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Research Article

A plug and produce framework
for industrial collaborative robots

Casper Schou and Ole Madsen

Abstract
Collaborative robots are today ever more interesting in response to the increasing need for agile manufacturing
equipment. Contrary to traditional industrial robots, collaborative robots are intended for working in dynamic envir-
onments alongside the production staff. To cope with the dynamic environment and workflow, new configuration and
control methods are needed compared to those of traditional industrial robots. The new methods should enable shop
floor operators to reconfigure the robot. This article presents a plug and produce framework for industrial collaborative
robots. The article focuses on the control framework enabling quick and easy exchange of hardware modules as an
approach to achieving plug and produce. To solve this, an agent-based system is proposed building on top of the robot
operating system. The framework enables robot operating system packages to be adapted into agents and thus supports
the software sharing of the robot operating system community. A clear separation of the hardware agents and the higher
level task control is achieved through standardization of the functional interface, a standardization maintaining the
possibility of specialized function features. A feasibility study demonstrates the validity of the framework through a series
of reconfigurations performed on a modular collaborative robot.
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Introduction

In response to the challenges derived from the globalization,

manufacturing companies today face the need for more flex-

ible and agile manufacturing equipment. Traditional indus-

trial robots constitute a flexible manufacturing resource as

they hold the option to be reprogrammed to perform new

tasks. However, once the robot is commissioned in a man-

ufacturing line, it is often fixed to a dedicated workstation

doing a single repetitive task. As a result, the original flex-

ibility is not utilized. Collaborative robots, on the other hand,

are intended to operate in the more dynamic production

environment of the human operators with lower batch sizes,

greater variety, diverse tasks, and more frequent change-

overs. In this context, the reconfiguration of the robot to a

new task should no longer be an engineering task but should

be handled by the production staff. However, this requires

new approaches to configuring (installing, equipping, pro-

gramming) and operating the collaborative robot as com-

pared to a traditional industrial robot.1

The transitioning of a collaborative robot to a new task

covers two main reconfigurations: (1) programming the robot

to the new task, and (2) configuring the hardware of the robot.
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In the industry, the variation in tasks is often of such magnitude

that they cannot be solved bya single hardware configuration.2

Thus, the need for hardware reconfiguration emerges.

In previous research, we have focused on intuitive robot

programming and industrial applications for collaborative

robots.3,4 Through this work it has become clear to us that

as the task variety increases, simply reprogramming the robot

is not sufficient; the hardware must be reconfigured as well.

Thus, it is our experience from prior research that hardware

reconfiguration is inevitable in industry. Consequently, our

ongoing research on hardware reconfiguration for collabora-

tive robots is rooted in these practical experiences and

applications.

Recent work by Schou and Madsen5 propose the follow-

ing four research objectives as a roadmap toward an intui-

tive hardware management framework that enables shop

floor operators to perform the hardware reconfiguration

of a collaborative robot:

� modular architecture,

� module selection,

� module exchange, and

� module utilization.

If shop floor operators are to exchange hardware mod-

ules of the robot at the shop floor, the exchange must be fast

and efficient, and it should not require mechanical,

robotics, or programming expertise. Hence, the hardware

exchange should be done in a plug and produce manner.

Realizing this requires not only standardization of the phys-

ical interfaces between the modules but also standardiza-

tion of the control interfaces. Schou and Madsen5 present a

conceptual overview of an envisioned architecture for a

plug and produce framework.

In this article, we propose, design, and demonstrate a

plug and produce framework for modular collaborative

robots based on robot operating system (ROS).6 We adopt

the architecture outline from Schou and Madsen5 and use

this outline to propose an architecture for a hardware man-

agement framework. The framework allows ROS drivers

from the ROS community to be used within the framework

with only very limited adaptation. In extend to the hard-

ware management framework, we also propose a function

generalization which supports the use of both generic and

specific device functionality.

The remaining part of the article is structured as follows.

