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Abstract— A large-scale power electronics based power 

system like a wind farm introduces the passive and active 

impedances.  The interactions between the active and passive 

impedances can lead to harmonic-frequency oscillations above 

the fundamental frequency, which can be called harmonic 

instability.  This paper presents an approach to identify which 

wind turbine and which bus has more contribution to the 

harmonic instability problems. In the approach, a wind farm is 

modeled as a Multi-Input Multi-Output (MIMO) dynamic 

system. The poles of the MIMO transfer matrix are used to 

predict the system instability and the eigenvalues sensitivity 

analysis in respect to the elements of the MIMO matrix locates 

the most influencing buses of the wind farm. Time-domain 

simulations in PSCAD software environment for a 400-MW wind 

farm validate that the presented approach is an effective tool to 

determine the main source of the instability problems. 

Keywords—harmonics; power quality; wind farm; stability; 

multi-input mulit-output dynamic system 

I. INTRODUCTION  

High penetration of power electronic converters into the 
electric power system has initiated technical challenges in 
respect to the stability and power quality of the system [1]. In a 
large power electronics based power system like a wind farm, 
the cables, transformers, capacitor banks, shunt reactors, etc., 
present the passive impedances, while power electronic 
converters present the active impedances [2]. The mutual 
interactions between the passive and active impedances may 
lead to instability problems [3]. The interactions of the active 
impedances resulting from the fast inner control loops of the 
power converters may lead to high frequency oscillations 
above the fundamental frequency, which can be called 
harmonic instability [4]. Many of researches about harmonic 
instability discuss how to predict the instability conditions but 
pay less much attention to identify the main source of 
instability [4]- [14]. For stability analysis, a general approach is 
based on the state-space model, where the contribution of each 
component to the system stability can be identified by the 
participation factor analysis [4]-[9]. However, since the 
detailed models of power converters, loads, cables, 
transformers, etc, are required, the formulation of the state 
matrices for systems with a high integration of power 
converters may become complicated [10]. Apart from the state-
space analysis, the impedance-based analysis approach is 
effective tool to predict the harmonic instability by calculating 

the ratio of the converter active impedance to the grid 
equivalent impedance at Point of Common Coupling (PCC) 
[11]-[14]. However, it cannot identify which bus and which 
converter in a large power electronics based power systems 
contribute more to the harmonic instability.  

Another powerful tool for predicting instability problems is 
presented in [15], [16], where a wind farm is introduced as a 
Multi-Input Multi-Output (MIMO) dynamic system by using a 
transfer function matrix including passive elements and 
converter controller parameters. However, the contributions of 
different components and buses on harmonic-frequency 
oscillations have not been identified.  

In order to fill in this gap, this paper presents an analytical 
approach to calculate participation factors of the different buses 
and converters in a wind farm. The participation factors of the 
different components and buses are calculated by means of 
modal analysis of the introduced MIMO system. A power 
converter with a larger participation factor has more 
contribution to the harmonic instability, and consequently, a 
power converter with the largest participation factor is 
identified as the main source of harmonic instability. The 
proposed methodology has been verified by time-domain 
simulations of a 400-MW wind farm in PSCAD software 
environment. 
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Fig. 1. Wind Turbine (WT) with (a) full-scale power converters with LCL 

filter, (b) the control diagram the kth Grid-Side Converter (GSC) of the 

WT for harmonic stability analysis. 

 



II. A LARGE WIND FARM AS A MULTI-INPUT MULTI-OUTPUT 

DYNAMIC SYSTEM 

Fig. 1(a) shows an Wind Turbine (WT) with full-scale 
converters in a wind farm and Fig. 1(b) depicts the equivalent 
circuit of the Grid-Side Converter (GSC) of the WT for 
harmonic stability analysis. In Fig. 1(b), Gcont,k  is the current 
controller, and Gdelay,k  is the approximated delay of the digital 
control. In this paper, Gcont,k  and Gdelay,k are assumed to be as 
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 where ωf  is the fundamental frequency of the grid and Ts,k is 
the sampling period. The objective of this paper is to identify 
the main source of harmonic instability (harmonic-frequency 
oscillations above the fundamental frequency). Therefore, 
outer power control and dc-link oscillations, which may cause 
low frequency oscillations, are neglected [11]. Since the dc-
link is considered constant, the Turbine-Side Converters 
(TSCs) can also be neglected.  The relationship between the 
current references and the bus voltages in the wind farm can be 
written as a Multi-Input Multi-Output (MIMO) dynamic 
system by 
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fV(s) = G (s)U(s)  (3) 
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G1(s,) G2(s), G3(s), and G4(s) are given in [16]. Vi(s) is the 
voltage of ith bus, Iref,k(s) is the current reference of the kth GSC, 
and the Vg(s) is the main grid voltage.  

