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Abstract
Aims/hypothesis Individuals with type 2 diabetes have aberrant intestinal microbiota. However, recent studies suggest that
metformin alters the composition and functional potential of gut microbiota, thereby interfering with the diabetes-related micro-
bial signatures. We tested whether specific gut microbiota profiles are associated with prediabetes (defined as fasting plasma
glucose of 6.1–7.0 mmol/l or HbA1c of 42–48 mmol/mol [6.0–6.5%]) and a range of clinical biomarkers of poor metabolic
health.
Methods In the present case–control study, we analysed the gut microbiota of 134 Danish adults with prediabetes, overweight,
insulin resistance, dyslipidaemia and low-grade inflammation and 134 age- and sex-matched individuals with normal glucose
regulation.
Results We found that five bacterial genera and 36 operational taxonomic units (OTUs) were differentially abundant between
individuals with prediabetes and those with normal glucose regulation. At the genus level, the abundance of Clostridium was
decreased (mean log2 fold change −0.64 (SEM 0.23), padj = 0.0497), whereas the abundances of Dorea, [Ruminococcus],
Sutterella and Streptococcus were increased (mean log2 fold change 0.51 (SEM 0.12), padj = 5 × 10−4; 0.51 (SEM 0.11),
padj = 1 × 10−4; 0.60 (SEM 0.21), padj = 0.0497; and 0.92 (SEM 0.21), padj = 4 × 10−4, respectively). The two OTUs that differed
the most were a member of the order Clostridiales (OTU 146564) and Akkermansia muciniphila, which both displayed lower
abundance among individuals with prediabetes (mean log2 fold change −1.74 (SEM 0.41), padj = 2 × 10−3 and −1.65 (SEM 0.34),
padj = 4 × 10−4, respectively). Faecal transfer from donors with prediabetes or screen-detected, drug-naive type 2 diabetes to
germfree Swiss Webster or conventional C57BL/6 J mice did not induce impaired glucose regulation in recipient mice.
Conclusions/interpretation Collectively, our data show that individuals with prediabetes have aberrant intestinal microbiota
characterised by a decreased abundance of the genus Clostridium and the mucin-degrading bacterium A. muciniphila. Our
findings are comparable to observations in overt chronic diseases characterised by low-grade inflammation.

Keywords Akkermansia muciniphila . Clostridium . Faecal transfer . Gut microbiota . Hyperglycaemia . Intestinal microbiota .

Low-grade inflammation . Prediabetes
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Introduction

The pathogenesis of type 2 diabetes is a continuous process,
during which blood glucose levels gradually rise due to in-
creasing insulin resistance and decreasing beta cell function
[1]. Prediabetes is defined by blood glucose levels that are
higher than normal but lower than the thresholds set for diag-
nosing diabetes. Individuals with prediabetes often present
with overweight, insulin resistance and low-grade inflamma-
tion, and they have an increased risk of type 2 diabetes and
ischaemic cardiovascular disease [2].

Several studies have suggested that altered gut microbiota
composition and function are associated with overt type 2
diabetes [3–7] and atherosclerosis [8]. However, in a recent
study, we called into question previously reported associations
between aberrant gut microbiota and type 2 diabetes by dem-
onstrating that metformin, the first choice drug for treatment
of hyperglycaemia in type 2 diabetes, confounds this relation-
ship [9]. Accordingly, although gut microbial signatures can
be used with high accuracy to distinguish individuals with
type 2 diabetes who are not stratified by mode of treatment
from healthy individuals, this is not the case when attempted
in metformin-naive individuals with type 2 diabetes [9]. An
alternative approach to post hoc stratification to circumvent
confounding by drug treatment is to study individuals with
prediabetes who are not currently treated with glucose-
lowering drugs.

Therefore, the aim of the present study, which included 268
Danish individuals with prediabetes or normal glucose

regulation, was to test the hypothesis that specific gut micro-
biota profiles are associated with prediabetes and a range of
clinical biomarkers of poor metabolic health. We also tested
the hypothesis that the intestinal microbiota directly modulate
host glucose metabolism by transferring faecal microbiota
from human donors to germfree Swiss Webster and conven-
tional C57BL/6 J mice.

