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Abstract: In recent years, the harmonics and unbalance problems endanger the voltage and current
quality of power systems, due to increasing usage of nonlinear and unbalanced loads. Use of
Distributed Generation (DG)-interfacing inverters is proposed for voltage or current compensation.
In this paper, a flexible control method is proposed to compensate voltage and current unbalance and
harmonics using the distributed generation (DG)-interfacing inverters. This method is applicable
to both grid-connected and islanded Microgrids (MGs). In the proposed method, not only the
proper control of active and reactive powers can be achieved, but also there is flexibility in
compensating the voltage or current quality problems at DG terminals or Points of Common Coupling
(PCCs). This control strategy consists of active and reactive power controllers and a voltage/current
quality-improvement block. The controller is designed in a stationary (αβ) frame. An extensive
simulation study has been performed and the results demonstrate the effectiveness of the proposed
control scheme. Depending on the compensation modes, the harmonics and unbalance compensation
of DG output current, MG-injected current to the grid, as well as PCC and DG voltages, can be
achieved in grid-connected operation of MG while in the islanded operation, and the PCC and DG
voltages compensation can be obtained through the proposed control scheme.

Keywords: Distributed Generation (DG); DG-interfacing inverter; microgrid; power quality

1. Introduction

In recent years, due to the disadvantages of conventional fossil fuels such as air pollution and
extinction, the concept of benefitting from renewable energy sources (RESs) has attracted more
attention [1–3]. Microgrid (MG) and Distributed Generation DG concepts have emerged for better
use of the RESs and enhancing efficiency, power quality and reliability of the conventional power
systems [4,5]. Since the output voltage of many of the RESs are unregulated DC or variable/high
frequency AC, the integration of renewable energy to the utility grids or MGs requires power electronic
converters, with an inverter as the last conversion stage in case of AC systems [6]. These inverters are
usually connected to the grid by an LCL or LC filter [7,8].

On the other hand, in the presence of unbalanced, single-phase and nonlinear loads, excessive
voltage unbalance and harmonics may appear in the MGs. The unbalanced and harmonic distorted
voltage leads to more losses and less stability of the MG. It also causes malfunction of power electronics
converters and induction motors [9]. Due to these problems, the allowed limit for voltage unbalance
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recommended by the International Electrotechnical Commission (IEC) is 2%, while the recommended
limit for voltage total harmonic distortion (THD) is 5% [10].

Incorporation of multifunctional interfacing inverters for compensation of power quality-related
problems has been proposed recently in some research works, such as [11–16]. With proper control
of these inverters, not only the extracted energy of RESs can be injected into the grid or MG, but also
the improvement of voltage and current quality may be achieved. In [17], droop control for injecting
the negative sequence voltage is proposed. A method based on injecting negative sequence voltage
is presented in [9]. The voltage injection is based on negative sequence reactive power to share the
compensation effort between DG units. The voltage quality improvement using secondary and tertiary
control is also proposed in [18–21]. The compensation of unbalanced and nonlinear loads in a multi-bus
islanded MG, using an adjustable resonance frequency, a droop control strategy, and a negative and
harmonic sequence impedance controller, is discussed in [22].

All of the aforementioned works have been focused on only voltage or current quality
improvement. In [23], a flexible voltage and current harmonic compensation approach is proposed
through DG-interfacing inverters in a single-phase MG. The performance of the method is improved
by using a frequency adaptive controller which is presented in [24]. In this paper, extension of control
methods of [23,24] is proposed in three-phase MGs to enable unbalance and harmonic compensations.
In the proposed method, four harmonic and unbalance compensation modes can be achieved, while the
fundamental positive sequence components of DG output voltage can also be properly controlled.
The main contributions of this paper can be highlighted as follows:

• Simultaneous control of fundamental positive and negative sequences, as well as harmonic
components of voltage and current, is achieved for three-phase DG-interfacing inverters.

• A flexible voltage or current compensation of nonlinear and unbalanced loads is proposed.
• The proposed method is applicable in both grid-connected and islanded modes of

three-phase MGs.
• Four unbalanced and harmonic voltage or current compensation strategies can be achieved using

this method.

The extensive simulation which is implemented in MATLAB/Simulink (2016a Version,
MathWorks, Natick, MA, USA) verifies the effectiveness of the power-quality improvement method in
both grid-connected and islanded operation modes of an MG.

The remaining parts of this paper are organized in the following order: In Section 2,
the DG-interfacing control method is introduced. Section 3 is dedicated to the design of the control
system. The details of the simulation study are presented in Section 4. Finally, Section 5 concludes
the paper.

2. Control Approach for DG-Interface Inverter

2.1. Power Control and Virtual Impedance

Figure 1 shows the power stage and control system of the DG-interfacing inverter. As shown
in this figure, the power stage consists of a DC link, a three-phase inverter and an LCL filter. In the
control system, the positive sequence active and reactive powers are calculated based on instantaneous
active and reactive power theory [25].

