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Abstract—Random geometric graphs (RGGs) are commonly
used to model networked systems that depend on the underlying
spatial embedding. We concern ourselves with the probability
distribution of an RGG, which is crucial for studying its random
topology, properties (e.g., connectedness), or Shannon entropy as
a measure of the graph’s topological uncertainty (or information
content). Moreover, the distribution is also relevant for deter-
mining average network performance or designing protocols.
However, a major impediment in deducing the graph distribution
is that it requires the joint probability distribution of the
n(n − 1)/2 distances between n nodes randomly distributed in
a bounded domain. As no such result exists in the literature, we
make progress by obtaining the joint distribution of the distances
between three nodes confined in a disk in R

2. This enables the
calculation of the probability distribution and entropy of a three-
node graph. For arbitrary n, we derive a series of upper bounds
on the graph entropy; in particular, the bound involving the
entropy of a three-node graph is tighter than the existing bound
which assumes distances are independent. Finally, we provide
numerical results on graph connectedness and the tightness of
the derived entropy bounds.

I. INTRODUCTION

c© 2018 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including
reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or
reuse of any copyrighted component of this work in other works.

Uncertainty is pervasive in modern wireless networks. The

sources of this uncertainty range from the humans that interact

with the networks and the locations of the nodes in space

down to the transmission protocols and the underlying scat-

tering processes that affect signal propagation. To date, some

progress has been made towards characterizing the structural

uncertainty of wireless networks by modeling these networks

as random geometric graphs (RGGs) where the probability

that two particular nodes are connected is a function of the

distance between them [1]–[3]. RGGs with probabilistic pair

connection functions are known in the mathematics commu-

nity as soft RGGs [4]. Work on these graphs has mostly

been focused on analyzing their percolation (in an infinite

domain) or connectivity (in a finite domain) properties [5]–

[7]. In the case of finite (but dense) graphs, this sort of

investigation typically amounts to obtaining an understanding

of the probability that a single isolated node exists.

Ideally, one would like to obtain information about the

complete distribution of the graphs in the ensemble. This

information would enable us to study not only connectivity,

but also important features such as topological structure and

complexity through the lens of graph entropy [8]. We point out

that the use of graph entropy as a measure of the structural

information content goes back as far as [9] and has a different

definition and meaning from the graph entropy concept used

in the coding literature [10]. We use the term “graph entropy”

in the former sense. Applications of entropy-based methods

to the study of networked systems are abundant and include

problems related to molecular structure classification [11],

social networks [12], data compression [13], and quantum

entanglement [14], [15]. Graph entropy has also been invoked

in the study of communication networks to quantify node and

route stability [16] with the aim of improving link predic-

tion [17] and routing protocols [18], [19]. Topological uncer-

tainty in dynamic mobile ad hoc networks was investigated

in [20] from a network layer perspective, and [21] treated

self-organisation in networks using a basic graph entropy

framework. More recently, an analytical approach for studying

topological uncertainty in wireless networks was proposed

in [22]–[25].

In this paper, we study the probability distribution of the

RGG formed by n nodes randomly distributed in a bounded

domain. The joint distribution of all n(n − 1)/2 inter-node

distances is greatly relevant for the distribution of the RGG.

Finding distance distributions is a very challenging task in

probabilistic geometry, as it often leads to intractable definite

integrals; existing literature focuses on the distance between

two nodes or the distances between a node and its neighbours

(e.g., see [26]–[29]). We derive the joint distribution of the

inter-node distances in closed-form, for n = 3 nodes confined

in a disk in R
2; to our knowledge, this is the first time such a

result is obtained. We avoid intractable integrations by using

a conditioning technique and expect that the same approach

could be used for larger n. Also, for arbitrary n, we derive a

series of upper bounds on the graph entropy; in particular,

the bound involving the entropy of a three-node graph is

tighter than the existing bound which assumes distances are

independent. Finally, we provide numerical results on graph

connectedness and the tightness of the derived entropy bounds.