Methods

Study populationWe included 134 individuals with prediabe-
tes and 134 individuals with normal glucose regulation. In
accordance with the criteria from the WHO [10, 11], predia-
betes was defined as fasting plasma glucose levels of 6.1–
7.0 mmol/l or HbA1c levels of 42–48 mmol/mol (6.0–6.5%).
Normal glucose regulation was defined according to the more
strict ADA criteria [12], i.e. fasting plasma glucose
<5.6 mmol/l and HbA1c <39 mmol/mol (5.7%). Individuals
with known diabetes and individuals receiving any glucose-
lowering drugs were ineligible for inclusion. Individuals with
prediabetes were recruited from the Danish part of the
Innovative Medicines Initiative – DIabetes REseraCh on pa-
tient straTification (IMI-DIRECT) (n = 63) and the Danish
study of Functional Disorders (DanFunD) (n = 71) [13, 14].
At the initiation of the present study, 228 Danish individuals
were eligible from IMI-DIRECT and 598 were eligible from
DanFunD; all individuals fulfilling the abovementioned inclu-
sion and exclusion criteria were included. Individuals with

Research in context 

What is already known about this subject? 

• Patients with overt type 2 diabetes have an altered gut microbiota composition and function 

• Metformin alters the composition and function of the gut microbiota, and may therefore confound the association
between gut microbiota and type 2 diabetes  

What is the key question? 

• Are specific gut microbiota profiles associated with prediabetes and a range of clinical biomarkers of poor metabolic
health?   

What are the new findings? 

• Individuals with prediabetes present aberrant intestinal microbiota with the most significant signature being
depletion of the genus Clostridium and the mucin-degrading bacterium Akkermansia muciniphila   

• Faecal transfer from donors with prediabetes or screen-detected, drug-naive type 2 diabetes to germfree Swiss
Webster or conventional C57BL/6J mice did not induce impaired glucose regulation in recipient mice  

• Our findings are comparable with observations in overt chronic diseases characterised by low-grade inflammation,
suggesting that shared gut microbial alterations may be a signature of low-grade inflammation   

How might this impact on clinical practice in the foreseeable future? 

• Future studies are warranted to further elucidate whether the gut microbiota is causally involved in development of
type 2 diabetes in humans   
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normal glucose regulation were recruited only fromDanFunD
and matched 1:1 to individuals with prediabetes with respect
to sex and age (n = 134). Dietary habits could only be reliably
compared between individuals with prediabetes and normal
glucose regulation in a subset of the cohort (n = 142) where
dietary information was obtained by identical questionnaires.

All participants gave written informed consent and both
studies conformed to the principles of the Declaration of
Helsinki and were approved by the Regional Scientific
Ethical Committee, the Capital Region of Denmark (H-1-
2011-166 and H-3-2012-015).

Biochemical analyses and anthropometricsBiochemical analy-
ses were performed on fasting blood samples. Plasma insulin
and C-peptide were measured by chemiluminometric immu-
noassays (DiaSorin Liaison Analyzer, DiaSorin, Saluggia,
Italy, at University of Eastern Finland, Kuopio, Finland).
Plasma high-sensitivity C-reactive protein (hsCRP) was mea-
sured by an immunoturbidimetry assay (Roche/Hitachi
analyser, Roche, Basel, Switzerland, at Vejle Hospital, Vejle,
Denmark). HbA1c, plasma glucose and triacylglycerol were
measured at the Steno Diabetes Center, Gentofte, Denmark
(IMI-DIRECT participants) or Rigshospitalet Glostrup,
Copenhagen University Hospital, Denmark (DanFunD partic-
ipants). HbA1c was measured by high-performance liquid
chromatography (TOSOH analyser, TOSOH, Tokyo, Japan)
and plasma triacylglycerol by colorimetric slide analysis
(Vitros analyser, Ortho Clinical Diagnostics, Raritan, NJ,
USA). In IMI-DIRECT, plasma glucose was measured twice
by a glucose hexokinase assay (Konelab Analyser, Thermo
Fisher Scientific, Waltham, MA, USA) and the mean was
calculated. In DanFunD, plasma glucose was measured by
colorimetric slide analysis (Vitros analyser). Insulin resistance
was estimated as HOMA-IR: (fasting plasma glucose [mmol/l]
× fasting serum insulin [pmol/l])/135.

Body weight (kg) and height (cm) were measured in light
indoor clothes and without shoes. Waist circumference was
measured midway between the iliac crest and the lower costal
margin.

