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Abstract: The DC microgrid has become a new trend for microgrid study with the advantages of high
reliability, simple control and low losses. With regard to the drawbacks of the traditional droop control
strategies, an improved DC droop control strategy based on integrator current-sharing is introduced.
In the strategy, the principle of eliminating deviation through an integrator is used, constructing the
current-sharing term in order to make the power-sharing between different distributed generation
(DG) units uniform and reasonable, which can reduce the circulating current between DG units.
Furthermore, at the system coordinated control level, a hierarchical/droop control strategy based
on the DC bus voltage is proposed. In the strategy, the operation modes of the AC main network
and micro-sources are determined through detecting the DC voltage variation, which can ensure the
power balance of the DC microgrid under different operating conditions. Meanwhile, communication
is not needed between different DG units, while each DG unit needs to sample the DC bus voltage,
which retains the plug-and-play feature of the DC microgrid. The proposed control strategy is
validated by simulation on a DC microgrid with permanent magnet synchronous generator-based
wind turbines, solar arrays and energy storage batteries, which can be applied to small commercial
or residential buildings.

Keywords: DC microgrid; DC bus voltage; hierarchical/droop control strategy; current-sharing;
power balance

1. Introduction

Distributed generation (DG) is becoming a complementary to and a support of future large power
grids due to the advantages of low pollution, high energy utilization efficiency, flexible installation
location, low transmission and distribution resources loss and low electric transmission line loss.
For these reasons, DG is increasingly cited as a key feature of future power systems [1,2]. Microgrids,
an effective carrier of distributed generation resources (DGR), consist of various DG units, energy
storage devices, energy conversion devices, protection devices and load control devices. Being able to
operate in islanded and grid-connected modes, microgrids have become an effective way for DGR
integration in recent years [3,4].

However, the power supply quality of microgrids is influenced by the intermittence and
fluctuation of distributed micro-power to some extent. Moreover, some alternating current (AC)
distributed power sources are connected to the microgrid through a multi-stage conversion, which
lowers microgrid efficiency. Establishing direct current (DC) transmission lines in microgrids to
connect a number of DGRs and the energy storage (ES) system to form a DC microgrid can allow for
better coordination and control of DGRs, so as to improve power supply quality and decrease the
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impact on the AC main network [5–11]. Hence, technologies relevant to DC microgrids have attracted
extensive attention in the research community.

The earliest studies on the structure and control methods of DC power networks originated
from DC nanogrids [12–17]. Bryan et al. [12] proposed using DC bus voltage as the control signal,
differentiating operation modes by the value of DC bus voltage, which is allowed to change in a certain
range; however, the grid-connected mode was not taken into account. In [18,19], more complicated
operation conditions were considered, but the control strategy could only be applied to particular DC
microgrid structures, thus limiting its universality. Therefore, in-depth discussion on micro-source
control strategies under different working modes needs to be made so as to ensure the reliability of
DC microgrids.

At present, the major control strategies to maintain power balance in DC microgrids are centralized
control [20] and decentralized control [21–23]. In centralized control, a central controller is used to
execute instructions to the micro-source unit to maintain power balance in the system. However, this
requires a fast communication bandwidth, and a single communication failure can disrupt proper
DC microgrid operations. To solve these problems, a droop control strategy based on conventional
synchronous generator characteristics was introduced in [21–23]. The power balanced state of a DC
microgrid can be judged according to the changing DC bus voltage since it is the trigger sign of power
balance. However, without working in the maximum power point tracking (MPPT) mode, the output
characteristics of micro-sources were not taken into consideration in the conventional droop control
strategy, thereby lowering the energy utilization efficiency of the system. In order to solve this problem,
an ES unit was used to overcome the output fluctuation and randomness of micro-sources in [24–29],
which can reduce the frequent fluctuations of the DC bus voltage and enhance system stability [7–11].

