Aalborg Universitet

Kinetics of phycocyanobilin cleavage from C-phycocyanin by methanolysis

Malwade, Chandrakant Ramkrishna; Roda Serrat, Maria Cinta; Christensen, Knud Villy; Fretté, Xavier; Christensen, Lars Porskjær

Published in: Computer - Aided Chemical Engineering

DOI (link to publication from Publisher): 10.1016/B978-0-444-63428-3.50015-1 10.1016/B978-0-444-63428-3.50015-1

Publication date: 2016

Document Version Other version

Link to publication from Aalborg University

Citation for published version (APA): Malwade, C. R., Roda Serrat, M. C., Christensen, K. V., Fretté, X., & Christensen, L. P. (2016). Kinetics of phycocyanobilin cleavage from C-phycocyanin by methanolysis. In Z. Kravanja, & M. Bogataj (Eds.), *Computer - Aided Chemical Engineering* (pp. 61-66). Elsevier. https://doi.org/10.1016/B978-0-444-63428-3.50015-1, https://doi.org/10.1016/B978-0-444-63428-3.50015-1

General rights

Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

- Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
- You may not further distribute the material or use it for any profit-making activity or commercial gain You may freely distribute the URL identifying the publication in the public portal -

Take down policy

If you believe that this document breaches copyright please contact us at vbn@aub.aau.dk providing details, and we will remove access to the work immediately and investigate your claim.

Kinetics of Phycocyanobilin Cleavage from C-Phycocyanin by Methanolysis

Chandrakant R. Malwade*, Maria C. Roda-Serrat, Knud V. Christensen, Xavier Fretté, Lars P. Christensen

escape 26

Department of Chemical Engineering, Biotechnology and Environmental Technology University of Southern Denmark, Campusvej 55, DK-5230 Odense M, Denmark <u>crm@kbm.sdu.dk</u>

INTRODUCTION

Phycocyanobilin (PCB) is a linear tetrapyrrole chromophore covalently attached to protein subunits of phycobiliproteins, C-Phycocyanin (C-PC) and Allophycocyanin (APC), present in the light harvesting complexes of the blue-green algae *Arthrospira platensis*. PCB absorbs light in the red region of the electromagnetic spectrum, thereby exhibiting a vivid blue color. Therefore, it has great significance to the food industry due to its potential as a natural blue food color. The chemical synthesis of PCB is very complex and economically not feasible. Hence, there is a demand for the development of process to obtain PCB from phycobiliproteins. PCB is attached to the protein subunits through a cysteine residue with a thioether linkage. In this work, the kinetics of the cleavage process of PCB from protein subunits by

SDU

methanolysis is investigated.

KINETIC MODEL FOR CLEAVAGE OF PCB BY METHANOLYSIS

Cleavage of PCB can be described either as two first order reactions in parallel:

PCB attached to alpha (left) and beta (right)

 $P - v_1 PCB(I) \rightarrow P + v_1 PCB; P - v_2 PCB(II) \rightarrow P + v_2 PCB$

Or two first order reactions in series:

 $P - \nu_1 PCB(I) - \nu_2 PCB(II) \rightarrow P - \nu_2 PCB(II) + \nu_1 PCB; P - \nu_2 PCB(II) \rightarrow P + \nu_2 PCB$

Where PCB(I) is easily accessible and PCB(II) is less accessible for cleavage, v_1 and v_2 are stoichiometric coefficients of PCB(I) and PCB(II), respectively. In a batch reactor the reactions in parallel will appear as a single first order reaction and can be represented by following set of equations:

subunits of C-PC via thioether linkage

250

mAU

$$\frac{dC_1}{dt} = -k_1 \cdot C_1; \qquad \frac{dC_2}{dt} = k_1 \cdot C_1 - k_2 \cdot C_2$$

Analytical solutions for set of equations above is:

 $C_{1}(t) = C_{10} \cdot e^{-k_{1} \cdot t}; \quad C_{2}(t) = \frac{k_{1} \cdot C_{10}}{k_{1} - k_{2}} \cdot \left(e^{-k_{2} \cdot t} - e^{-k_{1} \cdot t}\right) + C_{20} \cdot e^{-k_{2} \cdot t} \quad \text{Where } C_{10} \text{ and } C_{20} \text{ are initial concentration of PCB(I) and PCB(II), respectively}$

Based on stoichiometry of reaction, the concentration of PCB can be expressed as:

$$C_{PCB}(t) = v_1 \cdot C_{10} \cdot \left(1 + \frac{v_2}{v_1} + \frac{v_2}{v_1} \cdot \frac{C_{20}}{C_{10}}\right) - v_1 \cdot C_{10} \cdot \left(1 + \frac{v_2}{v_1} + \frac{v_2}{v_1} \cdot \frac{k_1}{k_1 - k_2}\right) \cdot e^{-k_1 \cdot t} + v_1 \cdot C_{10} \cdot \left(\frac{v_2}{v_1} \cdot \frac{k_1}{k_1 - k_2} - \frac{v_2}{v_1} \cdot \frac{C_{20}}{C_{10}}\right) \cdot e^{-k_2 \cdot t}$$

EXPERIMENTAL

- Linablue (Commercial extract of Arthrospira platensis) boiled in 400 mL methanol for 16 h at 65 °C
- Mixture samples are taken at regular interval for HPLC analysis
- Three different initial concentration of Linablue used

PCB

RESULTS

Table 1. Model data fitted to experimental data.

Initial protein concentration (mg/mL)	ν ₁ . C ₁₀ (mg/mL)	$\frac{\nu_2}{\nu_1}$	$\frac{C_{20}}{C_{10}}$	k ₁ (h⁻¹)	k₂ (h⁻¹)
5	2.7×10 ⁻³	24	1.0×10 ⁻⁴	33	0.29
10	4.7×10 ⁻³				
25	12×10 ⁻³				

0.24

CONCLUSION

- Contract Antice Antices and An
- The ratio between v_2 and v_1 is too large compared to the prior findings where a ratio 0.2 and 0.3 is more likely if all PCB is cleaved
- Although the model explains kinetic observations well, a two step model might be an over simplification

Cleavage of PCB as a function of time. Fully drawn lines are calculated using the model with the parameters from Table 1.

ACKNOWLEDGEMENT

This work is a part of the research within the Project Natural Blue Colorant for

Food Applications financially supported by Danish Agency for Science

Technology and Innovation to whom the authors are indebted