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Abstract: Uncertain natures of the renewable energy resources and consumers’ participation in demand response (DR) 
programs have introduced new challenges to the energy and reserve scheduling of microgrids, particularly in the 
autonomous mode. In this paper, a risk-constrained stochastic framework is presented to maximize the expected profit of a 
microgrid operator under uncertainties of renewable resources, demand load and electricity price.  In the proposed model, 
the trade-off between maximizing the operator’s expected profit and the risk of getting low profits in undesired scenarios is 
modeled by using conditional value at risk (CVaR) method. The influence of consumers’ participation in DR programs and 
their emergency load shedding for different values of lost load (VOLL) are then investigated on the expected profit of 
operator, CVaR, expected energy not served (EENS) and scheduled reserves of microgrid. Moreover, the impacts of 
different VOLL and risk aversion parameter are illustrated on the system reliability. Extensive simulation results are also 
presented to illustrate the impact of risk aversion on system security issues with and without DR. Numerical results 
demonstrate the advantages of customers’ participation in DR program on the expected profit of the microgrid operator 
and the reliability indices. 
 

Nomenclature 

Indices  

(.).,t,s At time t in scenario s. 

i,w,v,j Indices of DGs, wind turbines, PV units 

and group of customers. 

t,s Indices of time slots and scenarios. 

b, n, r Indices of system buses. 

 

Parameters and constants 

jD
 

Base load of customer j (kW). 

β Risk-aversion parameter. 
  Per unit confidence level. 

T  Time interval (hour). 

twc , , tvc ,  
Cost of wind and PV energy ($). 

tjc ,  Electricity price offered to customers 

($/kWh). 
upR
tic , (

dnR
tic , ) 

Bid of up (down)-spinning reserve 

submitted by DG i in period t ($/kWh). 
upR
tjc , (

dnR
tjc , ) 

Bid of up (down)-spinning reserve 

submitted by load j in period t ($/kWh). 
nonR
tic ,  

Bid of non-spinning reserve submitted by 

unit i in period t ($/kWh). 

ttjE ,, (
htjE ,,

)
 

Self-elasticity (cross-elasticity) of load j. 

GN , WN , VN
 

Number of DG, wind and PV units. 

SN , TN , JN  Number of scenarios, time slots and 

group of customers. 

Pi
max (Pi

min) Maximum (minimum) generating 

capacity of DG i (kW). 

Dj
max ( Dj

min) Max/min load of customers’ j (kW). 

s  Probability of scenario s. 

rnG , ( rnB , )
 

Conductance (susceptance) of line that 

connected node n to node r. 

xM
 

Set of generating units x (load x) into the 

set of nodes. 


 

Set of lines. 

 

Variables 
LC

stjD ,,  Involuntary load curtailment (kW). 

LS
stjD ,,
 

Involuntary load shifting (kW). 

P
strnLF ,,, ,    

(
Q

strnLF ,,, ) 

Active (reactive) power flow from node n 

to r (kW). 

stiP ,,  Scheduled power for DG i (kW). 

stwP ,, ( stvP ,, )
 

Output power of WT w (PV v) (kW). 

dn
stiR ,, (

dn
stjR ,, ) Down-spinning reserve deployed by unit 

i (load j). 
non

stiR ,,  Non-spinning reserve deployed by DG i. 

shed

stjL ,,  Inelastic load shedding level of j-th load 

(kW). 

stn ,,
 

Voltage angle at node n (rad). 

stnV ,,  
Voltage magnitude (RMS value) at node 

n (pu.). 

stiSU ,,  Startup cost of DG i ($). 

stiSD ,,  Shute down cost of DG i. 

stiu ,,  Commitment status of DG i {0, 1}. 

stiy ,, , stiz ,,  Startup and shutdown indicators of DG i. 

1. Introduction 

In recent years, demand-side management (DSM) has 

been contemplated as a crucial option in most energy policy 

decision-making. In restructured power systems, the scope 

of DSM has also been considerably expanded to include 

demand response (DR) programs [1]. DR programs provide 

many potential benefits such as reduction of operating cost 
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and emission [2], improvement of system reliability [3], 

shaping of daily load profile [4]-[5] as well as providing 

financial incentives to customers to benefit from lower 

hourly demands [6]. In addition, advent of microgrids in 

modern power systems has provided a high potential to 

facilitate the active participation of end-use consumers in 

DR programs [7]. However, increasing penetration level of 

renewable energy sources (RESs) and also, active 

participation of customers in DR programs increase 

uncertainties in the network which in turn cause imbalances 

between the production and consumption and deterioration 

of the system reliability [8]-[9]. Hence, it is necessary to 

efficiently manage operation of such systems in presence of 

uncertainties. 

Value of lost load (VOLL) as an important measure in 

electricity market can be utilized to control the imbalances 

between generation and consumption [10]. VOLL can 

profoundly affect the voltage and frequency, spinning and 

non-spinning reserve (non-SR) allocation, operating costs as 

well as active and reactive losses of the system [11]. The 

level of operation security under different uncertainties can 

also be distinguished by the VOLL [11]. In other word, 

optimal selection of VOLL can result in a low-cost 

operation with a high level of security under the existing 

uncertainties in the network [12].  

The uncertainties associated with RESs, electricity 

demand and electricity price in the day-ahead market can 

introduce risk into energy and reserve scheduling problem. 