In the control system, the droop-based voltage (Vdroop,αβ) is generated by droop controllers. Virtual
impedance is used for decoupling the reactive and active powers droop controllers and enhancing
the dynamics of the system [26,27]. Four voltage or current unbalance and harmonic compensation
modes can be selected by the “Mode Selector” switch. Since the control system is based on the αβ

frame, the three-phase voltages and currents should be transferred to the αβ reference frame using
Clark’s transformation [9].
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It should be mentioned that, since the present work is focused on three-phase three-wire MGs,
the zero sequence component of voltage and current are not taken into account [9,28,29].
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Figure 1. Diagram of the proposed flexible power-quality improvement scheme.

If a three-phase inverter is connected to a mainly inductive grid, the injected positive sequence
(PS) active and reactive powers are related to the angle between output voltage of DG and grid (ϕ) and
voltage amplitude (E), respectively; hence, P-ϕ and Q-E power droops are applied in order to generate
reference voltage in this paper. These power droops, which add virtual inertia to the power electronics
inverters, are written as [30]:

ϕ∗ = ϕ0 +
(
mP(P∗ − P+) + mI

∫
(P∗ − P+)dt

)
E∗ = E0 +

(
nP(Q∗ − Q+) + nI

∫
(Q∗ − Q+)dt

) , (1)

where ϕ0 and ϕ* represent the rated and voltage-phase angle reference, respectively. P+ and Q+ are
the fundamental positive sequence active and reactive powers, respectively. E0 and E* are rated and
reference values of voltage amplitude, respectively. mP and mI are PS active power proportional and
integral coefficients, respectively, while nP and nI represent the integral and proportional coefficients
related to reactive power, respectively. P* and Q* are reference active and reactive powers, respectively.
P*, Q* and nI must be zero if the MG operates in islanded mode [23].

As was mentioned before, the P-ϕ and Q-E droops are designed with the assumption that the
MG is mainly inductive. For compensating the effect of the resistance and decoupling of the P-ϕ and
Q-E droops, inductive virtual impedance is used. The fundamental frequency virtual impedance is
expressed in (2) and (3) [27]:

Vvα = Rvi2α − Lvωi2β, (2)

Vvβ = Rvi2β + Lvωi2α (3)
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where Rv and Lv represent the virtual resistance and inductive impedances, respectively. The reference
voltage will be written by (4):

Vre f ,αβ = Vdroop,αβ − Vv,αβ (4)

2.2. Proposed Flexible Controller for Unbalance and Harmonic Compensation

As shown in Figure 1, four power-quality improvement strategies can be obtained by the “Mode
Selector” switch. Based on this, the following compensation modes are taken into account (the mode’s
number associates with the position of “Mode Selector” switch):

• Mode 1—unbalance and harmonic compensation of Point of Common Coupling (PCC) voltage
(VPCC): in this mode, the unbalance and harmonic voltage compensation is achieved by using the
following equation as input of flexible power quality controller (FPQC):

(Xre f ,αβ−Xαβ) = G−V−
PCC,αβ + Gh(VPCC,3αβ + . . . + VPCC,hαβ)− I2,αβ (5)

where G− and Gh represent negative sequence and harmonic virtual conductance, respectively.
The extraction of the fundamental negative sequence and harmonic (FNS&H) components of VPCC is
performed using the Second Order Generalized Integrator (SOGI) method, which is presented in [29].
The multifunctional inverter acts as damping resistance at FNS&H components, and low-impedance
paths are created for respective current components; hence, the voltage quality will be enhanced.
This compensation is useful when a sensitive load is connected in PCC. It should be mentioned that in
this mode, the inverter acts in current controlled mode (CCM) for FNS&H components.

• Mode 2—unbalance and harmonic compensation of DG output voltage (VC): The capacitor voltage
will be balanced if the (0-VC,αβ) is applied as the input of FPQC. The unbalance and harmonic
compensation of VC is obtained by injecting FNS&H sequences of VC; hence, the performance
of the inverter acts in voltage controlled mode (VCM) in FNS&H sequences. The compensation
is important when a sensitive load is connected near the DG. The selection of Modes 1 or 2 is
dependent on the location of the sensitive load.

• Mode 3—local unbalanced and nonlinear loads compensation: in this mode, the aim of the
compensation is the unbalance and harmonic compensations of MG-injected current (Iinj). Using
(Ilcaoal-I2) as input of FPQC, the multifunctional inverter acts as an active filter in negative and
harmonic sequences, therefore, the FNS&H parts of unbalanced and nonlinear loads are supplied
by the DG-interfacing inverter and Iinj will be balanced. The mode can be activated when there is
a limitation for the unbalance and harmonics current of an MG, since each system has limitations
in harmonic and unbalance injections according to IEEE 519 and EN 50160 standards.