In this paper, by taking advantage of conventional control strategies, a hierarchical/droop control
strategy based on DC bus voltage is proposed, which can ensure that different DGs cooperate to provide
power, making the system operate in the optimum state and the microgrid bus voltage maintained in a
reasonable range. The operation modes of the AC main network and controllable micro-sources are
determined through detecting DC bus voltage change, so as to ensure the power balance of the DC
microgrid when the DC bus voltage is in a different hierarchical range. Taking into full consideration
the actual output characteristics of micro-sources, the proposed strategy can overcome the fluctuations
through the ES unit and engage micro-sources in MPPT mode as much as possible to enhance the
system efficiency. Moreover, the flexibility and reliability are enhanced while the system cost is reduced
since no communication between different units is needed, making the system a plug-and-play solution.
Finally, a simulation model is built with a wind turbine (WT)/photovoltaic (PV)/ES DC microgrid
as the paradigm, which can be applied to different scenarios, such as small-sized commercial and
residential buildings. Simulation results have verified the effectiveness and feasibility of the introduced
strategy for a DC microgrid operating in different modes.

The rest of the paper is organized as follows. Section 2 starts with the structure of the DC microgrid
based on PV, WT and ES, and then, the operation modes of each unit and the mode-switching process
are introduced. In Section 3, the control strategies at the converter level, as well as in system level are
presented. Simulation results with the control strategies are shown and discussed in Section 4. Finally,
Section 5 presents the conclusions.

2. DC Microgrid Structure and Composition

2.1. DC Microgrid Structure

The configuration of the DC microgrid studied in this paper is shown in Figure 1. The photovoltaic
array, wind turbine generator and storage battery are connected through a DC-DC converter or AC-DC
converter to form the DC microgrid. The microgrid is linked with the AC main network by a bilateral
converter, while the AC and DC loads obtain electric power from the DC bus.



Energies 2017, 10, 1116 3 of 17
Energies 2017, 10, 1116 3 of 17 

 

G- VSC

W-VSC

AC Network

PMSG

Bi-DCEnergy 
Storage

PW2

PG

PS

DC

Bus

P-VSC

PV Array

DC

Load

PL

Load
AC 

Load

Battery Energy 
Management 
System

WT 
System

DC load

PW1
Transformer

 

Figure 1. DC microgrid configuration. 

2.2. DC Microgrid Composition 

 Grid-connected converter: The DC microgrid is integrated with the AC main network through 

a voltage-sourced Pulse-Width Modulation (PWM) converter Grid-Voltage Sourced Converter 

(G-VSC). Figure 2 illustrates how G-VSC switches from different operation modes. The 

parameters for Figure 2 are shown in Table 1. When the DC microgrid operates in a normal grid-

connected mode, the DC bus voltage stability is ensured by G-VSC under droop control. 

However, the G-VSC will switch to current-limiting mode if the interchanged power between 

the microgrid and the main network reaches the maximum power of G-VSC. When the output 

power of PV and WT is sufficient, the microgrid will provide power to the main network 

through G-VSC. 
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Figure 2. Schematic diagram of the AC main network mode-switching. 

Table 1. Symbols in Figure 2. 

PG: actual output power of AC main network SOC: current state of charge 

PGmax: the maximum output power of G-VSC SOCmax: maximum state of charge 

PGin: actual absorbed power by AC main network SOCmin: minimum state of charge 

PW: actual output power of DG unit PL: actual power of loads 

PWmppt: maximum tracing power of DG unit PN: rated power of loads 

PS: release(+)/absorb(−) power of battery ΔP: power of shedding loads 

PSmax: maximum output power of battery  

Figure 1. DC microgrid configuration.

2.2. DC Microgrid Composition

• Grid-connected converter: The DC microgrid is integrated with the AC main network through
a voltage-sourced Pulse-Width Modulation (PWM) converter Grid-Voltage Sourced Converter
(G-VSC). Figure 2 illustrates how G-VSC switches from different operation modes. The parameters
for Figure 2 are shown in Table 1. When the DC microgrid operates in a normal grid-connected
mode, the DC bus voltage stability is ensured by G-VSC under droop control. However, the
G-VSC will switch to current-limiting mode if the interchanged power between the microgrid
and the main network reaches the maximum power of G-VSC. When the output power of PV and
WT is sufficient, the microgrid will provide power to the main network through G-VSC.
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Figure 2. Schematic diagram of the AC main network mode-switching.