A. Poles of the system 

Poles of the MIMO dynamic system can be obtained by 
solving the following equation: 
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where the oscillation frequency (fi) and the damping ratio (ζi) 
of oscillations can also be obtained as 
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The system is stable if and only if the all poles have negative 
real parts. The pole with the largest real part is called the 
critical pole (sc), i.e., 
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B. Harmonic Instability source identification 

By substituting the critical pole (sc) for s in the function 
matrix of Gf (s), Gf (sc) can be numerically obtained. Based on 
the idea of the eigenvalue decomposition [17]-[21], the matrix 
Gf (sc) can be decomposed into three matrixes as 
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where Λf is a diagonal matrix whose diagonal elements are 
the eigenvalues of Gf (sc) (λ1, λ2, …, λm). Rf is a matrix whose 
columns are the corresponding right eigenvectors, i.e., 


f c f f f

G (s )R R Λ  (10) 

Lf  is a matrix whose rows are transposed left eigenvectors, 
i.e, 

f f c f f
L G (s ) = Λ L  (11) 

The following equation can be derived from (10) and (11): 

-1

f f
L = R  (12) 

Using (9) and (12), the inverse of Gf (sc) can be calculated 
from 



Table I. Frequency, damping, the largest participation factor, and the most 
influencing bus for the oscillatory modes of the wind farm 

Pole 

i 

Real part 

αi 

Frequency 

fi 

Damping 

ζi 

The largest 

Participation 

Factor (PFi) 

The most 

influencing 

bus 

1 -107.438 51.40616 0.315628 0.535925 Bus-2 

2 -65.7248 52.29672 0.196136 0.36575 Bus-3 

3 -76.9366 56.52478 0.211717 0.185176 Bus-4 

4 -361 62.88671 0.674504 0.234466 Bus-5 

6 -884.23 508.8612 0.266552 1.233141 Bus-2 

7 -558.831 834.3687 0.105996 0.598959 Bus-2 

8 62.19831 840.1478 -0.01178 0.431535 Bus-2 

9 -36.3585 889.9904 0.006502 0.253933 Bus-2 

10 -778.346 900.1397 0.136335 0.791803 Bus-5 

11 -1466.69 908.4157 0.24888 0.633163 Bus-2 

12 -966.408 1010.935 0.150414 0.963276 Bus-4 

13 -146.546 1262.467 0.018471 0.259429 Bus-16 

15 -13453.3 1520.601 0.815316 0.989698 Bus-2 

17 -13060.2 1571.691 0.797646 0.990838 Bus-3 

18 -12976.1 1595.823 0.791289 0.993135 Bus-5 

20 -12659.8 1664.792 0.770898 0.996 Bus-4 

21 -172.072 2396.805 0.011425 0.288203 Bus-8 

22 -193.822 2400.508 0.012849 0.28709 Bus-7 

23 -90.7824 2646.583 0.005459 0.273503 Bus-9 

24 -95.4275 2649.73 0.005732 0.272747 Bus-6 

25 -57.638 6464.016 0.001419 0.288726 Bus-10 

26 -57.9728 6464.04 0.001427 0.288816 Bus-13 

27 -56.9193 6480.975 0.001398 0.291282 Bus-11 
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Since sc is a pole of the Gf
-1

(s), one of the eigenvalues of Gf 

(sc) (λ1, λ2, …, or λm) should ideally be equal to zero. However, 
it is close to, but not exactly zero, because the decomposition is 
performed using floating-point computations, which can suffer 
from round-off errors. The mentioned eigenvalue, i.e, the 
smallest eigenvalue is called the critical eigenvalue (λc) and its 
right and left eigenvectors are called the critical right and left  
eigenvectors (rc and lc). If the ith eigenvalue is λc, the ith column 
of the matrix Rf is rc and the ith row of the matrix Lf  is lc . The 
sensitivity of the critical eigenvalue with respect to the Gf (sc) 
entries can then be obtained by 

λc c c
S = r l  (14) 

Sλc is the sensitivity matrix and its kth diagonal element is 
Participation Factor (PF) of the kth bus. The bus with the largest 
PF is the most influencing bus on the critical eigenvalue, 
where, in fact, is the main source of the instability and can be 
called the critical bus. 

Table II. Participation factors of the buses 2 to 5 for the critical pole 

Bus number PF for the critical pole  

(P8=62.2±5279i) 

Bus-2 (GSC-1) 0.43 

Bus-3 (GSC-2) 0.09 

Bus-4 (GSC-3) 0.16 

Bus-5 (GSC-4) 0.14 
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Fig. 2. The configuration of the 400-MW wind farm with the aggregated strings which is studied in this paper. 