• Mode 4—the output current compensation of DG unit (I2): in this mode, which is called the
unbalance and harmonics rejection mode, the output current of DG will be compensated.
This mode is important when the DG delivers maximum power to the grid, and injection of
unbalance and harmonics current can increase the current of one/two phase(s) higher than the
rated one.

Figure 2 shows more details of the proposed control diagram. As can be observed in this figure,
the control scheme consists of three parts. The first part is related to the PS voltage control, where Vref
is tracked as a VCM inverter. The second part is related to unbalance and harmonic compensation,
and acts as a CCM inverter except in Mode 2. As discussed before, since the compensation of VC is
achieved by injecting negative and harmonic sequence voltage, the inverter acts as VCM inverter in
FNS&H sequences in Mode 2. The third part is applied to provide some damping [31]. The following
equation expresses these three parallel controllers:
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Vinv,αβ = GV(s)(Vre f ,αβ − Vc,αβ)
+ + GPQC(s)(Xre f ,αβ − Xαβ) + KD(s)I1,αβ (6)

where GV and GPQC represent the voltage and power quality compensation controllers, respectively.
KD is a proportional gain which is used for resonance damping. As illustrated in Figure 2a, in the PS
voltage and unbalance compensation parts of Power Quality Controller (PQC), SOGI-based negative
and positive extraction blocks are utilized. Figure 2b shows the details of the controller. As shown in
this figure, the quadrature-phase waveforms (90◦ lag) of the original in-phase waveforms are created,
and according to the following equations, the negative and positive sequences are extracted [29]:[

xα
+

xβ
+

]
=

1
2

[
1 −q
q 1

][
xα

xβ

]
, (7)
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[
xα

−

xβ
−

]
=

1
2

[
1 q
−q 1

][
xα

xβ

]
, (8)

where q is defined as q = e−jπ/2. In other words, the extraction of negative and positive sequences is
achieved by using a resonant controller. In the positive sequence, the controller acts similar to the
non-ideal resonant controller expressed in (9):

GV =
2KVωbs

s2 + 2ωbs + (2π f )2 , (9)

where KV is the gain of resonance controller at fundamental frequency, and ωb represents the cut-off
bandwidth of the controller [23,29,31].

For negative sequence and harmonic compensation, the power quality controller (PQC) can be
expressed by the following equation:

GPQC = 2KUCCωbs
s2+2ωbs+(2π f )2 (Xre f ,αβ − X,αβ)

− + (KP +
2KI,3ωbs

s2+2ωbs+(2π(3× f ))2 + . . .+
2KI,hωbs

s2+2ωbs+(2π(h× f ))2 )(Xre f ,αβ − X,αβ)
, (10)

where Xref and X, which are selected by “Mode Selector” switch, can be the reference and actual
values of I2 or VC, respectively. KP, KUCC and KI,h represent the proportional coefficient of the resonant
controller, and the unbalance and harmonics resonant coefficients of the controller, respectively. Since
a low value of KP is chosen [23], all the components, including fundamental positive and FNS&H
components, are decoupled.

In order to damp the resonance of the LCL filter, active and passive damping is utilized.
The current of the capacitor or inverter side inductor is usually used for active damping [32,33].
In this paper, the inductor current feedback and a proportional controller (KD) are employed as the
third and damping part of the flexible controller.

3. Control System Design

As discussed before, the control of the inverter is a flexible current-and-voltage-control method.
The positive sequence of the VC is related to the first part of FPQC, and the inverter can be modeled
as a VCM inverter. Figure 3 shows the positive sequence voltage generation block. Since negative
and harmonic sequences are generated by PQC, this part is eliminated in PS analysis. On the other
hand, since the DG-interfacing inverter acts as a CCM inverter in Modes 1, 3 and 4, only PQC and
the damping controller can have an influence on the negative and harmonic sequences of DG output
current; hence, the control system of the FNS&H current is merely considered as depicted in Figure 4.
In these figures, the LCL filter inverter-side inductance and its resistance are represented by L1 and RL1,
respectively, while L2 and RL2 are the grid-side inductance and its resistance, respectively. The capacitor
of the LCL filter and its series resistance are shown by C and RC, respectively.
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In other words, the inverter can be modeled using Norton- and Thevenin-equivalent circuits
for FNS&H and positive sequences of fundamental frequency, respectively. As discussed before, in
Mode 2 of compensation, the inverter acts as a VCM inverter in negative and harmonic sequences, and
its relative model is similar to the PS part depicted in Figure 3.