Table 1. Symbols in Figure 2.

PG: actual output power of AC main network SOC: current state of charge
PGmax: the maximum output power of G-VSC SOCmax: maximum state of charge
PGin: actual absorbed power by AC main network SOCmin: minimum state of charge
PW: actual output power of DG unit PL: actual power of loads
PWmppt: maximum tracing power of DG unit PN: rated power of loads
PS: release(+)/absorb(−) power of battery ∆P: power of shedding loads
PSmax: maximum output power of battery
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• Distributed generation unit: The DG unit is composed by the wind turbine generator system and
photovoltaic generator system, which are tied with the DC microgrid by a DC/DC converter and
a voltage-sourced converter Wind-Voltage Sourced Converter (W-VSC), respectively. In Figure 3,
the switching process of the DG unit in different modes is illustrated. In order to capture the most
wind and solar energy possible, the DG unit works in the MPPT manner normally, enhancing the
energy utilization efficiency. When the wind and solar are sufficient and the DG unit output is
large, the DC bus voltage rises, and the operation mode will switch to droop control to sustain the
voltage stability. The DG unit will shut down if the main network is not connected, all loads are
shed and the battery is fully charged.
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Figure 4. Schematic diagram of ES battery mode-switching. 

 Load: The DC and AC loads are connected with the DC microgrid through a DC/DC converter 

and DC/AC converter, respectively. The loads unit switches its operation mode as shown in 

Figure 5. When power supply is insufficient, load-shedding control in terms of loads priority is 

needed to ensure power balance of the DC microgrid and power supply quality of the  

important loads. 
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Figure 5. Schematic diagram of load mode-switching. 

Figure 3. Schematic diagram of the DG unit mode-switching.

• Energy storage battery: The ES battery is connected with the DC microgrid by a bilateral DC/DC
converter and switches its operation modes as in Figure 4. The battery works under the charging
mode when the DC microgrid operates normally; when fully charged, the battery would be shed
from the microgrid as a standby. However, when the microgrid is islanded due to a main network
fault, the ES unit would stabilize the DC bus voltage as a balancing bus, in order to ensure stable
system operation.
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Figure 4. Schematic diagram of ES battery mode-switching.

• Load: The DC and AC loads are connected with the DC microgrid through a DC/DC converter
and DC/AC converter, respectively. The loads unit switches its operation mode as shown in
Figure 5. When power supply is insufficient, load-shedding control in terms of loads priority
is needed to ensure power balance of the DC microgrid and power supply quality of the
important loads.
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3. Research on the Operational Control Strategy of the DC Microgrid

3.1. The DC Droop Control Strategy Based on Integrator Current-Sharing

The traditional DC droop control is presented in Figure 6, in which two distributed power sources
in parallel provide power to DC loads. The conventional droop control strategy adopted in Figure 6 is:

Udci = U∗dc − Kdi · Idci (1)

where U∗dc is the no-load voltage of distributed sources and Udci and Idci are the output voltage and
current of the distributed source i, respectively. Kdi is the droop coefficient. In Figure 6, Rline1 and Rline2

are line resistances of the distributed sources.
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In order to facilitate the analysis, two distributed power sources are taken as an example to
illustrate the power characteristic. The following formulas can be derived from Figure 6:

Ucom = U∗dc − Kd1 · Idc1 − Rline1 · Idc1 (2)

Ucom = U∗dc − Kd2 · Idc2 − Rline2 · Idc2 (3)

Combining (2) and (3) yields:

Idc1
Idc2

=
Kd2
Kd1

+
Rline2 − Kd2/Kd1 · Rline1

Kd1 + Rline1
(4)

Generally, the droop coefficient Kdi is inversely proportional to the nominal power of the DG
unit [16]. In (4), it is assumed that two distributed sources have the same capacity for simplifying
the analysis, the droop coefficients Kd1 = Kd2. Because a difference exists between line parameters of
distributed sources:

Kd2
Kd1
6= Rline2

Rline1
(5)

the output currents of various distributed sources are different, which causes circulating current.

