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Abstract: Optimisation techniques with good characterisation of the uncertainties in modern power system enable the system operators well
trade-off between security and sustainability. This study proposes the extreme-scenario extraction-based robust optimisation method for the
economic dispatch of active distribution network with renewables. The extreme scenarios are selected from the historical data using the
improved minimum volume enclosing ellipsoid (MVEE) algorithm to guarantee the security of system operation while avoid frequently
switching the transformer tap. It is theoretically proved that if the decision can be adaptive to the selected extreme scenarios, it can be
robust to all the possible scenarios. Simulation results demonstrate that the proposed improved MVEE algorithm significantly reduces the
number of scenarios, so that the computational burden is dramatically cut down. Additionally, compared to the existing robust optimisation
approach, the proposed method is less conservative for the smaller size of the uncertainty set.

1 Introduction

In recent years, policy inventiveness and public awareness on the
fossil fuel depletion promote rapidly development and increas-
ingly deployment of renewable power generations. Besides the
centralised wind farms or photovoltaic (PV) plants, renewable
distributed generations (DGs) grow fast. According to the data
from the National Energy Administration, as of the end of
2015, China’s total installed capacity of PV power generation
reached 43.18 GW, which made China become the world’s
largest country with PV power generation capacity [1].
However, the uncertainties of the renewables challenge the
system operation [2, 3]. Especially in the distribution network,
the voltage fluctuation threatens the secure operation of both
the system and facilities.

Meanwhile, the reactive regulation devices in the distribution
network such as switching capacitors and transformer tap changers
cannot response fast enough to the constantly varying output of the
DGs [4]. Therefore, how to effectively decide the status of such in-
flexible devices while fully use the flexibility resources in the
system to well balance the security, economy, and sustainability
becomes an urgent problem to be solved.

Traditionally, the reactive power optimisation in the distribution
systems can be formulated as a mixed-integer non-linear program-
ming problem, which can be solved by meta-heuristic algorithm
[5–7] or the interior point method [8]. In [9], the non-convex non-
linear has been converted to the second-order cone programming
via the phase angle relaxation and conic relaxation. Compared to
the meta-heuristic algorithms and the traditional interior point
method, this relaxation can help to obtain the global optimal solu-
tion. Also based on the conic relaxation, Zheng et al. [10] propose
an entirely distributed second-order cone programming solver
based on the alternating direction method of multipliers algorithm.
Lin et al. [11] presented a decentralised reactive power optimisation
method based on the generalised Benders decomposition and the

second-order cone programming. However, none of the above
studies involves the uncertainties of the DGs, which limits the prac-
tical application in real-world systems.

To encounter the uncertainties brought by the DGs, stochastic
optimisation methods such as chance-constrained optimisation
[12, 13] and robust optimisation techniques [14–18] can be used.
Among the robust optimisation method, the uncertainty set is to de-
scribe the robust region which the optimal decision should be adap-
tive to. Constructing a proper uncertainty set plays an important role
[19]. Large uncertainty set leads to conservative decisions.
However, if the uncertainty set is too small, the system security
cannot be guaranteed. Conventional robust optimisation uses the
cubic set to describe the uncertainty without considering the corre-
lations between the outputs of multiple renewable sources. For
example, in [18], a two-stage robust reactive power optimisation
in active distribution networks is proposed to determine the status
of the reactive power compensation devices. Also, the model is
solved effectively using the column-and-constraint generation algo-
rithm. To reduce the conservativeness, ellipsoidal sets instead of the
polyhedral set are defined [19] using the minimum volume enclos-
ing ellipsoid (MVEE) algorithm, e.g. in [20, 21]. However, ellips-
oidal sets still have two drawbacks: (i) the linear nature of the
original model is changed because of the non-linear property of
the uncertainty set; (ii) in the process of dealing with the ramping
constraints, a series of new stochastic variables are introduced
[20]. Therefore, the conservativeness of decision may increase
with the number of stochastic variables. The extreme scenario
method is also a way to deal with the random variables [22].
Also, the extraction of extreme scenario method is similar to the se-
lection of uncertainty set in the robust optimisation. When the
extreme scenarios are selected as the conventional cubic region,
e.g. in [22], the number of the extreme scenarios increases exponen-
tially with the dimension of the uncertain variables. In fact, the
extreme-scenario extraction method can learn from the selection
of the uncertainty set in the robust optimisation. Aiming at the
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strong correlation of DGs in distribution network, the ellipsoidal
sets based on the MVEE algorithm seem suitable.
So, in this paper, an extreme-scenario extraction algorithm