Collection of faecal samples and extraction of faecal genomic
DNA Fresh stool samples were collected by the participants at
home and were immediately frozen in their home freezer at
about −20°C. Frozen samples were transported to the labora-
tory using insulating polystyrene foam containers or dry ice.
The maximum transportation time in the insulating polysty-
rene foam containers was 4 h and at delivery study nurses
ensured that all samples were frozen. After delivery, the sam-
ples were stored at −80°C until DNA extraction. Total faecal
genomic DNAwas extracted from 300 mg of faecal material
using the NucleoSpin Soil kit (Macherey-Nagel, Düren,
Germany) [15]. Briefly, the faecal material was suspended in
SL2 buffer containing SX enhancer and cell disruption was

carried out by bead beating at 30 Hz for 5 min using a
TissueLyser instrument (Qiagen, Hilden, Germany).

Profiling of faecal microbiota composition by sequencing of
the 16S rRNA gene Faecal microbiota composition was pro-
filed by sequencing the V4 region of the 16S rRNA gene on
an Illumina MiSeq instrument (llumina RTA v1.17.28; MCS
v2.5) with 515F and 806R primers designed for dual indexing
[16] and the V2 Illumina kit (2 × 250 bp paired-end reads).
Details on amplification of 16S rRNA genes are provided in
the electronic supplementary material (ESM) Methods.

Illumina reads were merged using PEAR [17] and quality
filtered by removing all reads that had at least one base with a
q-score <20. Quality filtered reads were analysed with the
software package QIIME, version 1.8.0 (http://qiime.org)
[18] as described in ESM Methods. Chimeric sequences,
low abundant operational taxonomic units (OTUs; relative
abundance <0.002%) and OTUs that could not be aligned
with PyNAST [19] were excluded from all analyses. We
obtained a mean ± SD of 48,169.6 ± 11,131.7 sequences/
sample (range 26,968–87,208). In total, 12,909,447 sequences
and 1609 OTUs were included in the analyses. To correct for
differences in sequencing depth between samples, 26,968 se-
quences were randomly subsampled from each sample and
included in the analyses for the estimation of α- and β-diver-
sity. OTUs that showed differential abundance among individ-
uals with prediabetes and normal glucose regulation were
blasted against the NCBI 16S ribosomal RNA sequences
(Bacteria and Archaea) database to obtain a more specific
annotation.

Transfer of gut microbiota to conventional mice From the
study population of 268 individuals, we selected four individ-
uals with the poorest (fasting plasma glucose >6.1 mmol/l and
HbA1c >42 mmol/mol [6.0%]) and four individuals with the
best glucose regulation (lowest levels of fasting plasma glu-
cose). Case–controls were matched with respect to sex.
Frozen stools (250 mg) were obtained from each donor.
Case stools and control stools were pooled separately and
re-suspended in 4.5 ml PBS prior to each transfer. Mice (48
male wild-type C57BL/6 J, Taconic, Lille Skensved,
Denmark; 10 weeks of age) were co-housed with three mice
per cage and kept at 22°C under a 12 h light cycle and fed ad
libitum with free access to water. After 2 weeks of acclimati-
sation on a standard chow diet (Altromin 1310, Altromin,
Lage, Germany), mice were transferred to a Western diet
(D12079 mod.* customised; sucrose was the main carbohy-
drate source with mixed protein and fat sources) and sham-
gavaged with PBS twice a week. After 3 weeks on the
Western diet, mice were divided into two equal recipient
groups of 18 mice each (six cages per group) and one sham-
gavaged control group of 12 mice (four cages per group). The
groups were stratified based on magnetic resonance
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determined fat mass, weight and response to a glucose chal-
lenge prior to intervention. For the following 4 weeks, mice
were gavaged three times per weekwith 200 μl of either faecal
microbiota (control or case) or PBS (sham) while remaining
on theWestern diet. Twomice (one case and one control) died
during the experiment and were excluded from all analyses.

An OGTT was performed after 4 weeks of gavaging. The
mice were fasted for 5 h and gavaged with 3 g glucose/kg lean
mass. Blood glucose was measured in tail vein blood at 0, 15,
30, 60, 90 and 120 min using standard Contour Next Test
Strips (Bayer Contour, Leverkusen, Germany). Plasma insulin
was measured before the glucose bolus and during the OGTT
using an electrochemiluminescence assay (Meso Scale
Diagnostics, Rockville, MD, USA). Colonisation of the recip-
ient mice by the human gut microbiota was tested by extrac-
tion of total genomic DNA from faecal samples collected be-
fore and at the end of the 4 week gavage period, as well as
caecal samples at the end of the experiment, followed by se-
quencing of the 16S rRNA gene as described above. Faecal
and caecal samples were randomised before DNA extraction.