The closed-loop transfer function of positive sequence capacitor voltage (GPSCV(s)) is written by
the following equation, according to Figure 3:

GPSCV =
VC,αβ

Vre f ,αβ
=

GV Zc/ZLI
1 + GV Zc/ZLI + Zc/ZLI + KD/ZLI

, (11)

where ZL1 = L1 s + RL1 is the impedance of the inverter-side inductance of the LCL filter and its
series resistance. ZL2 = L1 s + RL1 represents the grid-side inductance and its series resistance, while
ZC(s) = 1/Cs + RC is the capacitor impedance and its series resistance. GV is the transfer function of the
resonance controller, which is defined according to (9), and KD is the damping gain, which is shown in
Figure 2a.

According to Figure 4, the closed-loop current-transfer function of DG output FNS&H current
(GONHC(s)) is written as:

GONHC(s) =
I2,αβ

Ire f ,αβ
=

GPQCZc/(ZLI ZL2)

1 + GPQCZc/(ZLI Zl2) + Zc/ZLI + KD/ZLI + Zc/ZL2 + KDZc/(ZLI ZL2)

, (12)

where GPQC represents the power quality compensation controller, which is expressed by Equation (10).
Using Equations (11) and (12), the parameters of the controllers can be determined. The cut-off
bandwidth of the non-ideal resonant controllers (ωb) is recommended to be in the range of
5–15 rad/s [31]. In this paper, ωb = 5 is chosen.

Firstly, the design of the damping part of the controller will be discussed. The Bode diagram of
GPSCV(s) is depicted in Figure 5 using the LCL filter parameters in Table 1, KV = 700 and ωb = 5 rad/s.
The Bode diagram is depicted for three amounts of KD = 0, 20 and 100. As shown in this figure, there is
a peak in resonance frequency of the LCL filter when KD = 0. The resonance is damped when KD is
set at 20 and 100. The large amount of KD may cause additional resonance in the system [34]; thus,
KD = 20 is the selected option.
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In the FNS&H compensation controller, the proportional controller is used for better tracking
of the FNS&H voltage or current, and a low value of it is adequate for the controller [31], hence,
KP = 4 is chosen. The Bode diagram of the GONHC is shown in Figure 6, considering KUCC = 700,
KI,3 = 500, KI,5 = 300 and KI,7 = 300. As depicted in this figure, the Bode diagram of the closed-loop
transfer function is zero in the fundamental frequency for negative sequence and third-, fifth- and
seventh-order harmonics; hence, the current can track its reference value.Energies 2017, 10, 1568 2 of 4 
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4. Simulation Results

In this section, the effectiveness of the proposed control method for both grid-connected and
islanded MG operation modes is evaluated.

To quantify the voltage and current compensation, the voltage/current unbalance factors (VUF
and CUF, respectively) and individual harmonic factors with the following definitions are considered:

VUF =
V−

rms

V+
rms

× 100, (13)

CUF =
I−rms

I+rms
× 100, (14)

H±
h =

X±
h,rms

X+
1,rms

× 100, (15)

where V−
rms/V+

rms and I−rms/I+rms are Root Mean Square (RMS) values of negative and positive sequences
of voltage/current, respectively. X±

h,rms and X+
1,rms represent the harmonic positive and negative

sequences and fundamental components of voltage/current variables, respectively.

4.1. Grid-Connected Operation

Figure 7 shows a grid-connected MG, which consists of both local and PCC-connected balanced
and unbalanced linear and nonlinear loads. The linear unbalanced (single-phase) load is presented
in this figure by Runb. The MG is connected to the grid through the line impedance ZL,G = R + jωL.
It is assumed that the grid voltage is unbalanced with VUF = 4.5%. Control system and power stage



Energies 2017, 10, 1568 9 of 19

parameters are listed in Table 1. The following five steps are used for evaluating the controller in
unbalance and harmonic compensation.

• Step 1 (0 s ≤ t < 3.5 s): activation of Mode 1 for VPCC compensation.

Energies 2017, 10, 1568 9 of 18 

 

assumed that the grid voltage is unbalanced with VUF = 4.5%. Control system and power stage 
parameters are listed in Table 1. The following five steps are used for evaluating the controller in 
unbalance and harmonic compensation. 

• Step 1 (0 s ≤ t < 3.5 s): activation of Mode 1 for VPCC compensation. 

 

DC/AC

Inverter

LCL Filter
DGI

IPCC

PCC
GridZL,G

+

-

DC link 

Local Load

ILocal

injI
L1 L2

CV

 Balanced   
load

UnbR

PCC
Load

MG
LNL

CNL RNL

PCCV GV

 
Figure 7. Simulated grid-connected MG with unbalanced linear and nonlinear local and PCC loads. 

Table 1. Parameters of grid-connected MG. 