II. RANDOM GEOMETRIC GRAPH

A. Model

Consider a set Vn = {1, . . . , n} of n nodes that are

randomly located in a space K ⊂ R
d of finite volume and

diameter D := supu,v∈K ‖u−v‖. We assume that the locations



{Zi}i∈Vn of the nodes are independently and uniformly dis-

tributed in K. The existence of an (undirected) edge between

nodes i and j depends on the Euclidean distance between the

two nodes and is indicated by the binary random variable

Xij being one. Specifically, given the node locations, the

variables {Xij} are independent and each edge (i, j) exists

with probability

P (Xij = 1|zi, zj) = p(‖zi − zj‖), (1)

where p : [0,∞) → [0, 1] is the pair connection function. For

example, in the hard disk model, p(·) is an indicator function

that equals one when its argument is less than r0 and zero

otherwise, where r0 denotes the maximum connection range.

We define the binary vector Xn to include all edge variables,

i.e., Xn = (Xij)i<j . The random geometric graph Gn :=
G(Vn, En) with edge set En = {(i, j) | Xij = 1} is distributed

in the set of all 2n(n−1)/2 possible graphs.

B. Probability Distribution and Entropy

The distribution of Gn is determined by both the distribution

of locations {Zi}i∈Vn and the probabilistic connection model

specified by p(·). The graph Gn is uniquely determined by

Xn, which has a multivariate Bernoulli distribution. Therefore,

we study the pmf fXn(xn) := P (Xn = xn), for each

xn ∈ {0, 1}n(n−1)/2. Since the conditional probability of

edge existence depends on distance, it is more convenient to

work with inter-node distances instead of node locations. Let

Rn := (Rij)i<j denote the random vector collecting the pair

distances Rij := ‖Zi − Zj‖, and let fRn : [0, D]n(n−1)/2 →
[0,∞) be its pdf. We now write

fXn(xn)

=

∫

R

fRn(rn)

n
∏

i,j=1
i<j

pxij (rij) [1− p(rij)]
1−xij drij , (2)

where the integration domain is R = [0, D]n(n−1)/2. The

distribution of Xn is symmetric, since the node locations are

identically distributed and the pair connection function is the

same for all edges. The topological uncertainty (or information

content) of Gn can be quantified by the Shannon entropy, i.e.,

H(Gn) = H(Xn)

= −
∑

xn∈{0,1}n(n−1)/2

fXn(xn) log fXn(xn). (3)

It is clear from (2) that the joint pdf fRn of inter-node

distances is highly important for the graph distribution and

its entropy. For n = 2, the sought pdf reduces to the pdf of

the distance between two nodes, which has been extensively

studied for various shapes of the embedding space K (e.g.,

see [26]–[29]). Obtaining the joint pdf analytically for n > 2
is very challenging and no such results have been reported

previously. In the next section, we make progress by obtaining

the joint pdf for n = 3 in closed-form by using a conditioning

technique. This enables the calculation of the pmf (2) and

entropy (3) for n = 3, which then can be used to bound the

graph entropy when n > 3, as shown in Sec. IV.

III. JOINT PDF OF INTER-NODE DISTANCES FOR n = 3

We consider n = 3 and K is a disk of diameter D in R
2.

Even though the locations of the three nodes are independently

and uniformly distributed, determining the joint pdf of the

three distances by direct integration is very difficult. For

example, one could attempt to transform the Cartesian coor-

dinates (i.e., six variables) to other coordinates that include

the three distances, apply the transformation theorem and

integrate out the redundant coordinates. However, this leads

to complicated definite integrals, because triangle inequalities

and the condition that the points have to be inside the circle

need to be ensured.

Computing integrals over complicated regions is often re-

quired in probabilistic geometry. Crofton’s technique [30] has

proven to simplify such evaluations in many problems, such

as finding the distribution of the distance between two random

points [31]. The work [32] shows that Crofton’s method is es-

sentially equivalent to the technique of computing expectations

by conditioning. We use the latter in the following.

Our approach is to compute the joint pdf conditioned on an

additional (suitably chosen) random variable, which is easier

than the original problem. Then, we obtain the desired joint

pdf by taking the expectation of the conditional pdf over the

density of the additional variable. We expect that this approach

is also useful for n > 3.