All animal experiments were conducted in accordance with
national Danish guidelines (Amendment number 1306 of 23
November 2007) as approved by the Danish Animal
Inspectorate, Ministry of Justice, permission number 2014-
15-2934-01027. Mice were kept under specific-pathogen-
free conditions and experimental protocols were validated by
in-house standard operation procedures.

Transfer of gut microbiota to germfree mice From the IMI-
DIRECT study, we selected two male donor pairs each
consisting of one individual with screen-detected type 2 dia-
betes (according to WHO criteria) and one with normal glu-
cose regulation (according to ADA criteria). Germfree Swiss
Webster mice were bred in-house. Five to six 10-week-old
male Swiss Webster mice fed regular chow diet were
transplanted with faeces from each donor. Mice were kept in
individually ventilated cages (ISOcage N System, Tecniplast,
Buguggiate, Italy) with a maximum of five mice per cage
under a 12 h light cycle and a room temperature of 21°C.
Water was given ad libitum. Frozen stools (500 mg) obtained
from each human donor were suspended in 5 ml of reduced
PBS. The mice were divided into two groups based on body
weight and colonised by oral gavage with 200 μl of faecal
slurry from each donor. Two weeks after colonisation an in-
traperitoneal GTT was performed. Mice were fasted for 4 h
and injected with D-glucose (2 g/kg body weight). Blood glu-
cose was measured in tail vein blood at 0, 15, 30, 60, 90 and
120 min with a Contour Next EZ glucometer (Bayer,
Leverkusen, Germany). Additional blood samples were col-
lected at 0, 15 and 30 min to analyse plasma insulin levels by
insulin ELISA Crystal Chem (Downers Grove, IL, USA).
Colonisation of the recipient mice by the human gut microbi-
ota was examined in caecal samples collected at the end of the

experiment as described above. Caecal samples were
randomised before DNA extraction.

All animal procedures were approved by the Gothenburg
Animal Ethics Committee (152-2015).

Statistical analyses Statistical analyses were performed using R
version 3.2.1 (www.r-project.org) and Stata, version 13.1
(StataCorp, College Station, TX, USA). Differences in
baseline characteristics between individuals with prediabetes
and those with normal glucose regulation were assessed by
use of Wilcoxon rank ∑ tests for continuous variables and χ2

tests for categorical variables. Differences in microbiota
composition as assessed by β-diversity metrics were tested
using multivariate non-parametric ANOVA [20] implemented
in the Adonis function (999 permutations) in the R vegan pack-
age [21]. Differences in α-diversity were tested using a two-
sample unpaired t test and associations betweenα-diversity and
clinical biomarkers were tested using simple linear regression
analyses. Only taxa present in at least 50% of the samples were
included in the analysis of differential abundance. Differences
in abundance of genera and OTUs were tested using a negative
binomial wald test implemented in the R DESeq2 package [22,
23]. When examining differential abundance of genera and
OTUs, p values were adjusted (padj) for multiple testing by
the Benjamini–Hochberg procedure. Correlation between taxa
abundances and clinical biomarkers were tested only for differ-
entially abundant taxa (padj < 0.05) using Spearman’s ρ [24].
Differences in blood glucose and plasma insulin levels in mice
were tested by two-way ANOVA, repeated measurements with
Bonferroni post hoc test, and differences in fasting blood glu-
cose were tested for by Wilcoxon rank ∑ tests.

Results

Individuals with prediabetes displayed higher fasting plasma
levels of glucose, insulin, C-peptide, triacylglycerol and
hsCRP,HbA1c, HOMA-IR, BMI, andwaist circumference com-
pared with individuals with normal glucose regulation (Table 1).
Individuals with prediabetes recruited from IMI-DIRECT and
DanFunDwere similar with respect to clinical biomarkers (ESM
Table 1). Among 142 individuals from DanFunD where dietary
habits could be reliably compared, intake of meat, poultry, fish
and vegetables did not differ between individuals with predia-
betes (n = 71) and normal glucose regulation (n = 71), whereas
the intake of fruit was slightly higher among individuals with
normal glucose regulation (ESM Table 2).