In such condition, risk measuring plays a fundamental role 

in optimization under uncertainty, providing valuable 

information to decision makers. In some literature, risk 

aversion on expected cost variability is considered using 

conditional value-at-risk (CVaR) approach, avoiding over-

conservative solutions [12-19]. For example, in [13] a risk 

averse profit-based optimal operation framework of a 

combined wind farm-cascade hydro system has been 

proposed in an electricity market, using hydro plants to 

compensate wind power forecast errors. An optimal 

integrated participation model has been proposed in [14], for 

profit enhancement of distributed resources and DR in 

microgrids considering system uncertainty. Moreover, a 

decision-making strategy for optimal pairing of wind and 

DR resources has proposed in [15]. The proposed strategy 

applied a paired resource, such as DR or storage to mitigate 

the generation scheduling errors inherited in stochastic 

technologies. In [16], a decision making model has been 

proposed for coordinated operation of wind power producers 

and DR aggregators participating in the day-ahead market. 

A minimum CVaR term has been also included in the model 

formulation to account for the uncertainty around the true 

outcomes of day-ahead prices and wind energy. Moreover, 

in [17], a risk-constrained stochastic programming 

framework has been proposed, to maximize the profit of 

microgrid aggregators with considering responsive loads. 

Authors of [18] has proposed a scenario-based two-stage 

stochastic programming model to jointly optimize the 

scheduling of several options in a microgrid, including DR, 

RESs and energy storage devices. In [19], authors have 

proposed a bi-level framework for the problem of decision-

making by an EV aggregator in a competitive environment. 

In the same work, CVaR is applied in the decision-making 

process to confront the uncertainties in day-ahead and 

balancing markets. Moreover, in [20], authors have 

presented a risk-constrained two-stage stochastic 

programming model from an islanded microgrid operator’s 

perspective for energy and reserve scheduling considering 

risk management strategy.  However, in none of the 

reviewed literature, the effects of VOLL indices on 

reliability issues of an autonomous microgrid have been 

reported.  

In this study, a risk-constrained stochastic programming 

framework is presented for optimal scheduling of an 

autonomous microgrid under uncertainties. Based on this 

program, microgrid operator procures energy from local 

distributed generation (DG) units and RESs to supply 

microgrid customers. The objective is to maximize the 

expected profit of the system operator through optimal 

scheduling of resources considering risk aversion and 

system reliability issues. To deal with various uncertainties, 

a risk-constrained two-stage stochastic programming 

formulation is proposed. An efficient solution strategy based 

on Benders’ decomposition is also developed to solve the 

proposed reliability based optimization problem under 

uncertainty. As a whole the main contributions of this paper 

are as follows: 

1) A risk-constrained two-stage stochastic 

programming formulation is proposed to represent 

the underlying optimization problem where the risk 

aversion of the microgrid operator is captured by 

using the CVaR approach,  

2) A model for joint energy and reserve scheduling is 

presented by considering reliability issues as well 

as RESs and DR uncertainties that can be easily 

adopted by other entities such as a load serving 

entity (LSE), a retailer, or a distribution company 

(DISCO), 

3) An efficient framework is proposed to illustrate the 

impacts of different VOLL and risk aversion 

parameter on system reliability. 

     

The rest of paper is arranged as follows: In section 2, system 

model is explained. In section 3, the proposed risk-neutral 

stochastic optimization formulation is described. The 

proposed method for solving the scheduling problem is 

presented in section 4. Case studies together with simulation 

results are presented in section 5. Finally, section 6 draws 

the conclusions. 

2. System Model Description  

     In this study, a medium-scale residential autonomous 

microgrid is considered with an average hourly load in the 

range of hundred kilowatts. It has several DGs such as 

micro-turbines, fuel cells and RESs such as wind and PV 

units. A simplified graphical description of the proposed 

model is shown in Fig. 1. In this model, the microgrid 

operator has a take-or-pay contract [21] to buy energy from 

various energy sources while it sells electricity to customers 

under real-time pricing scheme, which is based on a service 

agreement. Customers are also able to respond to electricity 

prices by adjusting their loads to reduce consumption costs. 

To do so, it is assumed that the customers are equipped with 

house energy management controllers (Hex MCs) and 

several smart household appliances. Due to geographically 

diverse consumers, JN groups of loads are also considered 

for evaluating the influence of users’ participation in DR 
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programs. Moreover, the system operator has access to the 

required information such as wind speed, solar irradiation, 

electricity price, generation unit and network information 

for the scheduling horizon. The energy and reserve 

scheduling is done in a way to maximize the operator’s 

expected profit and to minimize the users’ energy 

consumption costs while fulfilling the microgrid security 

and technical constraints. Also, reliability of the microgrid 

in a risk-constrained scheduling is evaluated with and 

without DR participation. 

 

F
o
re

ca
st

in
g

 m
o

d
u

le
s

Market-based DR programs

Wind speed

Solar irradiation

Electricity price

Group of 

customers # 1 

... ...Group of 

customers # j 

Group of 

customers # NJ 

Microgrid 

operator 

Energy and reserve scheduling

D
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Generating units 
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Microgrid 

model and data
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information 

1. To obtain maximum profit of operator while fulfilling the technical constraints .

2. To determine hourly energy and reserve capacity allocated by DG units.  

3. To specify the amount of MLS in different values of risk aversion and VOLL.

4. To determine accepted load reduction and reserve capacity of responsive loads. 

 

 Fig. 1. Schematic representation of the proposed model. 

3. Risk-Neutral Stochastic Optimization Formulation 

3.1. Incorporating Risk Management 

In financial risk management, Value-at-Risk (VaR) is a 

widely-used risk measure focusing on the down-side (i.e., 

tail) risk [22]. However, VaR is not a coherent risk measure. 

VaR is only coherent when the underlying loss distribution 

is normal, otherwise it lacks sub-additively. Also, VaR 

measure does not give any information about potential 

losses in the (1−α) worst cases, thus calculating VaR 

optimal portfolios can be difficult or even impossible [23]. 