Idc1
Idc2
6= Kd1

Kd2
(6)

From the above analysis, the output powers of various converters are different because of the
parameter differences of various distributed sources and lines; when it is worse, circulating current
arises, which causes distributed sources’ output, and system stability is affected. Hence, a DC droop
control strategy based on the integrator current-sharing is proposed in this study, and a current-sharing
term is employed in the conventional DC droop control strategy:

Udci = U∗dc − Kdi · Idci + ∆Udci (7)
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In order to achieve power-sharing, the current-sharing term should be constructed as a function
of the output power:

∆Udci = f (Pdci) (8)

In this paper, with the principle that the integrator can eliminate error, the current-sharing term is
constructed as follows:

f (Pdci) = Ku ·
∫ [

(U∗com −Ucom)− Kpi · Pdci
]
dt (9)

Combining (7)–(9) yields the improved DC droop control strategy based on the integrator
current-sharing:

Udci = U∗dc − Kdi · Idci + Ku ·
∫ [

(U∗com −Ucom)− Kpi · Pdci
]
dt (10)

Then, differentiate (11) to get:

U∗com = Ucom + Kpi · Pdci +
1

Ku
· dUdci

dt
+

Kdi
Ku
· dIdci

dt
(11)

When the system reaches the steady state, the differentials of DC values become zero, then (11)
can be expressed as follows:

U∗com = Ucom + Kpi · Pdci (12)

where U∗com is the no-load voltage of the public bus, Ucom is the actual bus voltage, Kpi is the
current-sharing coefficient and Ku is the public integrator coefficient. It can be deduced from (12) that:

Kp1Pdc1 = Kp2Pdc2 = . . . . . . = KpiPdci (13)

Therefore, from (13), the current-sharing coefficient can be set in terms of the distributed sources
capacity, then the output of distributed sources is rationalized, which avoids circulating current
between sources being aroused, affecting system stability. In addition, the Ku coefficient is a global
public integrator. Ku is a coefficient related to the integrator changing speed. Since the control method
proposed in this paper is a primary-layer control, normally the responding time of the primary-layer
is ∆t = [10 ms, 50 ms], so the integral parameter, calculated by Ku = 1/∆t, is in the range [20, 100].
Besides, the changing range of the DG output voltage is ±10%, and the nominal power in this paper
is set as 380 V, so the maximum changed voltage is 76 V. If the integral parameter Ku is chosen to be
100, then in the time interval t = 10 ms, the voltage is changed by 76 V in the worst situation, which is
prone to cause the voltage to cross the border. Taking the above reasons into account, the parameter
Ku is set to be 50 in this paper, ensuring the responding speed to be reasonable and the voltage to be
maintained in a proper range.

3.2. The Hierarchical/Droop Voltage Control Strategy

For a DC microgrid, constant DC bus voltage means power balance in the system. In order to
guarantee the safety and reliability of the system, DC bus voltage should be sustained in a limited
range. Assuming the rated voltage of the DC bus is 380 V, the system operation modes can be classified
into three types according to DC bus voltage, which is shown in Figure 7. Moreover, the method
proposed in this paper is based on the power-sharing of the same kind of DG sources, while for
different kinds of DG sources, like PV and WT generation, the hierarchical control method is adopted,
in which the control modes of DGs are determined by the common bus voltage.
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Figure 7. Three types of operation modes.

• Operation Mode 1: The G-VSC sustains the stability of DC bus voltage; the DG unit operates
under the MPPT mode; the storage battery is in constant-current charge under the control of the
battery management system and then shed from the microgrid when fully charged. In this mode,
the DC bus voltage is maintained within ±10 V of the rated voltage.

• Operation Mode 2: The storage battery sustains the stability of the DC bus voltage. When the
transmitted power of the AC main network to the DC microgrid reaches the G-VSC limitation,
or faults like short-circuit occurred, G-VSC will switch to current-limiting mode. The DG unit
operates in the MPPT mode. Under this circumstance, the bus voltage is stabilized within
360 V–370 V.