applied to the conic programming is proposed. This method
advances the existing work from two aspects: compared with
chance-constrained optimisation and the existing extreme-scenario
method, it significantly reduces the number of extracted extreme
scenarios and the constraint satisfaction is guaranteed; compared
with the robust optimisation, by considering the correlation of mul-
tiple DGs, the convex hull can be sized down so that better econom-
ics can be achieved. Meanwhile, the mathematical property of the
original model will not be changed. Simulation results demonstrate
the effectiveness of the proposed method.

2 Problem formulation

The economic dispatch (ED) in the conventional distribution
systems with minimum active power loss as objective can be formu-
lated as a quadratic programming [18]. Its generalised form can be
written as

min q(x, y)

s.t. f (x, y) = 0, g(x, y) ≤ 0
(1)

where q is the objective function. f and g are the equality and in-
equality constraints, respectively. The variables can be divided
into two categories: x denotes the real-time adjustable variables
such as the output of diesel engines, and y denotes those variables
which cannot be changed for several hours or even the whole day
such as the switching capacitors and the transformer tap. The opti-
misation problem (1) can be reformulated to the mixed integer conic
programming [18]. Further using the convex relaxation techniques
such as big M-approach, it can be formulated as the convex opti-
misation with guaranteed global optimality.

2.1 Uncertainties and extreme-scenario method

The increasingly deployed renewables have brought uncertainties to
the modern distribution systems and challenged the system oper-
ation. When the uncertainties of DGs are considered, the determin-
istic optimisation (1) becomes stochastic

min q(j, x, y)

s.t. f (j, x, y) = 0, g(j, x, y) ≤ 0
(2)

where the new vector j [ Rn×1 consisting of the stochastic vari-
ables is introduced. n is the number of stochastic variables. In
this work, possible instances of j are covered by historical operation
data, denoted as jh,i [ Rn×1. Extracted from the historical operation
data, extreme scenarios je,i [ Rn×1 are selected. The number of the
historical scenarios and the extreme scenarios are Nh and Ne,
respectively.
With the extreme scenarios je,i [ Rn×1 selected, a two-stage op-

timisation is set up. The decision process is divided into two stages:
at the first stage, the non-adjustable variables y are determined
which will not change with the output of the DGs and constantly
varying demands; the second stage determines the flexible adjust-
able variables x for those flexible sources with given y.
According to the extreme-scenario method, the stochastic optimisa-
tion becomes:

min
∑
i

q je,i, xe,i, y
( )

s.t.

f je,1, xe,1, y
( ) = 0, g je,1, xe,1, y

( ) ≤ 0

f je,2, xe,2, y
( ) = 0, g je,2, xe,2, y

( ) ≤ 0

...

⎧⎪⎨
⎪⎩

(3)

where in each line je,i denotes the ith extreme scenario; xe,i denotes
the adjustable variables for each scenario; the non-adjustable vari-
able y remains the same for all the scenarios.

2.2 Extreme-scenario extraction

From the previous section, it can be seen that robust decision of the
two-stage optimisation is highly dependent on the extraction of
extreme scenario. On the one hand, the number of extreme scen-
arios affects the computational efficiency of the optimisation algo-
rithm. On the other hand, the conservativeness of the decision is
determined by the robust region. Conventional extreme scenario
methods such as [22] tends to use the cubic uncertainty sets to
cover all the possible instances of stochastic variable j due to the
mathematical simplicity of dual conversion and same expression
as the constraints of the traditional two-stage robust optimisation.
In this work, the robust region is selected using another convex
hull instead of cubic uncertainty sets. As long as all the possible
instances are covered by the convex hull, the final decision can
reach the same robustness level as the conventional robust optimisa-
tion with cubic uncertainty sets. Besides, the correlation between
the stochastic variables is remained, which helps to reduce both
the conservativeness and computational burden.