The Conditional Value-at-Risk (CVaR) is closely linked to 

VaR, but provides several distinct advantages especially 

when the loss distribution is not normal or when the 

optimization problem is high-dimensional (as the case we 

experienced in this work). Furthermore, in settings where an 

investor/system operator wants to form a portfolio of 

different assets, the portfolio CVaR can be optimized by a 

computationally efficient, linear minimization problem, 

which simultaneously gives the VaR at the same confidence 

level as a by-product. Bearing all this in mind, the CVaR 

measure for a discrete distribution and at a given confidence 

level α is defined mathematically as [22, 23]: 

).
1

1
(max

1
,

s

N

s

s

S

s

CVaR 









   (1) 

Subject to: 
0;0  sss profit    (2) 

where, α is the confidence level, profits is the profit in 

scenario s, s is probability of scenario s and s is an 

auxiliary nonnegative variable equals to the difference 

between auxiliary variable and the profits when the profits 

is smaller than  .  

      Based on (1), if all profit scenarios are equiprobable, 

CVaR is computed as the expected profit in the (1 − α) × 

100% worst scenarios. Therefore, CVaR at a given 

confidence level α is defined as the expected value of the 

profit smaller than (1-α)-quantile of the profit distribution. 

In fact, in the proposed scenario-based stochastic 

optimization method, α-CVaR represents approximately the 

expected profit of the (1-α)×100% scenarios yielding the 

lowest profits.  

 

3.2. Objective Function  

 The objective of microgrid operator is to maximize its 

expected profit in an uncertain environment. Therefore, a 

risk-constrained two-stage stochastic programming 

framework using α-CVaR method is proposed to formulate 

the objective function. In this regard, the weighted α-CVaR 

value of the profit is added to a risk-neutral optimization 

problem through a weighting parameter called risk aversion 

factor β. Therefore, the objective is to maximize the 

expected profit of the microgrid operator as follows: 

CVaRprofitMax
sN

s

ss ..

1

 


  (3) 

where the profits in scenario s is defined as: 





  





  




















J
dnup

G
dnnonup

VWG

T S J

N

j

dn
stj

R
tj

up
stj

R
tj

N

i

dn
sti

R
ti

non
sti

R
ti

up
sti

R
ti

N

v

stvtv

N

w

stwtw

N

i

stististi

N

t

N

s

N

j

Shed
stj

LS
stj

LC
stjstjtjss

RcRcRcRcRc

PcPcSDSUPC

LDDDcTprofit

1

,,,,,,

1

,,,,,,,,,

1

,,,

1

,,,

1

,,,,,,

1 1 1

,,,,,,,,,

)..()...(

..].)([

).(.. 


















JN

j

shed
stj

LS
stj

LS
stj LVOLLCC

1

,,,,,, )(                       (4) 

The objective function is the sum of the revenues 

obtained from selling electricity to the microgrid customers, 

minus the operating cost of DG units (including the cost of 

purchasing energy from DGs and their start-up/down cost), 

the cost of purchasing energy from wind and PV units, the 

cost of reserves allocated to DGs and responsive loads as 

well as the payments for the LC and LS and also mandatory 

load shedding (MLS). Note that the first line of objective 

function represents the base load of group j, minus the 

involuntary and mandatory load curtailment. Also, the last 

line represents the payment to customers for their 

participation in the involuntary load shedding or load 

curtailment as well as the cost of expected load not served 

for the inelastic loads in working scenarios. In this study, it 

is assumed that wind and PV units are not owned by the 

microgrid operator, so they are paid a cost-based price for 

the electricity they supply to the grid.  

 

3.3. Constraints of the Problem  

The proposed objective function is subject to the 

following constraints: 



4 

 

 

1) Active and reactive power balance: Power supplied from 

committed units and renewable resources must satisfy the 

load demand. 

 

Equations (5)-(6) describe the constraints of active and 

reactive power balance on bus n at time t and scenario s. The 

last terms of these equations stand for the active and reactive 

power flow from bus n to bus r represented by (7) and (8), 

respectively. 

 

 

Moreover, equations (9)-(12) represent voltage magnitude 

limits, line power flow bounds, emergency load curtailment 

limits, and limits of reactive power of DGs. 
min max

, ,n n t s nV V V   (9) 

    max
,

2

,,,

2

,,,
max
, rn

Q
strn

P
strnrn LFLFLFLF   (10) 

tj

shed

stj LL ,,,0 
 

(11) 

max

,,

min

istii QQQ 
 

(12) 

 

2) Operation Constraints for DG units: The following 

constraints should be met for DGs in each scenario [24]: 





iN

m

stmimistiisti PuAPC

1

,,,,,,,, ..)(   (13) 

mistmi

N

m

stmistiisti PPPuPP
i

,,,,

1

,,,,,
min

,, 0;.  


 (14) 

 

Constraint (13) captures the generation cost of DG units that 

is approximated by piecewise linear functions [24]. 

Moreover, output power of DG units obtained by (14). In 

these equations, m denotes the indices of segments and Ni 

represents the number of segments in the cost function of 

unit i, and Ai is the cost of running unit i at its minimum 

power generation. Moreover, λi,m is the marginal cost 

associated with segment m of cost function unit i, Pi,m is the 

upper limit of power generation from the m-th segment of 

cost function of unit i and Pi,m,t,s is power generation of unit 

i from the m-th segment at time t in scenario s. 

 

stiististiisti zCDSDyCUSU ,,,,,,,, .;.   (15) 

stiistiististi yPyURPP ,,
min

,,,1,,, .)1.(    (16) 

stiistiististi zPzDRPP ,,
min

,,,,,1, .)1.(   (17) 

stii

UTt

th

sti yUTu
i

,,

1

,, .




 (18) 

stii

DTt

th

sti zDTu
i

,,

1

,, .)1( 




 (19) 

1; ,,,,,1,,,,,,,   stistististististi zyuuzy  (20) 

 

Constraint (15) represents the limit of the start-up and shut-

down costs of DGs in each scenario. Also, constraints (16)-

(20) denote the limits on ramping rates, minimum ON/OFF 

duration, and relationship between binary variables [24]. 