• Operation Mode 3: The DG unit sustains the stability of the DC bus voltage. When the loads are
light and the DC bus voltage rises to over 390 V, the battery would charge with the control of the
battery management system, and the G-VSC transmits electric power to the AC main network in
its maximum power or cut off from the DC microgrid.

The system switches its operation mode as Figure 8 shows. Note that, (1) in order to extend the
battery lifetime, discharging in depth is not permitted, which stops discharging when the state of
charge (SOC) is reduced under 20%. Meanwhile, overcharging is also not allowed, which makes the
battery stop charging when the SOC exceeds 80% [30,31]; (2) When the loads are too heavy that the
energy of the DC microgrid is not capable of maintaining the power balance, shedding unimportant
loads according to the load priority is needed to sustain the power balance; (3) To avoid frequently
switching between different unit work modes, the time delay control is applied in the voltage switch,
which means the switching mode is performed only when the voltage is changing continuously in a
certain interval.Energies 2017, 10, 1116 8 of 17 
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3.3. The Converter Control Scheme of Each Unit

In the local layer control strategy for distributed power sources of the same type, the integrator
current-sharing control strategy as Formula (14) proposed in this paper is adopted, and its control
block diagram is shown as Figure 9:

Udci = U∗dc − Kdi · Idci + Ku ·
∫ [

(U∗com −Ucom)− Kpi · Pdci
]
dt (14)
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Additionally, in the coordinated control of the system layer, the improved hierarchical/droop
control strategy based on the DC bus voltage introduced in this paper is employed, so as to ensure the
power flow balance of the microgrid in different hierarchical zones. The operational modes are shown
in Figure 8.

According to the load priority, loads can be sorted into n levels: Level-1, Level-2, Level-3, . . . ,
Level-n, and the level is greater as the value of n is smaller. Loads in n different levels all have the
corresponding cut-off time, and T1 > T2 > T3, . . . , > Tn. When the bus voltage is detected below 360 V,
all timers start. If the timer of Level-n reaches Tn, then the loads of Level-n are shed immediately.
After load-shedding, T1, T2, T3, . . . , T(n − 1) will be cleared if the DC bus voltage returns to normal,
while the loads in Level-(n − 1) will be cut off if the voltage is still under 360 V and it continues to
T(n − 1). The rest can be done in the same manner. The load-shedding process is shown in Figure 10.
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4. Simulation Results

4.1. Verification to the Droop Control Strategy Based on Integrator Current-Sharing

In order to verify the feasibility of the droop control strategy based on integrator current-sharing
proposed in this study, the simulation model of the microgrid is constructed using the
MATLAB/Simulink software. The simulation system of the DC microgrid is composed of three
distributed power sources with the same capacity and common loads. Because of the difference existing
in different feeder parameters of distributed sources, the feeders of the three DG units are assumed
to be 0.5 km, 2 km and 5 km, respectively, and the DC common load as 13.5 kW. The distributed
micro-source parameters under the droop control based on integrator current-sharing are listed in
Table 2.

Table 2. The control parameter of DG units.

Parameter Value Parameter Value

U∗com (V) 380 U∗dc (V) 380
Kd 0.2 Kp1 0.004

Rline1 (Ω) 0.05 Kp2 0.004
Rline2 (Ω 0.2 Kp3 0.004
Rline3 (Ω) 0.5 Ku1 50

Ku2 50 Ku3 50

With the control method proposed in this paper, three DG units with the capacity of 10 kW are
connected to the bus in parallel. The simulation result is shown as Figure 11. In order to facilitate the
contrast, in the initial phase t = [0 s, 1.0 s], the conventional droop control strategy is adopted, while in
the interval t = [1.0 s, 2.0 s], the droop control strategy based on integrator current-sharing proposed in
this study is employed.
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Figure 11. Simulation results of the conventional and proposed control strategy.