Next, in this section, the applicability of the extreme scenario-
based two-stage optimisation is theoretically proved. Selecting the
extreme scenarios as the vertexes of cubic set can be depicted in
Fig. 1.

Theorem 1: If the decision variables xe,1, . . . , xe,Ne
and y are adap-

tive to all the Ne extreme scenarios je,1, . . . , je,Ne
, it can ensure

the existence of xh,i and y in any historical scenario jh,i.

Proof: For the model suggested in this paper, f and part of g
(denoted as g1) are linear functions

f (j, x, y) = A1j+ B1x+ C1y = 0
g1(j, x, y) = A2j+ B2x+ C2 y ≤ 0

{
(4)

and the quadratic inequality g2 is a convex function with adjustable
variables x only. Assume x [ RN+1×1, its generalised form can be
written as

g2(x) =







∑N
i=1

x2i

√√√√ − xN+1 ≤ 0 (5)

Since the feasible region bounded by the extreme scenarios is a
convex set, which is shown in Fig. 1, for any historical scenario
jh,i, there is a set of positive real numbers p1, . . . , pNe

satisfying

Fig. 1 Example of extreme scenario
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∑Ne
j=1 pj = 1 and jh,i =

∑Ne
j=1 pj × je,j . Apply the positive real

numbers to the constraints in (4):

p1g je,1, xe,1, y
( ) ≤ 0, p1f je,1, xe,1, y

( ) = 0

..

.

pNe
g je,Ne

, xe,Ne
, y

( )
≤ 0, pNe

f je,Ne
, xe,Ne

, y
( )

= 0

⎧⎪⎪⎨
⎪⎪⎩ (6)

Summarising f and g1, (7) can be obtained

∑Ne

j=1

pjg1 je,j, xe,j, y
( )

= g1
∑Ne

j=1

pjje,j,
∑Ne

j=1

pjxe,j, y

( )

∑Ne

j=1

pjf je,j, xe,j, y
( )

= f
∑Ne

j=1

pjje,j,
∑Ne

j=1

pjxe,j , y

( ) (7)

Also, for convex function g2, using Jensen’s inequality, (8) can be
obtained

∑Ne

j=1

pjg2 xe,j

( )
≥ g2

∑Ne

j=1

pjxe,j

( )
(8)

For the variables x, since its feasible region is also a convex set, the
point xh,i =

∑Ne
j=1 pj × xe,j is also inside the feasible region which

means that the solution xh,i and y for the scenario vh,i exists. This
completes the proof.

Remarks: The cubic set is not the necessary conditions. The practic-
ability of the extreme-scenario method can be proved as long as the
set bounded by the extreme scenarios is a convex set generally and
the historical scenarios are all inside the convex set.

From this theorem, the applicability of combining the extreme
scenario method and second-order conic programming is proved
theoretically. Besides, it can be seen that, as long as all the possible
instances are covered by the convex hull, the final decision can
reach the same robustness level as the conventional robust optimisa-
tion with cubic uncertainty sets.

3 Improved MVEE algorithm for extreme-scenario
extraction

After the proof of the applicability to combine the extreme scenario
methods and the quadratic programming, this section introduces
how the extreme scenarios can be selected according to the past
experiences of system operation so that all the possibilities can be
covered with very limited but critical scenarios. Take a three-
dimensional j in Fig. 1, for example, it is intuitive to construct a
cube containing all the historical operation conditions. However,
using the cubic region to cover all the historical scenarios has
two major drawbacks.

First, high-dimensional cubes have too many vertices. Also, the
number of the extreme scenarios increases exponentially with the
dimension of the uncertain variables, e.g. if the dimension of the
uncertain variables j is n, the number of extreme scenarios is 2n.

Additionally, the shape of the cubic region is too simple to char-
acterise the spatial and time correlation of the DGs. Therefore, the
improved MVEE algorithm is used in this paper to extract the
extreme scenarios.

3.1 Improved MVEE algorithm

The basic idea of the improved MVEE algorithm is to use an ellips-
oid instead of a cubic set to cover all the possible instances of j.
Then the vertices of the ellipsoid are selected as the extreme scen-
arios. Compared to the cubic set with 2n vertices, the vertex number
of the ellipsoid is proportional to the dimensions of j, i.e. for

n-dimensional j, the number of extracted extreme scenarios can
be reduced from 2n to 2× n.

