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Abstract: Photovoltaic (PV) power generation has made considerable developments in recent years. However, its intermittent and volatility of
its output have seriously affected the security operation of the power system. In order to better understand the PV generation and provide
sufficient data support for analysis the impacts, a novel generation method for PV power time series combining decomposition technique
and Markov chain theory is presented here. It digs important factors from historical data from existing PV plants and then reproduce new
data with similar patterns. In detail, the proposed method first decomposes the PV power time series into ideal output curve, amplitude par-
ameter series, and random fluctuating component three parts. Then generating daily ideal output curve by the extraction of typical daily data,
amplitude parameter series based on the Markov chain Monte Carlo (MCMC) method, and random component based on random sampling,
respectively. Finally, the generated three parts are recombined into new PV power time series by the decomposition formula. Data obtained
from real-world PV plants in Gansu, China, validates the effectiveness of the proposed method. The generated series can simulate the basic
statistical, distribution, and fluctuation characteristics of the measured series.

1 Introduction

The world has been seeing dramatic development of solar energy in
recent years due to its sustainability. The global new photovoltaic
(PV) installed capacity further increased in 2016, reached 70 GW,
an increase of ∼30% over 2015. The intermittent and volatility of
PV power output have become an important factor affecting the sta-
bility of power system [1–3]. To analyse the impacts of large
amount of PV integration, bulk data of PV generation is necessarily
required. However, for newly installed PV plants, there is insuffi-
cient data for system-level analysis. PV power time series gener-
ation is an effective method to solve the insufficient data
problem. Time series generation refers extract the internal patterns
from the measured power series and then use the extracted patterns
to generate new power series which is well consistent with the mea-
sured series in statistical and fluctuating features.

The magnitude of the PV output depends on how much solar ra-
diation is received. The change of solar radiant energy has both
obvious regularity and unpredictable randomness. In [4], the sun–
earth movement model is established, and the daily solar radiation
energy curve can be calculated according to latitude, longitude, and
altitude. However, this model ignores temperature, climate, and
other factors; thus, there is a certain cap between the calculated
results and the measured PV output. In [5, 6], the short-term and
mid-long-term stochastic properties of solar power generation are
analysed and provides some reference for the generation of PV
power time series.

In general, studies on the PV power time series generation can be
divided into two categories, namely solar radiation method [7, 8]
and solar power method [9–11]. The solar radiation method first
generates solar radiation intensity series and then uses the radiation-
electric power conversion function to estimate power output. This

method requires high accuracy of the radiation-electric power trans-
fer function. There could be significant difference between the gen-
erated PV power series and the measured ones. The solar power
method refers to generating new PV power time series directly
using the actual measured data. In [9], the whole day is divided
into multiple periods to model the PV output separately. Luo
et al. [10] use the Gibbs sampling technique to construct time
series model of PV output. The empirical model of PV output
based on the measured data is established in [11]. The solar
power method showed above cannot describe the regularity of
daily PV output accurately. In summary, the existing methods of
generating PV power time series are still inadequate in the descrip-
tion of regularity and randomness of PV output. Combining the
advantages of the two kinds of methods is urgently needed.

In this paper, a novel generation method for PV power series
combining the decomposition technology and Markov chain
theory is proposed. Also, the effectiveness of the method is verified
by the time series from real-world PV plants.

2 Decomposition of PV power time series components

In general, the output of PV plants is mainly affected by three
aspects. (i) Earth rotation movement and the movement between
the sun and the earth. They make regular changes in solar radiation.
(ii) Atmospheric attenuation, which affects the solar radiation inten-
sity received by the solar panels. (iii) Cloud disturbance. The sha-
dowing effect of clouds will bring random component to the PV
output. Thus, the PV output power is decomposed into three parts
according to the following formula

P t( ) = k · Pnorm t( ) + Prand t( ) (1)
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where P(t) is the PV output power, k the amplitude parameter,
Pnorm(t) the ideal PV output, and Prand(t) the random fluctuating
component.

2.1 Ideal output curve extraction

Ideal PV output is the daytime output of PV plants without regard to
atmospheric attenuation and cloud disturbances. The ideal output
curve calculated using the theoretical model [4, 12] always main-
tains the sinusoidal characteristic. However, the actual output in
the morning and in the afternoon is often not symmetrical.
Therefore, this paper considers the use of the ideal output curve ex-
traction method instead of the theoretical model calculation method.
The extraction method consists the following steps:

(i) Select typical days. Using the absolute value of the
second-order difference of PV output to determine whether
the day is a typical day, as shown in the following formula

max xt+2 − xt+1

( )− xt+1 − xt
( )∣∣ ∣∣ , D (2)

In the formula, xt represents the PV output at time t of 1 day
and D is the critical threshold. If the inequality is satisfied, the
day is a typical day. In this paper, D is 10% of the installed
capacity of PV plants.