Related research is presented in the second section. The third

section describes the concept and implementation of the

hardware management framework. Results from a feasibility

study of the presented framework are described in the fourth

section, and the last section draws the conclusions.

Related research

The idea of plug and produce was first proposed by Arai

et al.7 as a response to the need for agile manufacturing

systems. The term is derived from the “plug and play”

concept of the IT world. The purpose of plug and produce

is to enable quick (un)plugging of components from a man-

ufacturing system with little to no reprogramming and

reconfiguration of the remaining system. Since the manu-

facturing equipment domain is vast, complex, and lacks

standardization of interfaces, a modular hardware architec-

ture is often introduced to encapsulate components as mod-

ules with well-defined interfaces. Several authors have

presented modular hardware architectures for robotics.8–17

In extend to the physical structure, the control and commu-

nication architecture must also be considered. One

approach is agent-based systems in which active modules

become independent agents. Agents have some degree of

self-contained control and can provide and request func-

tionality to the rest of the system. Agent-based systems or

multiagent systems originate from the computational

domain; however, agent-based approaches have been pro-

posed in many different aspects of manufacturing enter-

prises.18 Within the domain of manufacturing equipment,

multiagent systems have been proposed on several techni-

cal granularities.19 Some are focused on the production line

or system level, where each agent thus becomes individual

stations or machines. Other focus on the machine level with

individual devices as agents. The latter being related to the

structure of a collaborative robot.

In the EU FP6 project “EUPASS,”20 a multiagent system

architecture was developed defining both hardware and con-

trol interfaces of assembly systems. The architecture covers

automation equipment used for precision assembly in electro-

nics manufacturing; thus, this includes robots and robot mod-

ules.21 Extending the results of EUPASS, the EU FP7 project

“IDEAS”22 developed an integrated agent control board used

as a proxy to adapt legacy components into agents.23 The

proposed framework and agent controller are tested

through a series of industrial experiments which demon-

strates the viability of the agent-based approach for shop

floor reconfiguration of manufacturing systems in real-

world settings.23 In the EU FP7 project “PRIME,”24 a mul-

tiagent system architecture was proposed which includes

both standardized hardware and control interfaces as a

means to developing highly adaptable and reconfigurable

plug and produce systems. In PRIME, explicit focus was

given to adapting legacy components into agents.25

Despite their high relevance to this work, EUPASS,

IDEAS, and PRIME all focus on multiagent systems on a

manufacturing system level. All three projects include

robotics in their architecture, but they do not present a

detailed approach and decomposition for collaborative

robots.

In the study by Andersen et al.,26 a control framework

specifically for a collaborative robot is presented. The

framework enables reuse of both hardware and control

modules and furthermore enables online exchange of hard-

ware components. The article describes the overall concept

and architecture, but only very few implementation details
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are provided. Furthermore, the task control architecture of

the study by Andersen et al.26 uses a taxonomy with a less

clear separation between higher level task control modules

and low-level device functionalities.

In this article, we describe the design, implementation,

and test of a plug and produce framework for industrial,

collaborative robots. Several plug and produce and agent-

based frameworks for robotics have been proposed in

literature; however, only few of them present implemen-

tation details. Given that the usage and acceptance of ROS

is widespread within the collaborative robotics commu-

nity, we see the need for a compatible plug and produce

framework. The proposed framework provides necessary

adaptation for any ROS package to be used in the frame-

work. It is important to note that ROS provides the imple-

mentation infrastructure, and it does not in itself provide a

plug and produce solution. As part of the plug and produce

framework, a function generalization is introduced to

clearly separate the task control system from the device-

level control framework. The focus of this article is the

system-level design of the framework. As a result, we

built the framework on well-established communication

and architectural schemes.