DC Link Voltage LCL Filter (L1/C/L2) Voltage/Frequency 
650 V 2.5 mH/20 μF/1.5 Mh 230 V/50 Hz 

Nonlinear load Line impedance Unbalanced linear local and PCC load 
CNL (μF) RNL (Ω) LNL (mH) ZLG (Ω) Runb (Ω) 

235 114 0.084 0.95j + 1 20 
active and reactive power powers 

refrence power 
Switching frequency Pulse Width modulatin (PWM) delay 

Active power 
reference 

Reactive power 
reference 

fs Ts 

20 kW 5 kVAR 10 kHz 100 μs 
Parameters of controller 

Active power droop coefficients Reactive power droop coefficients 
mP mI nP nI 

1 × 10−5 rad·s−1 1 × 10−4 ω 0.05 0.1 
Voltage and current controllers parameters 

KV KUUC KI,3/KI,5/KI,7 KP KD 
4 700 500/300/300 4 20 

Virtual admittance for harmonic 
and unbalance compensation 

Virtual impedance for fundamental component 

G− Gh Rv Lv 
25 Ω−1 1 Ω−1 0.1 Ω 2 mH 

• Step 2 (3.5 s ≤ t < 6.5 s): activation of Mode 2 for VC compensation. 
• Step 3 (6.5 s ≤ t < 9.5 s): activation of Mode 3 for Iinj compensation. 
• Step 4 (9.5 s ≤ t < 12.5 s): activation of Mode 4 for IDG compensation. 
• Step 5 (12.5s ≤ t < 16 s): disabling the harmonic and unbalance compensation (no compensation). 

The VUFs and CUFs of the related voltages and currents are depicted in Figures 8 and 9, 
respectively. Since an unbalanced nonlinear load is used in this study, both sequences of triple and 
other odd harmonics will be present [35]. Thus, the dominant harmonic components, selected for 

Figure 7. Simulated grid-connected MG with unbalanced linear and nonlinear local and PCC loads.

Table 1. Parameters of grid-connected MG.

DC Link Voltage LCL Filter
(L1/C/L2) Voltage/Frequency

650 V 2.5 mH/20 µF/
1.5 Mh 230 V/50 Hz

Nonlinear load Line
impedance

Unbalanced linear local and
PCC load

CNL (µF) RNL (Ω) LNL (mH) ZLG (Ω) Runb (Ω)

235 114 0.084 0.95j + 1 20

active and reactive power powers refrence power Switching
frequency

Pulse Width modulatin
(PWM) delay

Active power reference Reactive power reference fs Ts

20 kW 5 kVAR 10 kHz 100 µs

Parameters of controller

Active power droop coefficients Reactive power droop coefficients

mP mI nP nI

1 × 10−5 rad·s−1 1 × 10−4 ω 0.05 0.1

Voltage and current controllers parameters

KV KUUC KI,3/KI,5/KI,7 KP KD

4 700 500/300/300 4 20

Virtual admittance for harmonic and unbalance compensation Virtual impedance for fundamental component

G− Gh Rv Lv

25 Ω−1 1 Ω−1 0.1 Ω 2 mH

• Step 2 (3.5 s ≤ t < 6.5 s): activation of Mode 2 for VC compensation.
• Step 3 (6.5 s ≤ t < 9.5 s): activation of Mode 3 for Iinj compensation.
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• Step 4 (9.5 s ≤ t < 12.5 s): activation of Mode 4 for IDG compensation.
• Step 5 (12.5 s ≤ t < 16 s): disabling the harmonic and unbalance compensation (no compensation).

The VUFs and CUFs of the related voltages and currents are depicted in Figures 8 and 9,
respectively. Since an unbalanced nonlinear load is used in this study, both sequences of triple
and other odd harmonics will be present [35]. Thus, the dominant harmonic components, selected
for compensation in this paper, are third, fifth and seventh orders [20]. The amount of the negative
and positive sequences of third and fifth harmonics of voltage and current are listed in Table 2 in
different steps.
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Figure 9. CUF curves of currents in grid-connected MG.

Table 2. Harmonic contents of VPCC, VC, IDG and Iinj in different steps for grid-connected MG.

Steps
Harmonics VPCC VC IDG Iinj

H3
− H3

+ H5
− H5

+ H3
− H3

+ H5
− H5

+ H3
− H3

+ H5
− H5

+ H3
− H3

+ H5
− H5

+

Step 1 1.1 1 0.8 0.8 2.1 2.1 2.2 2.15 8 7.5 5.5 5.25 5 4.9 3.75 3.5
Step 2 1.5 1.3 1.5 1.2 0.05 0.05 0.05 0.03 6 5.5 3.85 3.25 2.2 2 1.5 1
Step 3 2.2 1.75 2 1.55 1.5 1.05 1.15 0.9 4.2 3.8 2.3 1.9 0.3 0.2 0.2 0.2
Step 4 3.75 2.8 2.8 2 3.8 3 2.85 2 0.15 0.08 0.1 0.1 5.3 4.15 2.5 1.75
Step 5 3.3 2.6 2.5 2 3.15 2.7 2.3 2 1.75 1.4 1.3 1 4 2.9 1.85 1.6

Note that due to the limitation of paper and table length, the seventh harmonic components are
not presented in this Table. Furthermore, the capability of the controller in injecting the reference
active and reactive powers to the grid is also investigated. Figure 10 shows that the grid-connected
inverter can inject the reference active and reactive powers listed in Table 1 to the grid in different
compensation modes. The details of the power quality compensation in the aforementioned steps are
explained below:
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Figure 10. Active and reactive powers of DG.