Note that URi and DRi are the ramping-down and ramping- 

up rates limit of unit i and UTi and DTi are the minimum up 

and down time of unit i. 

     In other to fully regulate the frequency, the active power 

generation of DGs should be adjusted with respect to the 

changes of customers’ consumption. These adjustments 

should be done in accordance with active power production 

ramp rates, power capacity limits and reserve constraints. 

The limits of up, down and non-SRs of DGs are represented 

by (21)-(23).  

stistii
up

sti PuPR ,,,,
max

,,0   (21) 

stiisti
dn

sti uPPR ,,
min

,,,,0   (22) 

)1(0 ,,
max

,,,, stisti
non

sti uPR   (23) 

 

3) Demand-side constraints: These constraints determine 

the degree of participation of each group of customers in 

energy and reserve scheduling. For each group of customers 

the following criteria must be met: 
max
,,,

min
, tjstjtj DDD   (24) 

min
,,,,,0 tjstj

up
stj DDR   (25) 

stjtj
dn

stj DDR ,,
max
,,,0   (26) 

 

4) Relationship between scheduled and deployed reserves: 

The relationship between the DG units scheduled and 

deployed reserves limits are represented by (27)-(29). 

 
up

sti
up

sti Rr ,,,,0 
 

(27) 

dn
sti

dn
sti Rr ,,,,0 

 
(28) 

non
sti

non
sti Rr ,,,,0 

 
(29) 

 

Similarly, the relationship between the responsive loads 

scheduled and deployed reserves limits are represented by 

(30)-(31).  
up

stj
up

stj Rr ,,,,0 
 

(30) 

dn
stj

dn
stj Rr ,,,,0 

 
(31) 

 

5) Linking constraints: These constraints relate market 

decisions to the real-time operation of the microgrid through 

the deployment of reserves provided by DG units and 













),(),(:

,,,,,,,,,

),(),(:

,,

),(),(:

,,

),(),(:

,,

),(),(:

,,

)(

strnr

P
strn

shed
stj

LS
stj

LC
stj

stMnjj

stj

stMnvv

stv

stMnww

stw

stMnii

sti

LFLDDD

PPP

L

VWI

 

((5) 













),(),(:

,,,,,,,,,

),(),(:

,,

),(),(:

,,

),(),(:

,,

),(),(:

,,

)(

strnr

Q
strn

shed
stj

LS
stj
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stj

stMnjj

stj

stMnvv

stv

stMnww

stw

stMnii

sti

LFQQQQ

QQQ

L

VWI

 

(6) 

 

)sin(..

)cos(.

,,,,,,,,,

,,,,,,,,
2

,,,,,,

strstnstrstnrn

strstnstrstnstnrn
P

strn

VVB

VVVGLF









 

(7) 

 

)sin(..

)cos(.

,,,,,,,,,

,,,,,,,,
2

,,,,,,

strstnstrstnrn

strstnstrstnstnrn
Q

strn

VVG

VVVBLF









 

(8) 
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responsive loads. The constraints (32)-(33) couple the first 

stage decisions with possible realizations of stochastic 

processes. 
dn

sti
non

sti
up

stitisti rrrPP ,,,,,,,,, 
 

(32) 

dn
stj

up
stjtjstj rrDD ,,,,,,, 

 
(33) 

 

3.4. Economic Model of DR 

The consumers' loads are generally divided into three 

categories: shiftable, sheddable and non-sheddable loads. 

Sheddable loads are those that can be curtailed or turned-off 

by the consumer or the system operator without causing any 

disruption to the lives, security issues or irreparable harms. 

Shiftable loads are related to such consumption units that 

must be run in the course of a day; however, there is no 

specific run time for them. Therefore, customers participate 

in DR program using two general categories of electrical 

devices including sheddable and shiftable loads by using 

load curtailment (LC) and load shifting (LS) options, 

respectively [25]. An economic model for the participation 

of customers in DR programs can be developed based on 

user’s load reduction in terms of LC/LS mechanisms. 

However, the amount of load reduction depends on the 

demand elasticity of customers and electricity prices. 

Demand elasticity is defined as demand sensitivity to the 

price signal. It is comprised of self-elasticity and cross-

elasticity coefficients. Self-elasticity represents changes in 

demand due to changes in price at the same time instant t 

and can be written as [26]: 

 

tj

tj

tj

tj
ttj

c

D

D

c
E

,

,

int
,

int
,

,, .



  (34) 

where,
int
,tjD  is the initial value of demand associated with 

customers of group j and
 

int
,tjc is the initial value of electricity 

price. In this way, LC can be represented by self-elasticity. 

By the same token, LS can be represented by cross-elasticity 

which denotes the consumer’s multi-period sensitivity with 

respect to the price. To achieve maximum benefit, each 

group of customers applies both LC and LS options and 

changes their consumption from 
int
,tjD to tjD , in period t as: 

tjtjtj DDD ,
int
,,   

(35) 

The benefit of group j can be calculated as: 

tjtjtjtj cDDBDS ,,,, .)()(   
(36) 

where, )( ,tjDS and )( ,tjDB represent benefit and income of 

group j at period t after implementing DR program. To 

maximize the benefit of group j, the following criteria must 

be met: 
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(37) 

Among commonly-used functions, the quadratic form is the 

most pessimistic model and the most usual customers’ 

utility function [26]. Based on a quadratic model of DR, the 

utility of group j of customers is obtained as [26]: 
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Differentiating (38) with respect to tjD ,  and substituting 

into (37) gives: 
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Therefore, the consumption of group j at time t is obtained 

as follows: 
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Furthermore, the amount of demand after DR using cross-

elasticity [26], which modeled LS option, can be obtained 

as: 




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When the customers of group j participate in DR using both 