Differences at genus and OTU levels Five bacterial genera and
36 OTUs differed significantly in abundance between individ-
uals with prediabetes and those with normal glucose regulation.
At the genus level, the abundance of Clostridium was de-
creased, whereas the abundances of Dorea, [Ruminococcus],
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Sutterella and Streptococcuswere increased among individuals
with prediabetes (padj = 0.0497 to 1 × 10−4, Fig. 1 and ESM
Table 3). At the OTU level, eight OTUs were increased and
28 were decreased among individuals with prediabetes (Fig. 1
and ESM Table 3). The two OTUs that differed the most be-
tween the two groups were classified as a member of the
Clostridiales (OTU 146564) and A. muciniphila, which both
displayed lower abundance among individuals with prediabetes
(mean log2 fold difference −1.74 (SEM 0.41), padj = 2 × 10

−3

and −1.65 (SEM 0.34), padj = 4 × 10−4, respectively). For
Faecalibacterium prausnitzii, a prominent butyrate producer,
we observed increased abundance of one strain but decreased
abundance of another strain in individuals with prediabetes
(ESM Table 3).

Next, we examined the correlations between the differen-
tially abundant taxa and clinical biomarkers. The abundance
of Clostridium was negatively correlated with fasting plasma
levels of glucose, insulin, C-peptide, triacylglycerol and
hsCRP, as well as HOMA-IR, BMI and waist circumference
(p ≤ 0.01, Fig. 2 and ESM Table 4). Concordant with an in-
creased abundance among individuals with prediabetes,
[Ruminococcus] was positively correlated with fasting plasma
levels of glucose and C-peptide, as well as HOMA-IR, HbA1c,
BMI and waist circumference (p ≤ 0.03), whereas Dorea was
positively correlated with fasting plasma glucose and C-pep-
tide, and BMI and waist circumference (p ≤ 0.03). Notably,
the OTUs displaying decreased abundance among individuals
with prediabetes correlated most strongly with plasma

triacylglycerol and hsCRP (Fig. 3 and ESM Table 4). Two
OTUs (OTU 3856408 and OTU 193129) classified as
Lachnospiraceae (96% identity to Lachnobacterium bovis
strain LRC 5382), two OTUs (OTU 4364405 and OTU
819353) classified as Ruminococcaceae (92% identity to
Pseudoflavonifractor capillosus strain ATCC 29799) and
OTU 4465124 classified as Clostridium (ESM Table 3) cor-
related particularly strongly and negatively with fasting plas-
ma levels of glucose, insulin, C-peptide, triacylglycerol and
hsCRP, as well as HOMA-IR, BMI and waist circumference
(Fig. 3 and ESM Table 4). L. bovis and P. capillosus belong to
the Clostridium clusters XIVa and IV, respectively, which are
known to contain multiple butyrate-producing bacteria. Two
OTUs (OTU 198646 and OTU 307113) classified as Blautia
sp. and mapping with 99% identity to Blautia wexlerae strain
DSM 19850 (ESM Table 3) were positively correlated with
fasting plasma levels of glucose and insulin, as well as
HOMA-IR and waist circumference (Fig. 3 and ESM
Table 4). OTU 188047, which mapped with 99% identity to
Dorea longicatena strain 111–35, correlated positively with
BMI and waist circumference. OTU 181167 classified as
Dorea sp. and mapping with 99% identity to Coprococcus
comes strain ATCC 27758 (ESM Table 3) was positively cor-
related with plasma glucose and waist circumference (Fig. 3).

Microbiota composition and diversity Overall, the bacterial
community composition assessed by principal coordinates
analysis (PCoA) based on unweighted UniFrac distances