A full-dimensional ellipsoid E represented by a symmetric posi-
tive definite matrix Q [ Rn×n and a centre c = [c1, . . . , cn]

T can be
mathematically defined as:

E(Q, c) = {j [ Rn|(j− c)TQ(j− c) ≤ 1} (9)

Since the ellipsoid can be linearly transformed from a sphere in Rn

space, the volume of E can be calculated by the volume of the unit
sphere rn times the transformation

Vol(E) = rn detQ
−1/2 (10)

To obtain the ellipsoid with minimum volume is to calculate Q and
c by solving the following optimisation problem

min rn detQ
−(1/2)

s.t. (jh,1 − c)TQ(jh,1 − c) ≤ 1

(jh,2 − c)TQ(jh,2 − c) ≤ 1

. . .

(11)

where all the historical scenarios jh,i are taken into account. The op-
timisation (11) is a quadratic programming, which can be solved
with existing algorithm efficiently [20].

3.2 Vertices of the ellipsoid

After the matrix Q and vector c are obtained, the vertices of the el-
lipsoid are selected as extreme scenarios.

To obtain the mathematical express of the vertices, the original
ellipsoid E is transformed into an axial ellipsoid E′ according to or-
thogonal decomposition:

E′(D) = {j ′ [ Rn|j ′TD j ′ ≤ 1} (12)

In (12), the new stochastic vector j ′ and the new matrix D satisfy:

j ′ = P × (j− c) (13)

D = diag(l1, l2, . . . , ln) (14)

Q = PTDP = P−1DP (15)

Here, the P is the orthogonal matrix used for orthogonal decompos-
ition (15) andD is a diagonal matrix consists of eigenvalues of posi-
tive definite matrix Q. For the axial ellipsoid E′, the matrix which
the column vectors consist of the 2× n vertices coordinates can
be expressed as:

V ′ = +diag(l−1/2
1 , l−1/2

2 , . . . , l−1/2
n ) [ Rn×2n (16)

As for the extreme scenarios, which can be denoted as the vertices
of the original ellipsoid, according to the inverse transformation of
(13), the mathematical expression of the vertices of E can get

V =
c1 . . . c1

..

. . .
. ..

.

cn · · · cn

⎛
⎜⎝

⎞
⎟⎠

n×2n

+P−1V ′ (17)

4 Numerical results

4.1 System description

To validate the effectiveness of the proposed algorithm, a 69-bus
distribution network is used as the test system. IBM ILOG

This is an open access article published by the IET under the Creative Commons
Attribution-NoDerivs License (http://creativecommons.org/licenses/by-nd/3.0/)

J. Eng., 2017, Vol. 2017, Iss. 13, pp. 1560–1564
doi: 10.1049/joe.2017.0593



CPLEX is used as the MIQCP solver. The parameters of the 69-bus
radial system can be found in [18].
The total load is 5.0484 MW+2.6817 MVar, and three voltage

levels are 35, 10.5, and 0.4 kV. The topology of the system is
shown in Fig. 2. Branches 14–15, 28–29, 59–60, 36–37, and 42–
43 are 35–10.5 kV transformers equipped with tap changers,
denoted as T1–T5. Branch 18–19 is a 10.5–0.4 kV transformer
with tap changer, denoted as T6. The minimum step change of
tap ratio is set to 0.025, and the regulation range is set to [0.95,
1.05] for all the transformers. Two PV systems and one wind gen-
erator are connected to bus 25, bus 33, and bus 16, respectively. The
output data is obtained from the historical data of DGs in a certain
region of Australia [23]. The tap ratios belong to the non-adjustable
variables at first-stage optimisation, while the active and reactive
power from bus 1 are adjustable variables at second-stage
optimisation.