Step 1: Mode 1 is activated in this step. Since the PCC voltage compensation is the aim of this
step and mode, the PCC voltage waveform is depicted in Figure 11. As depicted in Figures 8 and 11,
the unbalance voltage of the PCC is compensated and the VUF of the VPCC is about 0.2%, which is
below the standard limit of 2%. The compensation is achieved via the negative sequence virtual
conductance which creates a low-impedance path for negative sequence current to pass through the
DG-interfacing inverter. Therefore, IDG becomes unbalanced, as demonstrated by its CUF in Figure 9.
Furthermore, as depicted in Figure 11 and Table 2, the harmonic contents of the PCC voltage are
compensated. In order to show the effectiveness of the FPQC in this mode, the PCC voltage is also
magnified in Step 5, when the PQC is inactive.
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Step 2: in this interval, Mode 2 is applied to the inverter by setting the reference value of VC to
0 in the input of the unbalance compensation controller. The VC is used as feedback of the FPQC,
and negative and harmonic sequence voltages with 180 phase degree difference with negative and
harmonics sequences of VC are injected for compensation. Figure 12 shows the VC voltage in different
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steps, while this figure is magnified in Step 2 (VC compensation) and Step 5 (without compensation).
Furthermore, as depicted in Figure 12 and Table 2, the harmonic compensation of VC is also achieved.Energies 2017, 10, 1568 12 of 18 
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Step 3: in this interval, Mode 3 of power-quality improvement is selected by the “Mode Selector”
switch. In this mode, the (ILocal-I2) is applied to the PQC, as depicted in Figure 2, and the DG generates
the negative and harmonic sequences of the local load; hence, Iinj will be compensated, as illustrated
by CUF (Figure 9), Table 3 and the Iinj waveform that is depicted in Figure 13. Figure 13 shows the
magnified image of Iinj in Step 3 (Iinj compensation mode) and Step 5, when the PQC is deactivated for
evaluating the performance of power-quality compensation in this mode and step.
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Step 4: in this mode, which is also called unbalance and harmonic rejection mode, the reference
value of the I2 is chosen to be zero for the PQC controller. As depicted in Figure 9, the CUF of the IDG is
approximately zero in this step. This fact is also demonstrated in Figure 14, which shows the waveform
of IDG in different steps. In this figure, the waveform is also magnified in Steps 4 (IDG compensation
mode) and 5 (without compensation); however, Iinj is unbalanced, with a high CUF equal to 30%. Since
the unbalanced current passes through the impedances of the grid and the LCL filter, the VUFs of the
VPCC and VC are high in this interval, as depicted in Figure 8. For harmonic compensation, as listed in
Table 2, H3

−, H3
+, H5

− and H5
+ of VPCC and VC are increased, and the DG current is also compensated.

Energies 2017, 10, 1568 13 of 18 

 

waveform of IDG in different steps. In this figure, the waveform is also magnified in Steps 4 (IDG 
compensation mode) and 5 (without compensation); however, Iinj is unbalanced, with a high CUF 
equal to 30%. Since the unbalanced current passes through the impedances of the grid and the LCL 
filter, the VUFs of the VPCC and VC are high in this interval, as depicted in Figure 8. For harmonic 
compensation, as listed in Table 2, H3−, H3+, H5− and H5+ of VPCC and VC are increased, and the DG 
current is also compensated. 

Step 1 Step 2 Step 3 Step 4 Step 5

 
Figure 14. IDG in Step 4 and Step 5 (without compensation) of unbalance compensation. 

Step 5: in this interval, the unbalance compensation is deactivated. As shown in Figure 8, the 
VUF of the VPCC and VC is approximately 5.5%, which is higher than the standard limit of 2%. In order 
to show the effectiveness of the FPQC, the waveforms of voltage/current in this step are also depicted 
in Figures 11–14. This step is used as a comparative study against methods without harmonic and 
unbalance compensation. For instance, as depicted in Figure 8, the VUF of VPCC and VC are about 5.8% 
in this step, which is higher than the standard limit of 2%. The results show the advantage of this 
method in comparison to the methods proposed in [23,24], in which the negative sequence 
compensation is not the object of these papers.  

4.2. Islanded Operation of the MG 

The simulated islanded MG includes two DG units, which supply balanced and unbalanced 
linear and nonlinear loads, as depicted in Figure 15. The system’s parameters are listed in Table 3. 

Figure 14. IDG in Step 4 and Step 5 (without compensation) of unbalance compensation.