(ii) Normalise the PV output. Owing to the difference of
maximum daily PV output, sunrise and sunset moments, it
is needed to normalise PV output to extract the shape of an
ideal output curve. Using the maximum PV output value of
the day for the standard unit and normalising the time span.
The PV output curve of typical day after the standardisation
is shown in Fig. 1.

(iii) Formulate analytical equation of PV output curve of typical
days. As the different lengths of daily output, the standard
unit time of the sampling points is also different after normal-
isation. Thus, it is necessary to obtain the PV output analytical
equations of typical days. We use the fast Fourier transform
and keep the first five harmonics to achieve the resolution.

2.2 Generating ideal output curve of atypical days

The ideal output curve of atypical days needs to be generated by the
linear interpolation method of the ideal output curve of typical days
near its timing. Using the following formula to calculate the ideal
output of atypical days

Pi,norm t∗
( ) = n− i

n− m
Pm,norm t∗

( )+ i− m

n− m
Pn,norm t∗

( )
(3)

where i represents an atypical day; t* is the normalised time; Pi,norm-

(t*) the normalised ideal PV output of the ith day at normalised time
t*; m and n are the nearest typical days before and after the ith day.

After obtaining the normalised ideal PV output of typical and
atypical days, it is necessary to convert the normalised time into
the actual time. Using the geographical information of PV plants
and date order, we can calculate sunrise and sunset moments of
every day in the location of the PV plants. The daytime of PV
output can be calculated by

Tday
i = T ss

i − T sr
i (4)

Tday
i is the daytime of the ith day; T ss

i and T sr
i represent the sunset

and sunrise moments of the ith day, respectively. So t* in the nor-
malised ideal PV output of the ith day can be converted into t
through the following formula

t = t∗ · Tday
i (5)

According to the above steps, we can get the ideal PV output
Pnorm(t) of all days during the study period.

2.3 Calculation of amplitude parameters

Pnorm(t) reflects the shape of PV output curve when there is no
cloud disturbance. Its amplitude range is [0, 1]. In practice, the
peak value of daily PV output is affected by many factors, including
solar radiation peak of atmospheric upper bound, atmospheric at-
tenuation, and so on. However, these factors basically do not
affect the shape of the ideal PV output curve. In this paper, the amp-
litude parameter is used to characterise these factors. The amplitude
parameter is calculated using the least square method, as shown
below

min
ki

∑N
t=1

Pi t( ) − kiPi,norm t( )[ ]2}{
(6)

In the equation, i represents the date; ki is the corresponding amp-
litude parameter; N represents the number of PV data sampling
points in 1 day. Making weekly timing curve of an actual PV
power plant and the corresponding amplitude parameter series, as
shown in Fig. 2.

2.4 Random component of PV output

The random component mainly reflects cloud disturbance.
According to formula (1), random component can be obtained by
the measured PV output series subtracting the ideal PV output
which is amplified by amplitude parameter. The random component
is shown in Fig. 3.

In [7], it is pointed out that the stochastic fluctuation component
of the PV output satisfies the t-location scale (TLS) distribution.
The fluctuation of PV output is intermittent and has a certain
degree of continuity, as shown in Fig. 3.

Fig. 1 Normalised PV output of typical day Fig. 2 Weekly timing curve and amplitude parameter series
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The feature is described using duration distribution in this paper.
Duration is the time which the PV output remains smooth or fluc-
tuating [13]. Its distribution refers to the probability distribution
of the duration of different lengths. When the value of a sampling
point of random component is >0.1 p.u., it can be assumed that
PV output enters the fluctuating state and record the duration of
its continuous fluctuation. When the value is <0.1 p.u. and main-
tains two or more sampling points long, PV output can be consid-
ered to enter the smooth state. Recording the length of time that it
continues to be smooth. The probability distribution and parameters
can be determined according to the duration of the fluctuating and
smooth state.

Using the measured data and Matlab toolbox dfittool, we found
that the inverse Gaussian distribution (IGD) is suitable for describ-
ing the duration distribution of the fluctuating part and smooth part.

3 Generation method for PV power time series

Using the above-mentioned ideal output normalisation curve ex-
traction method of typical days and generation method for ideal
output normalisation curve of atypical days. We can get the ideal
output curve for every day in the study period. The ideal output nor-
malisation curve can be considered only related to the date, so it is
fixed and unique. In the following, we generate the random series of
the amplitude and the random component and then combine them
with the ideal output normalisation curve to obtain the generated
PV power time series.