Before presenting the result, we fix some notation. For a

triangle with side lengths r12, r13 and r23, let d be the diameter

of its circumscribed circle, i.e.,

d =
2r12r13r23

√

Q(r12, r13, r23)
, (4)

where Q(r12, r13, r23) = 2r212r
2
13 +2r212r

2
23+2r213r

2
23− r412−

r413 − r423; note that Q(r12, r13, r23) > 0 is equivalent to r12,

r13, r23 satisfying the triangle inequalities. We denote the

largest side length by r̄ = max(r12, r13, r23). Let us also

define the function ϕ : [0, 1] → R, ϕ(x) = arccos(x) −
x
√
1− x2.

Proposition 1: Assume three points are independently and

uniformly distributed inside a circle of diameter D and let

R12, R13 and R23 be the side lengths of the random triangle

determined by the points. Then, for all r12, r13, r23 ∈ R+

such that Q(r12, r13, r23) > 0 and r̄ ≤ D, the joint pdf of the

side lengths is given by eq. (5) at the top of the next page.

The pdf depends on whether the realized triangle is obtuse or

acute, and whether the diameter (4) of its circumscribed circle

is larger or smaller than D.

Proof: An outline of the proof is given in the appendix.

IV. BOUNDING THE GRAPH ENTROPY

In [22], [23], the upper-bound H(Gn) ≤
(

n
2

)

H(G2) is

obtained for any n ≥ 2 by assuming that {Xij} are in-

dependent (or, equivalently, that the pair distances {Rij}
are independent). While such an upper bound is simple and

amenable to further analysis, its tightness might not always be

sufficient. We set out to find tighter upper bounds by trying



fR3(r12, r13, r23) =























64d
π2D4

{

∑

i<j

[

ϕ
( rij

D

)

− d2

D2ϕ
( rij

d

)

]

− π
2

(

1− d2

D2

)

+ 2 d2

D2ϕ
(

r̄
d

)

}

, if 2r̄2 >
∑

i<j r
2
ij , d ≤ D,

64d
π2D4

{

∑

i<j

[

ϕ
( rij

D

)

− d2

D2ϕ
( rij

d

)

]

− π
2

(

1− d2

D2

)}

, if 2r̄2 ≤ ∑

i<j r
2
ij , d ≤ D,

128d
π2D4ϕ

(

r̄
D

)

, if 2r̄2 >
∑

i<j r
2
ij , d > D,

0, if 2r̄2 ≤ ∑

i<j r
2
ij , d > D.

(5)

to preserve the dependency between pair distances. First, we

establish the following result.

Proposition 2: For any m,n ∈ Z such that n > m ≥ 2, the

entropies of Gn and Gm are related by

H(Gn)

n(n− 1)
≤ H(Gm)

m(m− 1)
. (6)

Proof: The entropy of Gn is given by the entropy of the
(

n
2

)

binary variables in Xn, see (3). Our intention is to relate

H(Gn) to the entropy of RGGs with smaller number of nodes.

Specifically, for m < n, we consider all the
(

n
m

)

subsets of Vn

that have m nodes. Let Nm,k ⊂ Vn be the kth such subset,

k = 1, . . . ,
(

n
m

)

. The set of pair indices corresponding to Nm,k

is denoted by Sk = {ij | i, j ∈ Nm,k, i < j}. We further

define the set S = {S1, . . . , S(n
m)

} collecting all the sets of

pair indices. In this construction, each pair index ij with i, j ∈
Vn appears in

(

n−2
m−2

)

subsets of S. According to Shearer’s

inequality, which is a generalization of the subadditivity of

joint entropy [33], [34], we have

H(Xn) ≤
1

(

n−2
m−2

)

∑

S∈S

H(XS), (7)

where XS := (Xij)ij∈S . Each term in the r.h.s. of (7) is the

entropy of a graph with m nodes; by invoking the system’s

symmetry, all terms are equal to H(Gm), such that

H(Gn) ≤
(

n
m

)

(

n−2
m−2

)H(Gm), (8)

and (6) follows immediately.

The following corollary gives a series of tighter and tighter

upper bounds on H(Gn), for all n ≥ 2.

Corollary 1: The normalized (i.e., per edge) entropy de-

creases with the number of nodes, i.e.,

H(Gn)
(

n
2

) ≤ H(Gn−1)
(

n−1
2

) ≤ . . . ≤ H(G3)

3
≤ H(G2). (9)

Proof: We immediately obtain (9) by successively apply-

ing (6) for consecutive integers.