Step 5: in this interval, the unbalance compensation is deactivated. As shown in Figure 8, the VUF
of the VPCC and VC is approximately 5.5%, which is higher than the standard limit of 2%. In order to
show the effectiveness of the FPQC, the waveforms of voltage/current in this step are also depicted
in Figures 11–14. This step is used as a comparative study against methods without harmonic and
unbalance compensation. For instance, as depicted in Figure 8, the VUF of VPCC and VC are about
5.8% in this step, which is higher than the standard limit of 2%. The results show the advantage
of this method in comparison to the methods proposed in [23,24], in which the negative sequence
compensation is not the object of these papers.

4.2. Islanded Operation of the MG

The simulated islanded MG includes two DG units, which supply balanced and unbalanced linear
and nonlinear loads, as depicted in Figure 15. The system’s parameters are listed in Table 3.
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Table 3. Parameters of the simulated islanded MG.

DC Link Voltage LCL Filter (L1/C/L2) for
Both DGs Voltage/Frequency

650 V 2.5 mH/20 µF/1.5 mH 230 V/50 Hz

Nonlinear load Line impedance for both DGs Unbalanced linear local and PCC load

CNL (µF) RNL (Ω) LNL (mH) ZLG (Ω) ZL (Ω)

235 114 0.084 0.95j + 1 40/20

Parameter of controller

Active power droops coefficients Reactive power droops coefficients

mP mI nP nI
1 × 10−5 rad·s−1 1 × 10−4 0.05 0

Voltage and current controllers parameters

KV KUUC KI,3/KI,5/KI,7 KP KD
4 700 500/300/300 4 20

Virtual admittance for harmonics and
unbalance compensation Virtual impedance for fundamental component

G− Gh Rv Lv
1.8 Ω−1 0.8 Ω−1 0.1 Ω 2 mH

In the case of the islanded MG, two unbalance compensation modes, namely, Mode X and Y,
are applied.

Mode X: unbalance and harmonic compensation of PCC.
Mode Y: unbalance and harmonic compensation of VC.

In order to validate the performance of the controller in islanded operation of MG, the following
four steps are used.

3 Step I:

For evaluating the effectiveness of the controller in improving the power quality of VPCC,
the reference of PQC that is depicted in Figure 2 is set as (5), and Mode X is selected for DGs.

3 Step II:

In this step, the mode of PQC is changed from Mode X to Mode Y. In Mode Y, VC is used as
feedback of the PQC, and its reference value is set to zero. The mode is similar to Mode 2 of the
grid-connected inverter. The unbalanced linear load is considered as RUnb = 40 Ω.
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3 Step III:

In this step, Mode Y is selected, and in order to evaluate the performance of the controller in
changing the load, at t = 4 s the unbalance load is changed from RUnb = 40 Ω to RUnb = 20 Ω.

3 Step IV:

In this step, the PQC is deactivated in order to demonstrate the effectiveness of the control method
in unbalance and harmonic comparison (compared to the conventional methods without harmonics
and unbalance compensation).

Figure 16 shows the VUFs of the capacitor voltages of DG1 and DG2 (VC1 and VC2), and VPCC,
while the harmonic contents of these variables are listed in Table 4. Figure 17 shows VPCC, and this
figure is magnified in Step I (PCC compensation mode) and Step IV (without compensation) to evaluate
the performance of the PQC. As depicted in Figures 16 and 17 and Table 4, in Step I, the compensation
of PCC voltage is achieved; for instance, the VUF of the voltage is below the standard limit of 2% when
Mode X is applied.
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Table 4. Harmonic contents of VPCC, VC1 and VC2 in different steps for islanded MG.

Steps
Harmonics VPCC VC1 VC2

H3
− H3

+ H5
− H5

+ H3
− H3

+ H5
− H5

+ H3
− H3

+ H5
− H5

+

Step I 0.65 0.65 0.45 0.45 1.1 0.95 1.05 1.03 1 0.95 1.05 1.04
Step II 1.05 1 1 0.95 0.02 0.042 0.013 0.02 0.015 0.04 0.015 0.015
Step III 1.1 1.05 1.05 0.9 0.025 0.05 0.018 0.03 0.02 0.05 0.02 0.025
Step IV 4 1 1.2 1.6 3.3 3 0.6 1.05 3.3 3 0.6 1.5

Furthermore, Figure 16 shows that the VUFs of VC1 and VC2 are improved in the Steps II and
III, while the harmonic compensation becomes evident by selecting Mode Y, as presented in Table 4.
In addition, according to Figure 16, the controller can compensate the negative sequence of the VC1 and
VC2 when the load is doubled at t = 4 s. The harmonic contents of the VC1 and VC2 are compensated,
according to Table 4. This is also shown in Figure 18, which depicts VC1 waveform in Steps III
(VC compensation mode) and IV (without harmonics and unbalance compensation). As depicted in
Figures 16–18, if the unbalance compensation block is deactivated, the unbalance voltage problem can
lead to some voltage quality problem for the microgrid. This shows the effectiveness of this applied
method, in comparison to methods proposed in [23,24], in which the DGs can contribute only in
harmonics compensation in a single-phase microgrid.