3.1 Markov Chain Monte Carlo-based generation method for
amplitude parameter series

Markov Chain Monte Carlo (MCMC) method is a stochastic simu-
lation method which takes the interaction between the various states
of the system into consideration. Assuming that the value of the dis-
crete random variable xt is time-dependent, and t belongs to a dis-
crete time set T. The whole possible value of xt is a discrete state
set S, and S= {s1, s2, s3,…}. If the conditional probability of xt is
satisfied

P xt+1 = st+1 x1 = s1, x2 = s2, ..., xt = st
∣∣{ }

= P xt+1 = st+1 xt = st
∣∣{ } (7)

It is said that the random variable xt with Markov quality [14].
The transition probability matrix P is of size N×N, and N is the

number of states that the random variable may achieve. The value of
each element pij in the matrix P represents the conditional probabil-
ity

pij = P xt+1 = j xt = i
∣∣( )

(8)

This paper considers MCMC method for generating amplitude
parameter series. Firstly, obtaining the magnitude of the amplitude

parameter range corresponding to each state according to the below
equation

k0 =
kmax

N
(9)

In the equation, kmax is the maximum value in the amplitude
series, N the state division number, and k0 the size of the range
of amplitude parameters represented by each state. In this paper,
the division number N is 4, representing rainy days, partly cloudy
days, cloudy days, and sunny days four weather conditions. If an
amplitude parameter kt satisfies the range constraint

kt [ i− 1( ) · k0, i · k0
( )

i= 1, 2, . . . , N (10)

It is assumed that kt corresponds to state i. Performing state tran-
sition for each value in the amplitude parameter series to get the cor-
responding amplitude parameter state series.

We can generate matrix P based on the state series according to
(8). The cumulative transition probability matrix Pcum is further cal-
culated according to the below equation

Pcum i, j
( ) = ∑j

m=1

P i, m( ) (11)

Then generating initial state randomly and using the Pcum matrix
and Monte Carlo method to generate a new state series with length
tr. tr is the length of the amplitude parameter series to be generated.
The flowchart of generating new state series is shown in Fig. 4.

Finally, generating random variables which satisfy the distribu-
tion within the corresponding range of each state to convert the dis-
crete state series into a series of consecutive random variables. The
steps of generating the amplitude parameter value from the state
value are described in a concrete example. Assuming that the
range of amplitude parameter represented by a state is (0.2kmax,
0.3kmax], the specific generating steps are as follows:

Fig. 3 Schematic diagram of the decomposition of the PV output

Fig. 4 Flowchart of generating new state series

This is an open access article published by the IET under the Creative Commons
Attribution-NoDerivs License (http://creativecommons.org/licenses/by-nd/3.0/)

J. Eng., 2017, Vol. 2017, Iss. 13, pp. 2026–2031
doi: 10.1049/joe.2017.0685



(i) Calculating the CDF values for each amplitude parameter
point of the original series in the range of (0.2kmax, 0.3kmax],
as shown below

F x( ) = P a ≤ x( ) = n a ≤ x( )
N 0.2kmax, 0.3kmax

( ) (12)

In the equation, a represents the sample points in the range
of (0.2kmax, 0.3kmax]; x represents a sample value in the range
of (0.2kmax, 0.3kmax]; n(a≤ x) is the number of sample points
less than or equal to x in the range of (0.2kmax, 0.3kmax]; N
(0.2kmax, 0.3kmax] is the total number of sample points in the
range of (0.2kmax, 0.3kmax].

(ii) Generating a random number u which is distributed in [0, 1]
uniformly and compares it with the CDF value obtained in
step (i).

(iii) If the random number u is equal to the value of a certain F(xi),
xi is the generated value. If u is not equal to any values of F(x),
then umust belong to a certain interval [F(xi), F(xi+1)]. F(xi) is
the value of F(x) which is less than u and closet to u. F(xi+1) is
the value of F(x) which is greater than u and closest to u.
Taking xi+1 as the amplitude parameter generation value at
that time.

For the other amplitude parameter range, follow the steps above
to generate specific values.

3.2 Random component generation with considering the duration

The random component is randomly generated according to the
result of the parameter fitting. Therefore, it is necessary to calculate
the TLS fitting parameters of its probability distribution, the IGD
fitting parameters of the duration of the smooth and fluctuating
parts based on the random component separated from the measured
data. Then following the flowchart (Fig. 5) to generate the random
component series of specified length. On this basis, the output
before sunrise and after sunset is replaced with zero. We can get
a complete random component series.

3.3 Method of generating PV output series

Based on the above method, we can generate the required length
of the ideal output normalisation curve, amplitude parameter
series, and random component series, respectively. Then we
can combine them into complete PV output series according
to formula (1). This method is used to generate PV output for
1st PV power plant based on the measured data. The output of
measured series and generated series of a week are shown in
Fig. 6.

It can be seen that the generated series curve is well shaped to
preserve the characteristics of the original series curve, inherit the
exact sunrise and sunset moments, while reflecting the intermittent
characteristics of PV output.