LC and LS options, the total demand can be calculated as: 



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(42) 

4. Proposed Solution Methodology 

Fig. 2 illustrates the flowchart of the proposed method for 

solving the optimal scheduling problem in a microgrid. This 

flowchart has three stages. In the first stage, the structure of 

demand that is specified by customers’ electrical devices 

and equipment is determined. After customers’ registration, 

their total loads are categorized as shiftable, sheddable and 

non-sheddable loads and are considered as input data for the 

next stage. In the second stage scenario generation and 

reduction process is done for stochastic parameters. In this 

regard, forecasting errors of stochastic variables are 

modeled as continuous probability density functions (PDF) 

with a zero-mean normal distribution and different standard 

deviations. Monte Carlo simulation (MCS) and roulette 

wheel mechanism (RWM) are also used to generate a large 

number of scenarios representing the uncertain parameters 

based on their corresponding PDFs over the examined 

period [27]. Each scenario captures the information of the 

hourly wind speed, the hourly irradiation and the hourly 

load in the operating day. It should be noted that the 

selection of an appropriately sized set of scenarios has been 

done based on a trade-off between tractability issues and 

problem representation issues using the sample average 

approach method detailed in [28]. To mitigate the 

computational burden of the stochastic procedure, K-means 

algorithm [29] is then applied to reduce the number of 

scenarios into a smaller set representing well enough the 

uncertainties. Finally, the proposed optimization model is 

solved by employing a risk-constraints stochastic 

programming approach for each scenario. In this stage, the 

reduced scenarios are applied to the proposed model to 

maximize the expected profit of islanded MG while 

considering system security constraints and reliability 

issues. As shown, the solution method includes a master 

problem and a sub-problem in which Benders 

decomposition (BD) theory [30] is applied for problem 
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solving. In the master problem, unit commitment (UC), 

economic dispatch and also the amount LC/LS in DR 

programs are determined in a MIP-based problem. Sub-

problem solves, instead, a nonlinear programming problem 

representing hourly AC security-constrained optimal power 

flow. The solution generated by the upper layer (master 

problem) is then considered in the sub-problem and the 

feasibility and optimality of the optimal decision of base 

case decisions is evaluated under system contingencies to 

detect flow violations. If sub-problem fails to get a feasible 

solution, an infeasibility cut based on the BD theory is 

created accordingly and included to the master problem to 

recalculate the dispatch and hourly commitment states of the 

generating units and also responsive loads condition. 

 

Collect load data obtained from customers’ 

registration 

Obtain mean and standard deviation through 

forecasted and historical data
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Fig. 2. Flowchart of the proposed solution methodology. 

5. Simulation and Numerical Results 

5.1. Case Study 

The low-voltage autonomous microgrid, as shown in Fig. 

3, is considered in order to demonstrate the effectiveness of 

the proposed approach. The mass flow of data that is 

exchanged between the local controllers (LCs), (Hex MCs) 

and the energy management controller (EMC) as well as the 

power flow direction are shown. Moreover, in the proposed 

scheme DR consists of fully automated signaling from a 

utility (which is the microgrid operator in our case) to 

provide automated connectivity to end-use customers’ 

control systems and strategies. The microgrid has five 

controllable DG units including two micro-turbines (MT1 & 

MT2), two fuel cells (FC1 & FC2), and one gas engine (GE) 

with the technical information given in [20]. Additionally, 

three similar wind turbines, each with a capacity of 80 kW 

and two similar PV plants, each with a capacity of 70 kW 

are considered in the examined microgrid. The detailed data 

regarding the operating range of the units and their energy 

and reserve costs are given in Table 1, [20], [31]. The 

microgrid feeds eight groups of aggregated loads that are 

equipped with proper controllers to participate in DR 

programs. The hourly total load, output power of wind and 

PV units and also the hourly electricity price in different 

scenarios for one day are shown in Fig. 4. The dashed blue 

lines in this figure show the mean of each stochastic 

parameter that are equivalent to the forecasted values of 

related variable which extracted from [20], [31]. The PDF of 

each stochastic parameter is calculated based on previous 

records of that parameter for the examined environment. 

Here, the PDFs are divided into seven discrete intervals with 

different probability levels. It should be mention that real-

time pricing tariff adopted in this study is obtained based on 

the stability margin index (SMI) concept that is proposed in 

[32] by the authors. Also, standard deviation of the wind 

power, PV power, electricity price and load demand forecast 

errors are ±10%, ±10%, ±15%, and ±20%, respectively [31]-

[33]. 
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Fig. 3. Single line diagram of the studied microgrid. 
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(a) Scenarios of demand load 

 
(b) Scenarios of wind power 

 
(c) Scenarios of PV power 

 
(d) Scenarios of electricity price 

Fig. 4. Scenarios(grey lines) and the mean (dashed blue 

lines) of each stochastic parameter  
 

     A number of 2000 initial scenarios are generated using 

MCS and RWM strategies to model the forecasting errors. 

Then, K-means algorithm is implemented to reduce the 

initial scenarios into a set of 25 selected scenarios that 

represent well enough the uncertainties. The real-time 

pricing tariff obtained based on the proposed method in 

[32], is used to encourage the customers to participate in DR 

programs. Also, the total load has been created by 

aggregating the demands of 200 residential homes. The type 

of sheddable and shiftable loads and their average power 

consumption level for one residential home are illustrated in 

Tables 2 and 3, respectively [25].  

     In this study, the scheduling horizon is considered one 

day which is divided into 24 equal time slots. Finally, the 

reduced scenarios are applied to a risk-constrained two-stage 

optimization model to maximize the expected profit of 

microgrid operator. The optimization is carried out by 

CPLEX solver using GAMS software [34] on a PC with 4 

GB of RAM and Intel Core i7 @ 2.60 GHz processor. 