 



III. A 400-MW WIND FARM AS A CASE STUDY 

A. Theoretical analysis 

Fig. 2 shows the configuration of a 400-MW wind farm 
[10], which is used in this paper to identify the harmonic 
instability source. The network consists of four branches and 
each branch is an aggregated 100-MW wind turbine. A simple 
Thévenin’s equivalent voltage source is used to represent the 
grid. The transformers are modeled as a short-circuit 
impedance and the cables are modeled as a nominal π-model. 
In this case study, the dimension of the matrix Gf (sc) is 16×16, 
which shows the relations between Bus-1 to Bus-16 (see Fig. 
2). The parameters of the wind farm are given in Appendix A. 
The GSC controllers are designed with acceptable bandwidths. 
More detailed information about the model can be found in 
[16], [22], [23]. Table I shows the oscillation frequency, the 

damping ratio, the largest participation factor, and the most 
influencing bus for the oscillatory modes of the wind farm. It 
can be seen that most poles with low and medium frequencies 
are related to power electronic converter (Bus-2 to Bus-5) and 
high-frequency poles are related to the buses where power 
cables and transformers are connected. The wind farm has one 
unstable pole, P8, (critical pole) with the frequency of 840 Hz. 
Therefore, harmonic-frequency oscillations around 840 Hz 
propagate into the wind farm because of instability problems. 
Bus-2 has the largest PF for the critical pole, which shows that 
the GCS-1 is the main source of the harmonic instability. Table 
II shows the participation factors of the buses 2 to 5 for the 
critical pole. As it can be seen from Table II, Bus-2 (GSC-1) is 
the most influencing bus on instability, while Bus-3 (GSC-2) is 
less critical compared to the other buses.          

 

0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55
-0.4

-0.2

0

0.2

0.4

Time (s)

G
S

C
-1

 C
u

rr
e
n

t 
(p

u
)

 

0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55
-0.4

-0.2

0

0.2

0.4

Time (s)

G
S

C
-1

 C
u

rr
e
n

t 
(p

u
)

 

0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55
-0.4

-0.2

0

0.2

0.4

Time (s)

G
S

C
-2

 C
u

rr
e
n

t 
(p

u
)

 
0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55

-0.4

-0.2

0

0.2

0.4

Time (s)

G
S

C
-2

 C
u
rr

e
n
t 

(p
u
)

 

0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55
-0.4

-0.2

0

0.2

0.4

Time (s)

G
S

C
-3

 C
u
rr

e
n
t 

(p
u
)

 
0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55

-0.4

-0.2

0

0.2

0.4

Time (s)

G
S

C
-3

 C
u

rr
e
n

t 
(p

u
)

 

0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55
-0.4

-0.2

0

0.2

0.4

Time (s)

G
S

C
-4

 C
u

rr
e
n

t 
(p

u
)

 
0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55

-0.4

-0.2

0

0.2

0.4

Time (s)

G
S

C
-4

 C
u

rr
e
n

t 
(p

u
)

 

Fig. 3. Disconnecting the power converter (GSC-2) with the small Participation 

Factor (PF) under unstable conditions at t = 0.3 s. 

Fig. 4. Disconnecting the power converter (GSC-1) with the large Participation 

Factor (PF) under unstable conditions at t = 0.3 s. 

 



B. Time-domain simulation results 

In order to confirm the predicted theoretical results, time-
domain simulations have been provided in the PSCAD 
software environment. In Fig. 3, the GSC-2 is disconnected 
from the wind farm at t = 0.3s. Since the GCS-2 (Bus-3) has a 
very small PF (PF  = 0.09), the wind farm will be remained 
unstable even after disconnecting the GSC-2. In Fig. 4, the 
GSC-1, the converter with the largest PF (PF = 0.43) is 
disconnected. Fig. 4 shows the wind farm becomes stable after 
disconnecting the GSC-1, which confirms the GSC-1 is the 
main source of the instability (as predicted in Table II). 

IV. CONCLUSION  

This paper has attempted to identify the contribution of each 

power converter to harmonic instability and to locate the main 

source of harmonic instability in large wind farms. A large 

wind farm is introduced as a Multi-Input Multi-Output 

(MIMO) dynamic system and the critical converter are 

identified by the modal analysis of the introduced MIMO 

system.  Under unstable conditions, the theoretical analysis for 

a 400-MW wind farm shows that some power converters can 

have larger Participation Factor (PF) than the other converters. 

Time-domain simulations in PSCAD software confirm that 

disconnecting the power converters with larger PFs can 

transform the wind farm from an unstable condition to a stable 

condition. 
 

V. APPENDIX A 

TABLE A.  400-MW WIND FARM PARAMETERS 

Parameter Value (P.U.) 

Transformer T1 Leakage inductance  3.18×10-4 

33 kV cable (Cable 33-kv) 

Shunt capacitance 7.841×10-6 

Series inductance 1.802×10-4 

Series resistance 0.022 

Transformer T2 Leakage inductance 3.8×10-4 

150 kV cable (Cable 150-kv) 

Shunt capacitance 7.54 ×10-5 

Series inductance  5.8×10-4 

Series resistance 0.018 

Transformer T3 Leakage inductance 4.46×10-4 

AC tuned filter 

Resistance ( Rf  ) 2 

Inductance ( Lf ) 10.612×10-6 

Capacitance ( Cf ) 9.55×10-5 

Grid 
X/R ratio 10 

SCR 5 

Controller Bandwith 

GSC-1 710 Hz 

GSC-2 450 Hz 

GSC-3 625 Hz 

GSC-4 780 Hz 

       Sbase = 450 MVA, fb = 50 Hz 
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