Hardware management framework

The motivation of the hardware management framework

is to introduce an agent-based management and control

scheme for a modular hardware architecture based on

ROS. The framework must be separated from the task

control system and thus be independent from the task

control’s internal architecture. The goal of which is to

make the task control system independent of specific

hardware configurations. Thus, the task control becomes

solely focused on the task related goals, while the device

control system focuses on achieving the actions requested.

The framework manages the connected modules and

introduces a standardized control interface between the

hardware modules and the task control system. The latter

is done using a set of general functions called primitives

serving as a common function interface between the task

control and the hardware devices.

The hardware management framework takes it offset in

an agent-based architecture. It builds on the architecture

outline introduced by Schou and Madsen,5 which in this

work has been developed into further details. The resulting

architecture used in the hardware management framework

is presented in Figure 1.

Each physical device (e.g. gripper, camera, robot arm,

etc.) is represented by an associated device driver acting as

an agent and providing interaction with the given device.

The device manager manages the connected devices and

their respective device drivers. It keeps track of the avail-

able functionality and provides hardware independent and

abstract functions to the task control layer. For clarity, the

specific functions provided by the devices are referred to as

device functions and the generalized hardware functions

are referred to as primitives.

To facilitate the communication between the different

software nodes, ROS is used. First and foremost, the com-

munity behind ROS offers open source sharing of software,

for example, device drivers. The possibility to download

ROS device drivers provides a great advantage in terms of

development resources; especially on a collaboraitve robot

composed of commercial-of-the-shelf components.

The following sections will elaborate on each node in

the architecture as shown in Figure 1.

Device driver

The device drivers constitute the agents of the system.

Each active hardware module has a corresponding soft-

ware driver, which in Figure 1 is referred to as the device

driver. On one side, the device driver provides the low-

level communication and control toward the device. Such

communication is highly device specific and dependent

on the physical connection to the device. On the other

side, the device driver implements a ROS interface toward

the device manager, through which the driver provides a

set of functions. Given that drivers might be downloaded

from the ROS community, the implementation of the ROS

interfaces of the drivers will be diverse, that is, with

diverse syntax, structure, and communication structure.

Figure 2 illustrates the communication type and data flow

between the nodes.

Device proxy

With the presented framework, the task control operates on

abstract and generalized functionalities, , that is, primitives.

However, at some point through the control pipeline (see
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Figure 1. Architecture of the agent-based hardware management
framework. The device manager with a set of device proxies is
introduced as an intermediate control agent between the task
control and the device drivers. It provides both agent manage-
ment and a standardization of the control interface of the device
drivers.
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Figure 2), the primitive must be “translated” into the syntax

and structure of a specific device function on a specific

device. The device proxy is introduced to perform this

translation, and consequently the main purpose of the

device proxy is to provide a mapping from primitive to

device-specific syntax. The device proxies are created as

dynamically linked libraries, which are loaded during run-

time by the device manager.

Device manager

The device manager is the central node in the hardware

management framework. It connects the above task-level

control system to the various device drivers. The two main

tasks of the device manager are to (1) register and manage

connected agents and (2) designate incoming primitive

requests to a specific device and pass the primitive to the

associated proxy. To keep track of the connected devices,

the device drivers (agents) are registered on the device

manager upon their launch. This will be explained in fur-

ther details in “Device registration” section. An incoming

primitive request from the task control system must be

matched against the set of available primitives. The device

manager searches for a matching available primitive and

passes the request to the related proxy. This will be elabo-

rated in “Function generalization” section. The device

manager also provides a graphical user interface (GUI) (see

Figure 3). Through the interface, a list of all connected and

running device drivers can be monitored. The library of all

known devices is available in the GUI, from which the

device drivers can be manually started.