4 Simulation and verification

4.1 Data source

This paper uses the output data of six PV power plants in Gansu,
China, to carry out simulation test. The basic information of the
PV power plants is shown in Table 1. The length of generated
series is equal to the original series length.

4.2 Comparison of statistical characteristics

4.2.1 Basic statistical characteristics: The basic statistical
characteristics of PV output series include average and variance.
Fig. 7 shows the basic statistical characteristics of measured and

Fig. 5 Flowchart of generating random component

Fig. 6 Comparison of the output curves

Table 1 Basic information of PV power plants

No. Power plants name Cap/MW Length Interval, min

1 CECEPChangMa 10 52,128 5
2 CECEPSDaTan 20 52,128 5
3 CPInterJingTai 50 52,128 5
4 CPInvestWuwei 50 52,128 5
5 CPInvestJingTai 10 52,128 5
6 QSJinTa 3 52,128 5

Fig. 7 Comparison of the basic statistical properties
a Average
b Variance
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generated series. In the figure, the light column represents the mea-
sured series and the dark column represents the generated ones. It
can be seen that the generated series well inherits the basic statistical
properties of the measured series.

4.2.2 PV output distribution: PV output distribution is one of the
most basic statistical properties to measure the quality of PV output
series generation. Introducing the Kolmogorov–Smirnov test (KS
test) [15] to compare whether the two sets of random variables
are subject to the same distribution. The KS test actually calculates
the maximum vertical distance D between the two sets of CDF
curves and compares it with the critical values at a given significant
level. If the D value is less than the critical value, the two sets of
random variables can be considered to be subject to the same
distribution.

This paper considers significant levels of 1− α= 0.999. The com-
parison of the CDF curves of the measured series and the generated
series of 1st PV power plant is shown in Fig. 8.

It can be seen from Fig. 8 that the CDF curve of the measured
series and the generated series are almost coincident, indicating
that the fitting effect of generated series for PV output distribution
is excellent. It can be seen from the results in Table 2 that all test PV
plants pass the KS test. The validity of generated series fitting dis-
tribution of the measured series is showed further.

4.2.3 Fluctuation characteristics of different time scales: The
fluctuation characteristics of different time scales are the distribu-
tion of active power change in the PV output series at different
time steps. For example, the 30 min level fluctuation characteristics
is the amount of active power change between two sampling points
separated by 30 min. In this paper, 30 min, 1, 2, and 4 h are selected
as different time scales for analysing. The KS test is used to deter-
mine the effect of the generated series fitting the measured series.
The four time-scale fluctuation characteristics of the 1st PV
power plant are shown in Fig. 9. In Fig. 9, the blue solid line repre-
sents the fluctuation series of the measured data and the red dotted
line represents the fluctuation series of the generated data. It can be
seen from the figure that the fitting degree of fluctuation character-
istics at different time scales are relatively high. The generated

series can well inherit the fluctuation characteristics of the measured
series. The validity of the method fitting fluctuation characteristics
of the measured series is fully demonstrated by the results of KS test
in Table 3.

5 Conclusion

In order to better understand the PV generation and provide suffi-
cient data support for system operators, a novel generation model
for PV power time series combing decomposition technology and
Markov chain is proposed in this paper. The following conclusions
can be drawn from this work.

(i) The PV power time series can be decomposed into ideal
output normalisation curve, amplitude parameter series, and
random fluctuating component. These three parts correspond
to regular changes in solar radiation, atmospheric attenuation,
and cloud disturbance, respectively.

(ii) The generation method for amplitude parameter series based
on MCMC method can simulation the distribution of the ori-
ginal amplitude parameter series, thus reflecting the weather
situation.

(iii) The power time series generated by the method presented in
this paper can well inherit the characteristics of the measured
series, including average, variance, cumulative distribution,
and fluctuation characteristics.
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Fig. 8 PDF curves of the measured and generated series

Table 2 KS values of PV output distribution curves

No. KS values Critical values

1 0.0168 0.0210
2 0.0194 0.0210
3 0.0204 0.0210
4 0.0158 0.0210
5 0.0210 0.0210
6 0.0171 0.0210

Fig. 9 Comparison of CDF curves of fluctuating series

Table 3 KS values of different time scales fluctuation characteristics
curves

No. 30 min 1 h 2 h 4 h Critical values

1 0.0205 0.0068 0.0123 0.0131 0.0210
2 0.0189 0.0160 0.0160 0.0190 0.0210
3 0.0166 0.0142 0.0173 0.0176 0.0210
4 0.0191 0.0104 0.0132 0.0123 0.0210
5 0.0208 0.0210 0.0203 0.0153 0.0210
6 0.0204 0.0198 0.0197 0.0155 0.0210
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