Figure 11a,b presents the power and current waves of DGs under the conventional and improved
control, respectively. From the figures, before t = 1.0 s, large deviation exits both in the output power
and current of DG units under the conventional control due to the differences among different feeder
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resistances. The output power difference between DG1 and DG3 is 1000 W. After t = 1.0 s, the output
steady-state currents of the DG units with the same capacity are almost the same, and the output
powers are exactly the same; the circulating current is nearly zero. Figure 11c,d displays the output
voltage and public bus voltage of the DG units under conventional and improved control, respectively.
Under the conventional control strategy, the output voltages of different DG units are 356 V, 353 V
and 351.5 V, respectively. The output voltage is relatively low because of the droop control strategy,
which affects the system voltage level. However, after t = 1.0 s, the current-sharing term constructed
in the new method not only achieves power-sharing, but also improves the system voltage by 10 V.
Moreover, the public bus voltage is improved to some extent, enhancing the system voltage stability
on the whole.

In conclusion, the proposed droop control strategy based on integrator current-sharing not only
can realize power-sharing, which avoids circulating current and makes the DG unit capability come
into full play, but it also enhances the voltage level and stability of the system. Therefore, this case can
fully justify the feasibility and effectiveness of the proposed method.

In addition, the method proposed in this paper is that no communication is needed between
different DG sources, and the current-sharing control is achieved only by the common bus voltage
signal. The communication between different DGs will disable the microgrid be a plug-and-play
solution, while the microgrid in this paper remains to have a plug-and-play characteristic.

4.2. Verification to System Coordinated Control Strategy

In order to verify the effectiveness of the hierarchical/droop voltage control strategy, the
simulation model shown in Figure 1 is built in MATLAB/Simulink, and the system is configured as
shown in Table 3. According to the above analysis of the three operation modes, three responding
simulation tests are conducted. In addition, the constant illumination model is adopted for PV, and
the constant wind speed model is adopted for wind generation. When switching modes, we assume
the illumination and wind speed are under step changes. Furthermore, the constant power load and
lead-acid battery are used in this work. In the case that the battery discharges too deeply and affects
its lifetime, the Depth of Discharge (DoD) is chosen as 60% in this paper, effectively prolonging the
battery lifetime.

Table 3. Configuration of the DC microgrid.

Rated DC bus voltage 380 V
Maximum output power of the AC main network 10 kW

Maximum output power of W-VSC in the WT generation system 5 kW
Maximum output power of DC/DC in the PV generation system 10 kW

Maximum output power of Bi-DC in the ES system 5 kW
Load 1 (Level1) 10 kW
Load 2 (Level2) 5 kW
Load 3 (Level3) 5 kW

• Simulation 1: The system stably operates in Mode 1, and the AC main network is working to
maintain the stability of the DC bus voltage. The result is depicted in Figure 12, and Table 4 shows
the major incidents in the first simulation. From Figure 12, when the load and DG unit output
power have changed, G-VSC adjusts the exchange power between the DC microgrid and the
main network according to the droop characteristic to sustain the bus voltage within 370 V–390 V,
while the battery is cut off from the DC bus, becoming a standby.



Energies 2017, 10, 1116 12 of 17

Table 4. Major incidents in Simulation 1.

Incident Operation Condition Time (s)

1 Battery charges by linking with the DC bus 0.4
2 The output of WT generation system increases from 3 kW–4.5 kW 1.0
3 Load 2 is connected to the DC bus 2.0
4 Battery is cut off from the DC bus after being fully charged 2.5
5 The output of the PV generation system rises from 5 kW–8 kW 3.0
6 Load 3 is connected to the DC bus 4.0
7 Load 3 is shed from the DC bus 4.5
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system; (f) power released(+)/absorbed(−) of the battery; (g) discharging(+)/charging(−) the current
of the battery.

• Simulation 2: When the battery works to maintain the stability of the DC bus voltage, the
simulation result is shown as Figure 13, while Table 5 lists the major incidents in the simulation.
At first, the system stably runs in Mode 1. At t = 1.0 s, the AC main network malfunctions and
is shed from the DC microgrid, after which the system switches to Mode 2 in which the battery
works to sustain the stability of the DC bus voltage. At t = 1.2 s, the fault is removed and the
system returns to operation Mode 1. Load 3 and Load 2 are tied with the DC bus at t = 2.0 s and
t = 3.0 s, respectively. This causes the output power of the AC main network to gradually attain
the maximum power allowance of G-VSC and then turn into current-limiting mode, where the
system switches back to Mode 2 again. Although the loads and micro-sources’ output still change
afterwards, the DC bus voltage is maintained within 360 V–370 V through the droop control of
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the storage battery. At t = 4.7 s, the output power cannot meet the load demand since the output
of the PV generation system has been reduced. According to the load grades, Load 3 is cut off.
After cutting, the output power can meet the load requirement, and the system can stably operate
in the mode.