Table 1 Characteristics of the
study population Normal glucose regulation Prediabetes p value

n 134 134

Women, n (%) 53 (40) 53 (40) 1.0

Age, years 62 (55–67) 63 (57–68) 0.12

Fasting plasma glucose, mmol/l 5.2 (5.0–5.4) 6.3 (6.1–6.6) <0.001

HbA1c, mmol/mol 34 (33–36) 38 (36–41) <0.001

HbA1c, % 5.3 (5.2–5.4) 5.6 (5.5–5.9) <0.001

Fasting plasma insulin, pmol/la 50.0 (31.9–68.8) 78.3 (55.2–120.8) <0.001

Plasma C-peptide, mmol/l 0.58 (0.45–0.71) 0.86 (0.69–1.08) <0.001

HOMA-IRa 1.87 (1.20–2.66) 3.73 (2.45–5.60) <0.001

Fasting plasma hsCRP, nmol/la 7.43 (4.19–14.57) 13.81 (5.90–25.62) <0.001

BMI, kg/m2 25.7 (23.5–27.5) 27.8 (25.0–30.9) <0.001

Waist circumference, cm 90 (82–96) 100 (93–107) <0.001

Fasting plasma triacylglycerol, mmol/la,b 0.98 (0.83–1.29) 1.36 (0.97–1.93) <0.001

Treatment for hypertension, n (%) 39 (29) 47 (35) 0.30

Treatment for hypercholesterolaemia, n (%)b 22 (16) 19 (14) 0.61

Data represent median (interquartile range) unless otherwise indicated

p values are from Wilcoxon rank ∑ tests for continuous variables and χ2 tests for categorical variables
a Plasma insulin, hsCRP, triacylglycerol and HOMA-IR were only available for 254, 267, 227 and 254 individ-
uals, respectively
b Individuals who received treatment for hypercholesterolaemia were excluded from analyses of triacylglycerol
levels
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showed a weak association with prediabetes (p = 0.02, r2 =
0.006) (ESM Fig. 1a). PCoA based on weighted UniFrac
(p = 0.35, r2 = 0.004) and Bray–Curtis distances (p = 0.19,
r2 = 0.004) did not show any clustering (ESM Fig. 1b,c). As
unweighted UniFrac, in contrast to weighted UniFrac, does
not take abundance into account, these results demonstrate
that the weak association between prediabetes and gut micro-
biota is driven by the presence/absence status of low abundant
taxa.

Bacterial richness estimated as the number of observed
OTUs was 543 ± 92 and 562 ± 93 (mean ± SEM) among in-
dividuals with prediabetes and normal glucose regulation, re-
spectively (p = 0.09, ESM Fig. 2a). Corresponding values for
α-diversity estimated as phylogenetic diversity were 33 ± 0.49
and 34 ± 0.51 (mean ± SEM), respectively (p = 0.06, ESM
Fig. 2b). In the total group of 268 individuals, α-diversity
was negatively associated with clinical biomarkers related to
type 2 diabetes: the higher the α-diversity, the lower the
fasting plasma levels of glucose, insulin, C-peptide, triacyl-
glycerol and hsCRP, as well as HOMA-IR, BMI and waist
circumference (p = 0.049–0.001; Fig. 4 and ESM Table 5).

Plasma triacylglycerol and hsCRP were the clinical bio-
markers which were most strongly associated with α-
diversity.

Transfer of gut microbiota to conventional and germfreemice
To assess whether the aberrant microbiota could directly mod-
ulate host glucose metabolism, we transferred faecal microbi-
ota from human donors to conventional C57BL/6 J mice.
Prior to transfer, we pooled faeces from four individuals with
fasting plasma glucose >6.1 mmol/l and HbA1c >42 mmol/
mol (6.0%) and from four sex-matched individuals with nor-
mal levels of fasting plasma glucose. Mean ± SD fasting plas-
ma glucose and HbA1c were 6.4 ± 0.16 mmol/l and 44 ±
0.5 mmol/mol (6.2 ± 0.05%), respectively, among donors with
prediabetes, and 4.5 ± 0.12 mmol/l and 33 ± 0.9 mmol/mol
(5.2 ± 0.08%), respectively, among donors with normal glu-
cose regulation. We observed that the prediabetic phenotype
did not precipitate in recipient mice possibly due to unsuccess-
ful colonisation of keymicrobial taxa in the conventional mice
as a result of antagonism from the indigenous mouse micro-
biota (ESM Fig. 3).