Energies 2017, 10, 1568 16 of 18 

 

Table 4. Harmonic contents of VPCC, VC1 and VC2 in different steps for islanded MG. 

Harmonics 
Steps 

VPCC VC1 VC2 
H3− H3+ H5− H5+ H3− H3+ H5− H5+ H3− H3+ H5− H5+ 

Step I 0.65 0.65 0.45 0.45 1.1 0.95 1.05 1.03 1 0.95 1.05 1.04 
Step II 1.05 1 1 0.95 0.02 0.042 0.013 0.02 0.015 0.04 0.015 0.015 
Step III 1.1 1.05 1.05 0.9 0.025 0.05 0.018 0.03 0.02 0.05 0.02 0.025 
Step IV 4 1 1.2 1.6 3.3 3 0.6 1.05 3.3 3 0.6 1.5 

Furthermore, Figure 16 shows that the VUFs of VC1 and VC2 are improved in the Steps II and III, 
while the harmonic compensation becomes evident by selecting Mode Y, as presented in Table 4. In 
addition, according to Figure 16, the controller can compensate the negative sequence of the VC1 and 
VC2 when the load is doubled at t = 4 s. The harmonic contents of the VC1 and VC2 are compensated, 
according to Table 4. This is also shown in Figure 18, which depicts VC1 waveform in Steps III (VC 
compensation mode) and IV (without harmonics and unbalance compensation). As depicted in 
Figures 16–18, if the unbalance compensation block is deactivated, the unbalance voltage problem 
can lead to some voltage quality problem for the microgrid. This shows the effectiveness of this 
applied method, in comparison to methods proposed in [23,24], in which the DGs can contribute only 
in harmonics compensation in a single-phase microgrid.  

0 2 4 6 8 10 12
-400

-200

0

200

400

Time (s)

V
c1

 (
V

)

 

Step I Step II Step III Step IV

 
Figure 18. VC1 in Step III (VC compensation) and Step IV (without compensation) for islanded MG. 

5. Conclusions 

In this paper, a flexible unbalance and harmonic compensation scheme is proposed for the 
improvement of current and voltage quality in MGs. The performance of the method is investigated 
in both grid-connected and islanded operations of MGs. The simulation results show that by applying 
the proposed control scheme to a grid-connected MG, not only the active and reactive powers 
injection is achieved, but also control modes for harmonics and unbalance compensation of PCC 
voltage, DG voltages, DG output current or injected current of MGs can be obtained. According to 
the results, by selecting the PCC compensation mode, the VUF, H3+ and H3− of the PCC voltage are 
mitigated to about 0.2%, 1% and 1.1%, respectively, which are under the limitation of EN 50160 and 

Figure 18. VC1 in Step III (VC compensation) and Step IV (without compensation) for islanded MG.

5. Conclusions

In this paper, a flexible unbalance and harmonic compensation scheme is proposed for the
improvement of current and voltage quality in MGs. The performance of the method is investigated in
both grid-connected and islanded operations of MGs. The simulation results show that by applying
the proposed control scheme to a grid-connected MG, not only the active and reactive powers injection
is achieved, but also control modes for harmonics and unbalance compensation of PCC voltage,
DG voltages, DG output current or injected current of MGs can be obtained. According to the results,
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by selecting the PCC compensation mode, the VUF, H3
+ and H3

− of the PCC voltage are mitigated
to about 0.2%, 1% and 1.1%, respectively, which are under the limitation of EN 50160 and IEEE
519 standards while these variables are approximately 5.8%, 3.3% and 2.6%, respectively, when the
power-quality compensation is not activated (the case of conventional inverter control).

In order to validate the performance of the control system in islanded operation, the control
method is applied to an MG which consists of two inverter-based DGs and unbalanced linear and
nonlinear loads. The simulation results show that the PCC or DG voltages harmonic and unbalance
compensation can be achieved, depending on the desired control goal. For better evaluation of the
performance of the control method in harmonic and unbalance compensation, this control method
is deactivated in one step. The results show that the VUF, H3

− and H3
+ of DG output voltages are

approximately 0.3%, 0.025% and 0.05%, respectively, when the DG output voltages compensation is
activated; furthermore, the results show that when the controller is deactivated, VUF, H3

− and H3
+ of

DG output voltages are 13%, 3.3% and 3%, respectively.
By using the proposed controller, the DGs can contribute in unbalance and harmonic

compensation of voltage or current, depending on the selected compensation mode. The proposed
control can reduce the need for dedicated additional power-quality conditioners. For future work,
the coordinated control of multiple DGs equipped with this control method can be examined.
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