the height of 126 cm. Radiation patterns of this simple and
widely used structure are shown in Figure 6. The receiver
(Rx) used the same type of monopole antenna mounted on
a linear sledge, which was moved to form a 400 element large
virtual ULA (1m); see the colored lines in Figure 5(a). The
space between adjacent virtual antennas was 2.5mm (𝜆/4 at
30GHz), and the height of whole antenna array was 107 cm.
The Tx position P4 was for the LOS measurement, with
corresponding Rx positions at P1 (V +H), P2 (V), and P3 (V)
in black color; Tx at P5 positionwas forNLOSmeasurements,
with corresponding Rx positions at P1 (V + H), P6 (V + H),
and P7 (H) in red color (LOS and NLOS measurement both
performed at P1 position).

3.4. LRS for the HB Channels in the Laboratory. P4 versus
P1 (V)/P2 (V)/P3 (V) and P5 versus P1 (V)/P6 (V) could be
seen as scenarios with the Rx graduallymoving away from the
Tx. The APDPs are based on 16 consecutive virtual antenna
locations as sliding window along the 1 × 400 virtual ULA;
refer to Figure 1. The physical distance between the two ends
of the virtual linear antenna array is 0.1375m (15 × 𝜆/4 + 2 ×
50mm), andwe assume that, within this distance, the channel
is stationary and the MPC parameters do not change. The far
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Figure 4: Correlation coefficient of the APDPs for the channel measurement in the basement: LOS scenarios: (a) 2–4GHz in LB, (b) 14–
16GHz in HB, and (c) 28–30GHz in HB; NLOS scenario: (d) 2–4GHz in LB, (e) 14–16GHz in HB, and (f) 28–30GHz in HB.
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Figure 6: Omnidirectional monopole antenna, frequency points: 28GHz to 32GHz with 1 GHz step. (a) The absolute gain on the plane of
𝜙 = 0 in spherical coordination system, (b) the absolute gain on the plane of 𝜙 = 90.

field of a single monopole antenna is about 4m, based on the
equation of 2𝐷2/𝜆 at 30GHz.

As above, the LRS calculations are based on the data
filtered for bandwidths of 2GHz, 800MHz, and 200MHz,
each centered in the frequency band. The APDPs were
normalized, and the maximum difference in total power
between ∫𝑃

ℎ
(𝑟, 𝜏)
2

𝑑𝜏 and ∫𝑃
ℎ
(𝑟 + Δ𝑟, 𝜏)

2

𝑑𝜏 in different
sliding windows is about 23 dB, for both LOS and NLOS
scenarios.

The LRS results are very similar to those in Figure 4; the
LRS of P4 versus P3 for LOS scenario and the LRS of P5 versus
P6 for NLOS scenario are shown in Figure 7. The size of LRS
is bandwidth dependent as expected; in general the broader
the bandwidth, the smaller the size of LRS, and the results of
the correlation coefficient of the APDPs have the same trend
for both LOS and NLOS measurements.

3.5. Discussion. From Figures 4 and 7, a general observation
is that a wider bandwidth leads to a smaller LRS for a given
threshold of correlation coefficient of theAPDPs.However, in
Figure 4 this is clearest for the 28–30GHz band and the LOS
case and less clear for the lower bands and the NLOS case.
An explanation could be that the path loss tends to increase
with frequency, so that non-LOS paths are relatively more
important for lower bands than for higher bands. Using a
larger UCA (larger physical distance of two approximately
linear antenna arrays) could possibly lead to a clearer trend
for the lower bands. Notice that we can start to observe the
same trend for physical distances larger than about 0.8m in
Figure 4(d).

Different choices of sounding bandwidths imply different
spatial resolutions. For the three bandwidths used here the
spatial resolutions are about 0.15m, 0.375m, and 1.5m for
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Figure 7: Correlation coefficient of the APDPs at different bandwidth for the channel measurement in the laboratory: (a) LOS scenario: P4
versus P3; (b) NLOS scenario: P5 versus P6.

the 2GHz, 800MHz, and 200MHz bandwidths, respectively.
Observing the curves in the 14–16GHz and 28–30GHz bands
for the LOS case in Figure 4 and the curves for LOS scenario
in Figure 7, the size of the LRS results is proportional to
spatial resolutions corresponding to the bandwidth of the
channel sounding signals. However, for the 2–4GHz band
and the NLOS scenarios, the situation is proportional as well
but with more deviations.

Previously published results have shown a reduced spatial
correlation with increasing carrier frequency, measured with
fixed physical distance between the Tx and Rx [9, 10]. This
means the coherence distance is becoming smaller as the
frequency goes higher. A similar conclusion can be drawn
fromFigure 4 for theNLOS cases. However, for the LOS cases
it seems that the LRS sizes are almost independent of the
frequency, which could be due to the main received power
being concentrated in the LOS path and therefore the channel
does not depend as much on physical dimensions of the
environment, compared to the NLOS case.

4. Conclusion

For characterizing channels used for UWB and mmwave
communication systems, channel sounding with very high
spatial resolution may be used. Estimating channel param-
eters from such data often relies on stationarity assumptions;
therefore the size of the so-called local region of station-
arity (LRS) is critical. This paper applies the LRS to two
sets of indoor channel measurements which includes the
frequency band of 2∼4GHz, typically used for UWB, and the
frequency bands of 14∼16GHz and 28∼30GHz typically used
formmwave systems.The results show that the size of the LRS
is bandwidth dependent for both types of channels. For the
LOS channels the LRS is largely independent of the frequency
band, whereas, for the NLOS channels this is not the case.

The LRS should be considered carefully when performing
parameter estimation in wideband channels, such as using
the DoA/ToA algorithms of beamforming, Capon, MUSIC,
ESPRIT, JADE [16], SAGE, and so forth. An inappropriate
choice of bandwidth could violate the spatial stationary
assumption, and the estimation results could be blurred and
distorted.
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