4.2 Operational cost and security

With given system topology and historical data, the optimisation
problem is solved with the proposed method. The tap ratios of
the transformers are shown in Table 1.
After the first-stage variables are determined, historical data is

randomly sampled to verify whether the second-stage variables
can adapt to the fluctuations of the renewable generations, which
is shown in Fig. 3. The green dots indicate the historical operating
conditions to which the first-stage optimisation results are adaptive.
It can be seen that the robustness of the first-stage decision is
validated.
This subsection also compares the extreme scenarios extraction

algorithms using cubic set and the method proposed in this paper.
Take the two-dimensional case for example. The region obtained
by (17) covers less area than the cube, as shown in Fig. 4. This
means that in the cubic region, a lot of non-existence scenarios
are included which the system has no need to be robust to. The
improved MVEE algorithm, by considering the correlation of
output power of DGs, reduces the system operational cost while
maintains the security.

From the power system point of view, larger area in Fig. 4 indi-
cates that more compensation devices must be turned on so that the
optimality for the first-stage optimisation exists. In the following
test simulation, we gradually decrease the reactive power capacity
in the distribution system. The test results are shown in Table 2.
When the pre-set reactive capacity is <3 MVar, the optimisation
of system operation is no longer feasible because the cubic region
algorithm considers some needless scenarios.

4.3 Computational efficiency and effectiveness

In the studied system, the major uncertainties come from the DGs.
The relationship between the number of the extracted extreme scen-
arios and the number of the DGs with the proposed method is propor-
tional. However, for the cubic region method, it is an exponential
relationship. The computational time is compared in Table 3.

Table 1 Optimal values of the first-stage variable

T1 T2 T3 T4 T5 T6

1.05 0.975 1 1 1.05 1

Fig. 2 System topology

Fig. 3 Projection of the historical data in the two-dimensional surface
a Projection of the historical data in ‘PW-PV1’ surface
b Projection of the historical data in ‘PW-PV2’ surface

Fig. 4 Space described by the improved MVEE and cubic region with dif-
ferent correlation
a Space with a weak positive correlation
b Space with a weak negative correlation
c Space with a strong positive correlation
d Space with a strong negative correlation

Table 2 Status of the optimisation solution with the reactive power
configuration changing. √ denotes the optimisation has a feasible solution
and × denotes not

Reactive power configuration, MVar Improved MVEE Cubic set

3.20 √ √
2.96 √ ×
2.85 √ ×
2.80 × ×

Table 3 Calculation time with the number of DGs changing

Number
of DGs

Improved MVEE Cubic set

Number of
the extreme
scenarios

Calculation
time, s

Number of
the extreme
scenarios

Calculation
time, s

2 4 2.03 4 2.94 s
3 6 7.8 8 13.5 s
4 8 11.45 16 24.1 s
5 10 13.87 32 72.7 s
6 12 15.94 64 —

7 14 18.63 128 —
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It can be seen that for the proposed improved MVEE algorithm,
the number of extracted extreme scenarios increases much slower
than the cubic set algorithm proposed in [22]. Also hence less com-
putational time is needed. When the number of DGs exceeds five,
the cubic set algorithm fails to reach the optimality in the reasonable
time. So only the proposed algorithm can be applied to a large-scale
distribution system with quite a lot of renewable DGs.

In the conic relaxation of the optimisation, the equality con-
straints (18) are transformed to the inequality constraints (19)
according to [9]

P2
ij + Q2

ij = I2ij · U 2
i (18)

P2
ij + Q2

ij ≤ I2ij · U2
i (19)

To validate the equivalency of the problems before and after trans-
formation, the error is defined as (20) to see if the equality con-
straints can be met:

D = P2
ij + Q2

ij − I2ij · U2
i

∣∣∣ ∣∣∣ (20)

From the physical system point of view, (20) indicates the power
balance. For the non-adjustable variables determined at the first-
stage optimisation, the error for all the extreme scenarios is
summed. While for the adjustable variables at the second stage,
errors for all the possible scenarios are summed. The test results
are shown in Table 4.

5 Conclusion

In this paper, the improved extreme-scenario extraction method for
the ED of active distribution system is proposed. It is theoretically
proved that the applicability of combining the extreme scenario
method and second-order conic programming. Case studies show
that the proposed algorithm well balances the robustness and eco-
nomics of system operation by taking the correlations of the DGs
into account. The proposed algorithm is superior to the cubic set-
based algorithm with lower operation cost while without loss of se-
curity. In addition, the computational efficiency is significantly
improved so that the proposed method is applicable to large distri-
bution systems with lots of DGs.
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