Table 5. Major incidents in Simulation 2.

Incident Operation Conditions Time (s)

1 AC main network fails 1.0
2 AC main network recovers from the failure 1.2
3 Load 3 is connected to the DC bus 2.0
4 Load 2 is connected to the DC bus 3.0
5 The output of the WT generation system decreases from 3 kW–1 kW 4.0
6 The output of the PV generation system reduces from 5 kW–3 kW 4.5
7 Load 3 is shed from the DC bus 4.7
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of G-VSC; (d) output power of the WT generation system; (e) output power of the PV generation
system; (f) power released(+)/absorbed(−) of the battery; (g) discharging(+)/charging(−) current of
the battery.

• Simulation 3: When the islanded mode is taken into consideration and the DG unit sustains the
stability of the DC bus voltage, the simulation result is shown as Figure 14. Table 6 lists the major
incidents in the simulation. At t = 1 s, the DC microgrid in the islanded mode is disconnected
from the main network, causing the system to switch to operation Mode 2, in which the battery
maintains the stability of the DC bus voltage. At t = 2 s, the output power of the DG unit increases,
and the DC bus voltage rises over 390 V, after which the DC microgrid switches to Mode 3.
In Mode 3, the DG generation unit is under voltage-sourced control to sustain the stability of
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the DC bus voltage and the power balance. The output of the PV and WT generation systems is
decided in terms of their capacity ratio (2:1). At t = 3 s, the active load changes, the stability of the
DC bus voltage and system power balance are achieved through the droop control of the DG unit.
At t = 4 s, the battery is fully charged and cut off from the DC microgrid.

Table 6. Major incidents in Simulation 3.

Incident Operation conditions Time(s)

1 DC microgrid disconnected from the main network, in islanded mode 1.0
2 The output of the DG generation system increases dramatically 2.0

3 Load 1 is shed from the DC bus
Load 2 is connected to the DC bus 3.0

4 Battery is cut off from the DC bus after being fully charged 4.0
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the battery.

4.3. Verification to the Actual PV and WT Generation System

In order to verify the voltage stability of actual PV and WT generation in the DC microgrid,
actual data of PV and WT generation are used in this case. The DC microgrid system operates in
Mode 1. In the Figure 15, in the time interval t = [1.5 s, 2 s], the PV gets the maximum illumination,
with an output of 5 kW or so, while the output of WT generation is stochastic, changing within
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[3 kW, 5.8 kW]. The rest of the demanded power is provided to the load by the grid-connected inverter
G-VSC, ensuring the common bus voltage within in a certain range, which verifies the stability of the
DC microgrid voltage.
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5. Conclusions

Taking a PV/WT/ES DC microgrid applied to small-sized commercial and residential buildings
as a paradigm, this paper proposes a hierarchical/droop voltage control strategy based on the DC
bus voltage, which controls the operation mode of the DC microgrid by detecting the change of
the bus voltage to sustain the power balance of the DC microgrid. In addition, in order to avoid
the drawbacks of the conventional droop control, an improved DC droop control strategy based on
integrator current-sharing is introduced. Simulation results verify the effectiveness and feasibility
of the proposed scheme. Through the analysis, the following conclusion can be made: (1) with the
help of the integral term, the improved droop control strategy can achieve power-sharing, as well as
improve the DC bus voltage; (2) in the method proposed in this paper, judging by using the common
DC voltage can make the operation modes switch smoothly, ensuring that the DG sources are working
at their maximum efficiency, and the system has transient steady characteristic; (3) the strategy only
detects local information of various units, so there is no communication between different DG sources,
thereby improving the flexibility and reliability of the control and meaning that the DC microgrid
system can be a plug-and-play solution.
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