Task control

The device manager, device drivers, and device proxies

together constitute the nodes of hardware management

framework. Above is the task control layer, which is

responsible for the higher level robot control and, hereby,

the accomplishment of task-related goals. As we will not

discuss the structure of the task control layer in this paper, it

is only represented by a single node (task control) in

Figure 1. However, as long as it complies with the interface

described in “Function generalization” section, the struc-

ture of the task control is irrelevant. In other words, any

task control system would apply as long as it interacts with

the device manager in terms of primitives. In conjunction

with this work, we have used a task control system devel-

oped for intuitive, manual task-level programming. The

system is build on the concept of skills, which serve as

task-related control modules that can be concatenated and

parameterized to form a sequence of operations leading to

the accomplishment of a task. Details on this work can be

found in Schou and Madsen, 2016; Pedersen et al.,

2016.5,29

Device knowledge base

In order to both successfully register a device and subse-

quently utilize the functions provided by the device, the

device manager needs information about the device in

question. This information is stored in the Device Knowl-

edge Base (see Figure 1). The device knowledge base is an

ontology containing semantic descriptions of both the robot

equipment domain and of specific device variants. The

semantic knowledge base is formatted using the Ontology

Web Language 2.27 By using an ontology-based knowledge

base, the device information could potentially come from

external sources or be shared via the “Semantic Web”28

between robots. In order for the device manager to recog-

nize, register, and utilize a device, sufficient semantic

information about the device must be available in the

device knowledge base. At the very least, the following

information must be available:

Device 

manager

Physical

device

Device 

proxy

Task 

control

Device 

driver

Primitives

Device functionsROS interface

ROS interface

Figure 2. Subset of Figure 1 illustrating the interface types and
data flow. The italic text denotes interface type. The text to the
right of the connection denotes the data passed.

Figure 3. Screenshot of the GUI of the device manager. The
image shows the library tab, where all known devices are listed.
GUI: graphical user interface.
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� device identification,

� device classification information,

� spatial information,

� driver information, and

� device functionalities.

The device identification denotes brand, model-name,

and other information used to uniquely identify a given

device variant. This is accompanied by spatial informa-

tion such as geometry and weight. The driver information

is used by the device manager to launch the associated

ROS driver for the particular device. Lastly, a list of func-

tionalities for the particular device is necessary in order to

determine which primitives can be associated with the

given device.

An excerpt of the ontology illustrating the relations

between a specific gripper and primitives is depicted in

Figure 4.

Device registration

In this section, the registration of newly connected devices

is described. The approach is inspired from service oriented

architectures and is which in this work used as a well-

established method for handling the registration.

When a new device is connected and the associated

device driver is launched, the driver should automatically

be registered by the device manager and included as an

active agent in the system. However, downloaded ROS

drivers do not include this functionality, and conse-

quently device drivers must be adapted to conform to the

agent-based system. The solution is a precompiled shared

object providing the agent interaction protocol, which is

then augmented to the device driver. This shared object

provides the methods for the agent advertisement, regis-

tration, and continuous interaction with the device man-

ager. Figure 5 presents a sequence diagram of the device

driver registration process.

In the registration process, the driver will include the

device name and device type. The device name is the brand

and model combined into a single string. The device type

emerges from a classification of each module according to

a taxonomy created on hardware modules for industrial

collaborative robots in Hvilshøj, 2012.30 A few example

types would be gripper, robot arm, camera, and pan-tilt

unit. Based on the device name and device type, the device

manager will query the device knowledge base for infor-

mation about the given device. If found, the device is

assigned a unique ID which is valid for the given session,

and thus until the driver or device manager is shut down.

Once successfully registered, the device driver will start

publishing a “heart beat” to a designated ROS topic at a

specified rate. This is used by the device manager to keep

track of the device driver’s state and check if it uninten-

tionally terminates. Should information about the device

not be available in the knowledge base, the device is

Gripper

Schunk Wsg50

Parallel gripper Electric gripper Primitive

Grasp

Release

Schunk jaw F1

Gripper jaw

Robot tool

Device

Model

Driver

Weight

Dimensions

Vendor

hasPart

hasPrimitive

isArelation instanceOfInstanceConcept hasProperty

Constraint

1

1

1..*

1..* hasPrimitive

Figure 4. Excerpt of knowledge from both T-box and A-box of the device knowledge base illustrating the relations between a specific
gripper (Schunk WSG50) and two primitives.
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registered as unknown and cannot be utilized through the

hardware management framework.