Clostridium
Dorea

[Ruminococcus]
Sutterella

Streptococcus

146564 o_Clostridiales
4306262 Akkermansia muciniphila

4398588 f_Ruminococcaceae
178845 f_Ruminococcaceae
181174 f_Ruminococcaceae

332732 g_Bacteroides
540055 f_Ruminococcaceae

193129 f_Lachnospiraceae
3856408 f_Lachnospiraceae
317814 f_Ruminococcaceae

584107 o_Clostridiales
2137906 g_Blautia

555547 f_Christensenellaceae
176318 f_Christensenellaceae

4465124 g_Clostridium
193654 g_Coprococcus

4364405 f_Ruminococcaceae
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198646 g_Blautia

4420408 Bacteroides uniformis
4443846 g_[Ruminococcus]

307113 g_Blautia

-3 -2 -1 0 1 2

Fold difference (log2)

Fig. 1 Genera and OTUs that
display differential abundance
among 134 individuals with
prediabetes and 134 individuals
with normal glucose regulation
(padj < 0.05). Genera are depicted
by white circles and OTUs by
black circles. Circles indicate
mean log2 fold difference and
horizontal bars indicate SEM.
Positive values imply higher
abundance among individuals
with prediabetes and negative
values imply lower abundance
among individuals with
prediabetes. The taxa names
indicate the lowest taxonomic
affiliation available for the OTUs
in the Greengenes database. To
obtain a more specific affiliation
we blasted the OTUs against the
NCBI bacterial database, the best
match with the per cent identity is
provided in ESM Table 3
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In an attempt to avoid competition by the indigenous
mouse gut microbiota, we colonised germfree Swiss Webster
mice and used a ‘personalised’ approach consisting of the

transfer of stool samples from selected individual donors
rather than pooled samples. First, we transferred the faecal
microbiota of a male donor with screen-detected, treatment-
naive type 2 diabetes (two measurements of fasting plasma
glucose >7.0 mmol/l) (case donor 1) and a BMI-matched
male donor with normal glucose regulation (control donor
1). Faecal transfer did not result in impaired glucose regu-
lation (ESM Fig. 4). Interestingly, mice transplanted with
faeces from the donor with screen-detected type 2 diabetes
had lower fasting blood glucose (ESM Fig. 4c, p = 0.049),
possibly due to the lack of colonisation of key taxa, such as
potentially protective strains belonging to the Clostridiales
in the control recipients (ESM Table 6 and ESM Fig. 4l). We
also performed a second transplantation experiment with
faeces from another male donor with screen-detected,
treatment-naive type 2 diabetes (120 min plasma glucose
>11.1 mmol/l) (case donor 2) and a BMI-discrepant male
donor with normal glucose regulation (control donor 2).
This experiment showed no difference in blood glucose
levels in the fasting state or during GTT between the two
groups of mice (ESM Fig. 4d–e). Furthermore, consistent
with these results, the microbiota analysis showed low sim-
ilarity of overall microbiota composition between recipient
mice and the control donor, as well as a lack of colonisation
of key microbial taxa (ESM Fig. 4 and ESM Table 6).
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Fig. 3 Association between differentially abundant OTUs and clinical
biomarkers relevant for diabetes in the total group of 268 individuals. The
taxa names indicate the lowest taxonomic affiliation available for the
OTUs in the Greengenes database. To obtain a more specific affiliation

we blasted the OTUs against the NCBI bacterial database, the best match
with the per cent identity are provided in ESM Table 3. The colour key
indicates Spearman’s ρ and the numbers in the cells represent p values
<0.05. Spearman’s ρ and associated p values are listed in ESM Table 4
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Discussion

We have shown that individuals with prediabetes, a precursor
state of type 2 diabetes and ischaemic cardiovascular disease,
have aberrant intestinal microbiota characterised by a de-
creased abundance of the genus Clostridium and the mucin-
degrading bacterium A. muciniphila.

Previous findings on the abundance of A. muciniphila
among people with prediabetes or overt type 2 diabetes have
been contradictory. Some studies have reported no differ-
ence [3], others increased abundance [5] and others de-
creased abundance of A. muciniphila [7]. It is most likely
that these discrepancies are related to the observation in
mice that metformin increases the levels of Akkermansia
[25]; a finding which was recently supported by two studies
showing higher abundance of A. muciniphila in participants
taking metformin [26, 27]. Interestingly, it has been shown
that oral administration of A. muciniphila improves glucose
tolerance and insulin resistance, and reduces adipose tissue
inflammation in mice [25, 28], possibly via Toll-like recep-
tor 2 signalling [29].