 

Table 2 Type of sheddable loads and their average power 

consumption level for one residential home. 

(h) Sheddable 

loads 

Power 

 (W) 

(h) Sheddable  

loads 

Power 

(W) 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

Group A* 

Group A 

Group A 

Group A 

Group A 

Group A 

Group B** 

Group B 

Group B 

Group B 

Group B 

Group B 

200 

200 

200 

200 

200 

200 

1300 

1550 

1550 

1550 

1550 

1550 

13 

14 

15 

16 

17 

18 

19 

20 

21 

22 

23 

24 

Group B 

Group B 

Group B 

Group B 

Group B 

Group B 

Group B 

Group B 

Group B 

Group B 

Group B 

Group B 

1550 

1300 

1300 

1300 

1550 

1550 

1550 

1550 

1550 

1550 

1300 

1300 

* Group A: Electrical equipment up to 200W 

**Group B: Fans, air conditioners, computers, hairdryer, 

coolers, extractor hoods, and other electrical equipment up to 

1000W  

 

Table 3 Type of shiftable loads and their average power 

consumption level for one residential home. 

Average 

power 

(W) 

Type of 

shiftable 

load 

Average 

power (W) 

Type of 

shiftable 

load 

2000 Dishwashers 1200 
Vacuum 

cleaners 

1000 Meat grinders 2500 
Washing 

machines 
1000 Irons 1800 Dryers 
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Table 1 Data of range of units’ production and their energy and reserve costs. 

-Cost of non

($) SR 

-Cost of down

($) SR 

Cost of 

($) SR-up 

Shut-down 

cost ($) 

Start-up 

cost ($) 

Marginal cost 

($/kWh) 

Min-Max generation 

capacity (kW) 
Unit 

0.030 0.030 0.031 0.080 0.090 0.055 25-150 1MT 

0.030 0.030 0.031 0.080 0.090 0.068 25-150 2MT 

0.035 0.035 0.038 0.090 0.160 0.120 20-100 1FC 

0.035 0.035 0.038 0.090 0.160 0.142 20-100 2FC 

0.035 0.037 0.039 0.080 0.120 0.084 35-150 GE 

- - - - - 0.055 0-80 WT 

- - - - - 0.065 0-70 PV 
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5.2. Numerical Results 

The expected profit of the microgrid operator versus 

CVaR for different levels of risk aversion with and without 

DR is shown in Fig. 5. Here, the confidence level to 

compute CVaR is considered 95% in all instances. To avoid 

crowding data, the optimal solution of the maximization 

problem is obtained only for 13 values of β by modifying 

risk aversion parameter from 0.01 to 2 as shown in the 

figure. Risk aversion parameter models the trade-off 

between the expected profit and the profit variability 

(measured in terms of CVaR). The efficient frontiers are 

obtained for two amounts of VOLL =1 $/kWh and 5 $/kWh 

to demonstrate the effects of VOLL. As shown, by 

increasing β, CVaR increases and the operator’s expected 

profit decreases in all cases. At the first point (e.g., β =0.01), 

which shows a solution with a near-zero risk aversion, the 

maximum profit at the minimum CVaR is attained. By 

increasing β, the total expected profit decreases, however 

the average expected profit of the worst-case scenarios 

increases, thus, the risk exposure is mitigated. Moreover, 

comparison of results in different cases in the same figure 

shows that with increasing β, when customers participate in 

DR program, the rate of decrement in the expected profit is 

lower than that of in case without DR. Also, as observed, 

when β increases from 0.01 to 0.1, although the profit does 

not change so much, CVaR rises substantially. With further 

increase of β, the operator’s expected profit will be 

significantly reduced, however CVaR will not be changed so 

much. In case of without DR and VOLL=1 $/kWh, the 

expected profit and CVaR varies from $287.07 and $113.41 

for β = 0 to $281.08 and $168.13 for β = 2, respectively. It 

shows a reduction of 2.1% in the expected profit and a 

48.2% increase in the CVaR. In case with DR and VOLL=1 

$/kWh, the expected profit and CVaR varies from $391.97 

and $308.84 for β = 0.01 to $374.65 and $337.96 for β = 2, 

respectively, that shows a reduction of 4.4% in the expected 

profit and a 9.4% increase in the CVaR. When customers 

participate in DR, the uncertainty in system environment 

increases which in turn necessitate more reserve allocation 

in higher values of β. Hence, the operator encounters lower 

expected profit by increasing of β. Moreover, by increasing 

the reserve allocation, the MLS in undesired scenarios is 

reduced and consequently, the increment percentage of 

CVaR decreases. 

Fig. 6 shows the expected profit and cost of expected 

energy not served (EENS) under different VOLL values in 

cases with and without DR actions. As shown in this figure, 

without DR, the cost of EENS (payment to customers for 

their MLS) increases by increasing VOLL values. Although, 

with increasing VOLL the EENS reduces severely, the 

product of VOLL and expected EENS increases. Moreover, 

for higher values of VOLL, additional SR is much more 

cost-effective than the MLS imposed on consumers. Also, in 

higher VOLL values, the expensive generating units are 

committed to reduce the MLS. Therefore, by increasing the 

VOLL, the operator’s expected profit reduces in case 

without DR, and even it may be negative (profit losses) 

when considered higher values for VOLL. Moreover, in 

case with DR support as shown in Fig. 6 (b), demand of 

peak periods is decreased by LC/LS activities and as the 

result the MLS (as well as the cost of EENS) reduces in 

peak hours. Comparison of the results in Fig. 6 (a) and (b) 

shows that with customers’ participation in DR program the 

operator’s expected profit is increased, especially in higher 

values of VOLL. 