If the device is registered successfully, the device man-

ager loads and initializes the device proxy. Upon loading

the device proxy successfully, the device manager uses

information from the device knowledge base to update the

set of available primitives.

Function generalization

In a system with a static hardware configuration, the task

control will often invoke functions directly on the specific

hardware devices. However, in our multiagent system with

exchangeable agents, the abstraction of primitives is

needed. The main benefit of introducing a set of primitives

is to keep the task control independent and separated from

specific hardware. Hence, the task control implementation

can be reused regardless of the hardware composition of the

system. The primary downside to introducing primitives is

that a primitive must represent all the specific device func-

tion implementations, and thus, the primitive often

becomes the “simplest” version of a given functionality.

For instance, all grippers have a device function resolvable

to the primitive grasp. Some grippers provide a force-

controlled grasp, but since not all grippers have this option,

the primitive cannot require the ability of force control.

Thus, the introduction of primitives will often lead to

reduced utilization of the specialized functionality. The

challenge is how to create a flexible interaction between

the device-specific layer and the task control layer. An

interaction that on one hand provides simple primitives

which the task control system can invoke to achieve simple

actions. On the other hand, the interaction must also allow

the task control to request more specialized and complex

functionality when needed. In our framework, we propose a

method of amending the primitives with any number of

parameters serving as constraints. For instance, requesting

grasp, but amending the parameter of a specific force.

Then only force-controlled grasps will apply. The para-

meters are implemented as key–value pairs. The key is a

simple string defining the parameter name, which is used

when finding matching primitives. The value consists of

the actual value and a string defining the data type. By

using simple key–value pairs, primitives can provide

parameters with any given name. Likewise, task control

can request primitives with parameters of any arbitrary

names. Of course, a successful primitive request depends

on the match between the parameter name of the primitive

provided and the primitive requested. However, this rather

relaxed approach to the implementation of parameters

provides a flexible and scalable method for amending data

to primitives. It allows the addition of a new primitive

with any new parameter without the need to update a set

of explicitly defined parameters.

Resolving primitives to specific functions on specific

devices is handled by the device manager and device

Initialise add-on

Advertise: <identification>

Accepted: <ID> <heart-rate>

Change state: <ready>

Query device DB

to get device info

Assign session ID

Load device proxy

Update device

function list

Heart beat: <ID>

Heart beat: <ID>

Heart beat: <ID>

Device

manager

Device

driver

Figure 5. Sequence diagram illustrating a successful device registration process. The diagram shows the overall communication
between the device driver and the device manager.
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proxies. Thereby, the task control layer only interacts

directly with the device manager (see Figure 1). In the

implementation, a simple algorithm is used to match a

primitive request to the available primitives in the device

layer. The algorithm will consider the constraints given by

the task control in order to find the first match fulfilling the

constraints. A simple algorithm is chosen as the solution

space, for example, the number of available modules is

relatively small. Thus, the simple algorithm is used to

demonstrate the purpose of the device manager; however,

any suitable matchmaking algorithm could in principle be

used. The interaction between the task control system and

the device manager starts with the creation of a primitive

request on the task control side. Such request contains the

following information:

� device name

� device type

� primitive name

� parameter list

� parameter name

� parameter value

The device name and device type are optional, but they

can be used to specialize the primitive request. Explicitly

stating the device type of the primitive requested can be

necessary in cases where multiple device types might offer

the same primitive; for example, move joint would both be

available on a pan/tilt unit and a robot arm. The device name

entry enables the request of a specific device through the

generalized function interface. The only mandatory content

of the request is the primitive name. In addition, the given

primitive might require some parameters to be specified. In

such case, if the parameters are not specified, the request will

return an error. For example, the primitive move joint clearly

needs to know the desired joint values. The joint values are

then defined as required parameters for the primitive. If not

defined as required, the parameters are optional but can be

used to amend “constraints.” If a device function takes in a

parameter, that is not required in the primitive, the parameter

will be set to a default value during the mapping from pri-

mitive to device function. For instance, if the task control

requests a simple grasp, but the device function available is a

grasp with force control, then the force parameter will be

defaulted by the proxy. Figure 6 shows the sequence in

successfully resolving a primitive request.

Should no device function match the requested primi-

tive, an error will be returned to the task control. Data

returned by the specific device function undergoes a trans-

lation into a generalized format defined for the given pri-

mitive. That is, like the primitive requests are translated

into a device-specific syntax by the device proxy, the return

state and parameters are translated back into the general-

ized syntax of the primitive. Again, the primitives are

Response: <state> <param-list>

Request: <primitive> <constraints>

Create request

Add primitive name

Add constraints

<skill>

Find matching function

Pass request to

device proxy

Translate request to

specific function syntax
Specific function call

Translate response to

primitive reponse syntax

Specific function return

Device

manager

Task

control

Device

driver

Figure 6. Sequence diagram illustrating the interaction between the task control and the device manager during a successful primitive
request. Only the main aspects of the interaction are shown.
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defined as only requiring the most essential return values,

but allowing for additional parameters to be attached.

Feasibility study

In order to examine the presented hardware management

framework, a feasibility study is conducted. This study

demonstrates how the task control layer can be kept inde-

pendent of the hardware devices and thus reused across

multiple hardware configurations. Furthermore, the study

demonstrates that hardware modules can indeed be

exchanged online, hence, without resetting the device man-

ager or the task control system. In the study, two different

instances of Robot Arm and two different instances of Grip-

per are used (see Table 1 for brand and model).

Modules are realized by adapting each device to comply

with the same mechanical interfaces. This makes the phys-

ical module exchange quick and intuitive. Between robot

arm and gripper, a set of adapter plates are used. These

consist of a robot arm part and a gripper part; hence, one

plate is permanently fixed to each module and the standar-

dized interface hereby becomes the mechanical join

between the plates. To mount the robot arms, a robot cell

with four slots for modular pallets on its top surface is used.

Pallets to mount the UR5 and the KUKA LWR are already

available. Thus, the standardized interface from the robot

arm to the cell is the mechanical interface of the pallets.

The hardware setup is shown in Figure 7.

The mechanical interfaces are designed to provide a

mechanical alignment reducing the need for subsequent

software calibration of tool center point. In this study, no

software calibration is being made subsequent to the

exchange of modules.

In terms of software, each device has a corresponding

device driver readily available. Some are downloaded from

the ROS community, and others have been developed

locally. For each of them, a device proxy has been devel-

oped since all the drivers have different ROS interfaces,

syntaxes, and command structures. Table 2 illustrates the

implemented primitives used in this study.

The initial robot configuration consists of the UR5 robot

arm and the Robotiq gripper. Using this setup, a simple

pick and place task is instructed in the task control, where

the center part of the Cranfield benchmark31 is picked from

one of the main plates and placed on the table surface.

Afterward, a repeating execution of the task is started. For

Figure 7. The four configurations validated in the feasibility study.
The images were captured during execution of the pick and place
task. Combined, the images show the sequence of the task. (a)
Configuration 1: Universal Robots UR5 and Robotiq 3-finger.
(b) Configuration 2: Universal Robots UR5 and Schunk WSG50.
(c) Configuration 3: KUKA LWR and Robotiq 3-finger. (d) Con-
figuration 4: KUKA LWR and Schunk WSG50.