At the genus level,Clostridiumwas depleted among individ-
uals with prediabetes and negatively correlated with fasting
levels of glucose and triacylglycerol as well as estimates of
insulin resistance, inflammation and adiposity. These findings
correspondwell with a previous study reporting decreased abun-
dance of Clostridium species among individuals with type 2
diabetes and a negative correlation between Clostridium species
and plasma levels of glucose, insulin, C-peptide and triacylglyc-
erol [3]. Concordant with previous studies consistently reporting
depletion of butyrate-producing bacteria in individuals with type
2 diabetes [3, 5, 9], we found that individuals with prediabetes
have decreased abundance of several bacteria with the potential
to produce butyrate. However, for one of the most prominent
butyrate producers, F. prausnitzii, our results were ambiguous
with increased abundance of one strain but decreased abundance
of another strain. Moreover, it remains unknown whether the
increase in a subset of bacteria with the potential for butyrate
production translates to an actual increased production of buty-
rate in humans in vivo. Among the few OTUs that were in-
creased in individuals with prediabetes and positively correlated
with biomarkers of poor metabolic health, we identified
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D. longicatena and C. comes, both of which have been demon-
strated recently to be associated with obesity and several
markers of dysmetabolism [30]. Interestingly, D. longicatena
has genes for the degradation of human mucins, and
D. longicatena and C. comes both produce glutamate, which
may be related to the prevalence of obesity [30].

Our finding that increasing species diversity was associated
with improved glucose regulation and less adiposity and in-
flammation is in accordance with previous findings, where
low bacterial richness has been associated with adiposity, in-
sulin resistance, dyslipidaemia and inflammation [31].
Interestingly, we demonstrated the strongest correlations for
plasma triacylglycerol and hsCRP. Notably, estimates of de-
creased bacterial richness have been observed among
metformin-naive individuals with type 2 diabetes but not
among those treated with metformin [9]. In contrast to the
present and previous findings, a Finnish study reported that
richness was positively associated with HbA1c [32], and a
study of mice transplanted with faeces from obese and lean
individuals showed a positive correlation of OTU richness
with both HOMA-IR and fasting insulin [33]. In the present
study we did not include stimulated measurements of plasma
glucose and insulin, precluding assessment of gut microbiota
differences between states of impaired fasting glucose and
impaired glucose tolerance [34].

Some of the microbes that we found to differ between
individuals with prediabetes and normal glucose regulation
have previously been related to other disorders including in-
flammatory bowel disease [35], atopic dermatitis [36] and
colorectal adenoma [37]. Therefore, although major differ-
ences exist in host genetics and disease phenotype expression,
we conclude that some of the microbial compositional chang-
es that we demonstrate in individuals with prediabetes are
common to several seemingly diverse pathological pheno-
types characterised by low-grade inflammation. Recently, we
proposed a ‘common ground hypothesis’ on the potential role
of aberrant intestinal microbiota in the pathogenesis of chronic
polygenic disorders. Briefly, this hypothesis suggests that an
aberrant gut microbiota may trigger genetic susceptibility to a
spectrum of chronic disorders and thus directly contribute to
elicit specific diseases in predisposed individuals [38].

In the present study we also examined whether the aberrant
gut microbiota were causally involved in prediabetes by
transplanting human faecal microbiota into mice. We were,
however, unable to transfer the prediabetic phenotype to mice.
The lack of phenotypic transmission may have multiple ex-
planations. One explanation could be that the gut microbiota
alterations in prediabetes were too subtle compared with sub-
stantial rearrangements, such as those induced by bariatric
surgery and metformin, that have been causally linked to met-
abolic phenotypes [27, 39]. Another explanation could be that
the colonisation efficacy of key species may be too weak, as
we show in our study and as recently reported in comparable

experiments [33, 40]. Moreover, the lack of cross-species
transferability may be attributed to considerable differences
in the composition of nutrients of mouse and human diets,
host-specificity of the immune response [41] or competition
with the indigenous microbiota in case of the transfers to con-
ventional mice.

In conclusion, individuals with prediabetes, who as a group
have dysglycaemia, low-grade inflammation, insulin resis-
tance, hypertriacylglycerolaemia and overweight, present ab-
errant intestinal microbiota with the most significant signature
being depletion of the genus Clostridium and the mucin-
degrading bacterium A. muciniphila. Our findings are compa-
rable with observations in overt chronic diseases characterised
by low-grade inflammation, such as inflammatory bowel dis-
ease, colorectal adenoma and treatment-naive type 2 diabetes,
suggesting that shared gut microbial alterations may be a sig-
nature of low-grade inflammation.
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