 

 
(a) 

  
(b) 

 
(c) 

 
(d) 

Fig. 5. Operator’s expected profit versus CVaR 

(a) without DR, VOLL=1 $/kWh 

(b) without DR, VOLL=5 $/kWh  

(c) with DR, VOLL=1 $/kWh 

(d) with DR, VOLL=5 $/kWh 

 

The expected profit versus CVaR for different values of 

VOLL at the constant β (i.e., β = 0.01) is shown in Fig. 7. It 

is observed that with increasing VOLL both values of 

expected profit and CVaR decrease in two cases. Without 

DR support, a reduction of 187.4% in the expected profit is 

observed, however, in case with DR, this value is 24.1%. 

Moreover, with the support of responsive loads in peak 

periods and their contributions in better reserve allocation, 

the MLS associated with undesired scenarios and 

consequently the cost of EENS is decreased substantially. 
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(a) 

 
(b) 

Fig. 6. Operator’s expected profit and cost of EENS under 

different VOLL values  
(a) without DR and (b) with DR. 

 

 
(a) 

  
(b) 

Fig. 7. Expected profit versus CVaR for different VOLL 

values and β = 0.01 

(a) without DR and (b) with DR 

Moreover, the expected profit, total cost of scheduled 

reserves, cost of  MLS with respect to the total load and cost 

of ELNS versus VOLL are depicted in Table 4. This table 

shows that the reliability of the microgrid and the expected 

profit of the operator is largely dependent on the VOLL, 

especially in case without DR actions. The microgrid 

operator can choose a proper amount of VOLL to keep the 

microgrid reliable in order to face the unpredictable 

variability of renewable generations and load consumption. 

As can be seen from the same table, in case without DR 

support, when VOLL increases due to an increment in 

EENS, the expected profit decreases, severely. However, in 

case of incorporating DR actions, the expected profit has 

small variations once VOLL is increasing. As it can be 

observed from the table, with DR support, when VOLL is 

increased up to 8 $/kWh, no MLS occurs during the entire 

scheduling horizon. As a result, in higher values of the 

VOLL in which the total scheduled reserve and the ELNS 

remain constant, the expected profit remains almost 

unchanged. Moreover, with active participation of 

customers in DR, a part of up- and down-SR are allocated 

by responsive loads and consequently, the amount of these 

reserves provided by DGs decrease in case of with DR. 

However, the amount of non-SR is increased by DR 

participate, since, when the DR is considered, the microgrid 

uncertainties are increased and more non-SR is required, 

while responsive loads does not able to provide this type of 

reserve. Table 5 provides the total amount of spinning (SR) 

and non-spinning reserves (non-SR) allocated by DG and 

DR resources for different values of VOLL in the 24 hours’ 

time scheduling. There is no doubt that the equilibrium point 

between energy, reserve and EENS can be changed by 

increasing the VOLL values. In other word, with increasing 

the VOLL, additional SR would be more economic than the 

MLS. Thus, as can be observe from the table, the amount of 

up- and down-SR increase in higher value of VOLL. The 

lowest value of scheduled reserves is attained for VOLL = 1 

$/kWh.  

In order to investigate the effect of VOLL on the reserve 

with details, the hourly up-SR provided by DG units and 

responsive loads for VOLL = 1 $/kWh and VOLL = 5 

$/kWh is shown in Fig. 8. As can be seen, sum of up-SR 

(provided by both DGs and DR) increases for higher value 

of VOLL to accommodate the uncertainties and to reduce 

the load shedding events. In case with DR with considering 

uncertainty of responsive loads more reserve is required, 

which is partly provided by DG units as non-SR. Therefore, 

as can be observe in this figure the amounts of up-SR 

increase in some hours in case with DR actions.  
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Table 4 Expected profit and reliability level versus VOLL 
 

VOLL 
Expected profit ($) 

Cost of total scheduling reserves ($) MLS with respect 

to the total load (%) 
Cost of EENS ($) 

No DR With DR 

No DR With DR by DGs by  DR by DGs by  DR No DR With DR No DR With DR 

1 288.20 395.06 142.00 0 111.42 41.14 60.56 2.24 60.56 2.24 

2 227.73 390.77 146.23 0 112.10 42.56 57.05 0.60 114.11 1.20 

3 168.44 390.23 147.22 0 112.70 42.92 55.09 0.42 165.27 1.27 

4 109.24 389.81 148.19 0 112.89 43.15 53.45 0.35 213.80 1.39 

5 50.04 389.43 149.17 0 112.98 43.35 52.07 0.29 260.35 1.45 

6 -9.02 389.12 150.12 0 113.20 43.40 51.34 0.23 308.04 1.40 

7 -67.91 388.81 151.05 0 113.32 44.18 50.08 0.12 350.56 0.82 

8 -126.61 388.73 151.87 0 113.74 44.62 49.41 0 395.28 0 

9 -185.31 388.73 152.59 0 113.74 44.62 49.41 0 444.69 0 

10 -241.22 388.73 153.14 0 113.74 44.62 49.41 0 494.10 0 
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Table 5 Impact of VOLL on the total scheduled reserve. 

Case 
VOLL 

($/kWh) 

Up- 

SR 

of 

DGs 

Down- 

SR 

 of 

DGs 

Non- 

SR 

of 

DGs 

Up- 

SR 

of 

DR 

Down- 

SR 

 of  

DR 

Without 

DR 

1 738 2401 1174 0 0 

5 801 2411 1309 0 0 

10 844 2419 1358 0 0 

With 

DR 

1 589 1404 1422 149 1136 

5 626 1404 1439 210 1140 

10 631 1404 1456 250 1144 

 

 

 
(a) 

  
(b) 

Fig. 8. Hourly up-SR of DG units and responsive loads in    

β = 0.01 

(a) without DR and (b) with DR. 