Table 1. Device modules used in the feasibility study.a

Brand/model Type Sub-type

Schunk WSG50 Gripper Parallel
Robotiq 3-finger Gripper Dexterous
KUKA LWR Robot arm Articulated
Universal Robots UR5 Robot arm Articulated

aThe study is scoped to devices of type robot arm and gripper.

Table 2. Primitives implemented and used in this study.

Type Primitive

Gripper Grasp
Release
MoveFingers
GetTCP

Robot arm MoveCartesian
MoveJoint
SetTool
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each hardware reconfiguration, the execution is paused

after a full cycle (a pick and place has been performed),

hardware module(s) are exchanged, and the task execution

is resumed. Hence, the task is not reinstructed or reset in

between the modules exchanges. The hardware modules

are exchanged in the order illustrated in Table 3.

Figure 7 shows the robot cell, the task used for the feasi-

bility study, and the four hardware configurations during the

execution. During the four hardware reconfigurations, the

task control was not shut down or reset. The alterations to the

configuration were updated through the device manager GUI,

which then stopped or launched the affected drivers.

Conclusion

This article has presented a plug and produce hardware man-

agement framework for controlling the device layer of a

modular collaborative industrial robot using ROS-enabled

devices. A key purpose of the framework is to separate the

task control level from the device control level and thereby

allows for the task control system to become independent of

specific hardware components and syntax. The framework is

built upon an agent-based architecture and uses well-

established communication and architectural schemes. To

achieve separation between task control and device levels,

a concept of primitives is introduced. Primitives generalize

device functionalities of various devices of same type and

thereby constitute a standardized function interface between

the task control and the device levels. A device manager

serves as an agent manager keeping track of the connected

devices and resolving primitive requests to specific devices.

A device proxy implemented as a dynamically linked library

to the device manager performs a translation from the pri-

mitive syntax to the syntax of the specific device driver.

A key challenge in introducing primitives is to limit the

loss of specialized features and behaviors. As part of the

framework, an interaction scheme between the task control

layer and the device control layer is proposed, which enables

the task control layer to extend primitives with parameters.

The parameters can either be optional, required by the device

layer or required by the task layer. In the latter two cases, the

parameters serve as constraints specializing the primitive

request. Thus, the interaction scheme associated with the

primitives allows the task control to use both basic and

complex functions depending on the task requirements.

With the proposed architecture, an intermediate step in

the communication structure is introduced in the form of

the device manager. As a result, an increased delay will be

present in the primitive execution. Although the delay is

not noticeably in the conducted experiment, further anal-

ysis is necessary in order to determine the effect on pro-

cesses with high continuity demands.

A feasibility study has demonstrated that the presented

hardware management framework allows a plug and pro-

duce approach to exchange of hardware modules. This

makes hardware exchange both expedite and less compli-

cated, since the entire robot cell does not have to be rein-

structed or reset. The framework also allows us to separate

the task-level operation from the device-level control. This

makes the task control layer independent of the specific

hardware composition of the robot as demonstrated in the

feasibility study. In the study, the framework was examined

on a modular robot cell using two robot arms and two

grippers as exchangeable modules. While executing the

very same task, a series of hardware exchanges were suc-

cessfully made without intervention in the task control. In

summary, all four configurations obtained were able to

successfully continue the task execution. In conclusion of

the feasibility study, the proposed framework is considered

beneficial in performing quick and online hardware module

exchanges. Furthermore, it streamlines the implementa-

tions and developments of task control modules in the task

control layer, and thus increasing the clarity of the beha-

viors intended from the task control.

With the proposed hardware management framework, a

robot control architecture supporting online exchange of

active modules can be realized using ROS drivers. To fully

enable plug and produce of hardware modules, our future

work will focus on standardizing the physical interfaces

between modules including a method enabling quick physical

exchange of modules. In addition, a procedure is needed to

verify the correctness of the obtained configuration. We will

in future work address the task of module selection because

finding a valid set of modules for a given task is not trivial.
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