 

Table 6 depicts more numerically details about the 

expected profit of the microgrid operator, total cost of 

scheduled reserves, cost of EENS and the MLS with respect 

to the total load in different values of the risk aversion 

parameter β.  As can be seen, when risk aversion increases, 

the total cost of scheduled reserves is increased in both 

cases. Moreover, the operator should allocate more reserve 

from the resources to have less forced load shedding 

encountering with undesired scenarios. Also, by increasing 

β, the percentage of MLS over the entire scheduling horizon 

is decreased due to more reserves allocated by resources. As 

a result, when risk aversion increases, although the expected 

profit of operator decreases, the microgrid will be more 

reliable under uncertainties. 

To evaluate the effect of risk aversion parameter β on the 

scheduled reserve, the total amount of different types of 

reserve is illustrated in Table 7 for three values of β in 

VOLL=1 $/kWh. As can be seen, in the higher value of β, 

the amount of total scheduled reserve increases to reduce the 

load shedding in undesired scenarios. Hence, without DR 

support when risk aversion increase from 0.01 to 2, up-, 

down- and non-SR increase 11.8%, 0.56%, and 24%, 

respectively. However, when responsive loads participate in 

up/down SR, providing of these types of reserves from DGs 

decrease, especially in down-SR. To deploy down-SR 

customers should be committed and increase their 

consumption. Hence, they are more desired to participate in 

this type of reserve and therefore, the down-SR of DGs 

reduces in case with DR, significantly. 

For better illustration, the hourly up-SR in two cases for 

β = 0.01 and β = 2 is shown in Fig. 9. As observed, the 

amount of reserve allocated by both DGs and DR at β = 2 is 

more than reserve at β = 0.01 in some hours. In an attempt to 

curb likely MLS events in some hours, the amount of 

reserve scheduled in the optimization problem increases by 

increasing parameter β. It should be noted that, although 

there is not much difference in reserve allocation during 

most of the times in a day, in some hours (i.e., 11:00, 13:00 

and 14:00 in case without DR), which is likely to cause 

MLS, the amount of scheduled reserve increases when the 

risk aversion increases. In other words, MLS is applied only 

at some hours and in some undesirable scenarios and if the 

operator wants to become more risk averse (choosing higher 

β values), it should allocate more reserves in those hours. 

Therefore, there are no noticeable improvements in the 

results for the rest of hours.  

 

 
(a) 

  
(b) 

Fig. 9. Hourly up-SR of DG units and responsive loads in 

VOLL=1 $/kWh, (a) without DR and (b) with DR. 

 

Fig. 10 shows that how the cost of EENS varies by 

increasing β in VOLL=1 $/kWh and VOLL=5 $/kWh with 

and without DR. The decrement in the expected cost of 

EENS is due to the reduction of load shedding actions in 

contingencies. As expressed before, when DR is considered, 

contribution of responsive loads in peak periods leads to a 

reduction in MLS and consequently a significant reduction 

in the cost of EENS (more than 95% for all β values). 

However, in case without DR support, cost of EENS for 

VOLL=1 $/kWh and VOLL=5 $/kWh is reduced to 10.7% 

and 19%, respectively. But, these values in case with DR are 

about 42% and 77%, respectively. In VOLL=5 $/kWh, 

although, the amount of MLS is reduced, increasing of 

VOLL causes the cost of EENS to be higher than that of in 

VOLL=1 $/kWh. Hence, by increasing β, the operator wants 
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to become more risk averse and purchase more reserves in 

some undesired scenarios. Therefore, by active participation 

of customers in DR program, the cost of EENS reduces with 

a higher rate. In such condition, additional scheduled reserve 

would be more cost-effective than interrupting the loads. 

Thus, in higher values of β the quantity of scheduled reserve 

will increase, while the cost of EENS decreases. 

 

Table 7 Impact of the parameter β on the total scheduled 

reserve. 

Case 

Value of 

risk 

aversion 

(β) 

Up-

SR 

of 

DGs 

Down- 

SR of 

DGs 

Non- 

SR 

of 

DGs 

Up- 

SR 

of 

DR 

Down- 

SR of 

DR 

Without 

DR 

β =0.01 738 2411 1174 0 0 

β =0.5 792 2419 1375 0 0 

β =2 825 2425 1451 0 0 

With 

DR 

β =0.01 589 1422 1422 149 1136 

β =0.5 696 1369 1439 155 1408 

β =2 735 1348 1456 162 2028 

     

  

 
(a) 

  
(b) 

Fig. 10. Cost of EENS under different risk aversion values 

(a) without DR and (b) with DR. 

6. Conclusions 

     In this paper, a risk-constrained stochastic framework 

was presented to maximize the expected profit of microgrid 

operator under uncertainties associated with the wind and 

PV power and also load demand. CVaR approach was used 

to model tradeoff between maximizing the operator’s 

expected profit and the risk of getting low profits in 

undesired scenarios. The impacts of different values of 

VOLL and risk aversion parameter on the optimal solution 

of the proposed optimization problem have been 

investigated in two cases namely with and without DR. The 

summary of the numerical results are as the below: 

 With participation of responsive loads in DR programs 

the system uncertainties increase which in turn 

necessitate more reserve allocation in higher VOLL and 

β values.  

 By increasing VOLL and β values, the MLS in undesired 

scenarios is reduced and consequently, the expected 

profit of operator is decreased but the CVaR is increased. 

When VOLL varies from 1 to 10 $/kWh, a reduction of 

187.4% and 24.1% can be seen in the expected profit in 

case of without and with DR support, respectively. 

 With the support of responsive loads in peak periods 

through LC/LS mechanisms, the MLS and consequently 

the cost of EENS is decreased substantially (more than 

96% for VOLL =1 $/kWh). 

     Future efforts will be mainly focused on the application 

of the proposed model for multi-microgrids with different 

types of consumers (e.g., residential, industrial, 

commercial). More investigations will also be conducted on 

uncertainty of components availability and load in the 

proposed model. 
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