V. NUMERICAL EXPERIMENTS

In the following we assume that the random nodes are

confined in a disk with diameter D = 1; any two nodes are

connected by an edge if and only if the distance between them

is less than r0.

We first take an example from ad-hoc communica-

tions, where it is relevant to know conditions under

which any two nodes of the network can communicate.
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Fig. 1. Probability of connectedness and probability of completeness for an
RGG with n = 3 nodes and maximum connection range r0; the three nodes
are randomly located inside a circle with diameter one.

If multi-hop communication is possible, this is equiva-

lent to the requirement that the graph be connected; oth-

erwise, the graph needs to be complete. We consider

a three-node graph and evaluate P (G3 is connected) =
fX3(0, 1, 1) + fX3(1, 0, 1) + fX3(1, 1, 0) + fX3(1, 1, 1) and

P (G3 is complete) = fX3(1, 1, 1) as functions of r0 (which

can be thought of as being monotonically related to the trans-

mit power). We compute the pmf (2) by using the derived joint

pdf (5) and numerical integration. The results in Fig. 1 show

that two-hop relaying significantly improves the probability

that any two of the three nodes can communicate.

We now study the entropy bounds derived in Sec. IV. We

consider n = 5 nodes and compute H(G5) using Monte

Carlo simulation. From (9), we have H(G5) ≤ 10
3 H(G3) ≤

10H(G2). We use the derived joint pdf (5) to compute the

pmf (2), which then gives H(G3). We similarly obtain H(G2)
based on the pdf of the distance between two points inside a

circle [26]. Fig. 2 shows that H(G5) approaches zero when

r0 → 0 or r0 → D (i.e., when the RGG becomes deter-

ministically empty or complete, respectively). The entropy is

significant at intermediate values of r0 and always less than

10 bits, which is the entropy of a five-node graph whose 10
potential edges exist independently with probability 0.5. We

can also observe that the bound based on H(G3) provides

an improvement over the one obtained by assuming the 10
inter-node distances are independent.
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Fig. 2. Entropy of an RGG with n = 5 nodes and maximum connection
range r0, and upper bounds; the three nodes are randomly located inside a
circle with diameter one.

VI. CONCLUSION

In this paper, we studied the distribution of a random geo-

metric graph and its entropy. The distribution provides insights

into properties of the random graph, such as topological struc-

ture or connectivity, while entropy is useful for understanding

topological complexity. We showed that the normalized (per

edge) entropy decreases with the number of nodes. This

result gave a series of upper bounds on entropy, each bound

involving the entropy of a graph with smaller number of

nodes. We pointed out the importance of the joint distribution

of pair distances in determining the graph’s distribution and

its entropy, and the lack of such results in the literature.

We progressed by deriving the joint distribution of distances

between three nodes confined in a disk. The technique that

we used was essential to obtaining a closed-form expression

and involved conditioning on the diameter of the smallest disk

containing all the three random points. The same approach can

be used for other embedding shapes; for example, in the case

of a regular polygon one can condition on the side length

of the smallest similar shape that contains the points. We

also expect that the conditioning technique could be applied

for larger number of nodes, although establishing closed-form

expressions perhaps becomes quickly cumbersome.

APPENDIX

Let O be the center of the disk K of diameter D. We denote

by Si the minimum diameter of a disk centred at O that

includes the ith point and define S̄ = max(S1, S2, S3). We

write

fR3(r12, r13, r23) =

∫ D

0

fR3|S̄(r12, r13, r23 | s)fS̄(s) ds.
(10)

Conditioning on S̄ is very convenient because, in the com-

putation of fR3|S̄ , one of the three points is on the circle

Cs of center O and diameter s, while the other two points

.
O

•Ai

• Aj

•
Ak

Θi

Θij

θ̄ij

Fig. 3. Illustration of the circle Cs of center O and diameter s; the point Ai

is on the circle, while Aj and Ak are inside Cs.

are inside Cs; this is a great simplification. The density fS̄ is

obtained as follows: we have P (Si ≤ s) = s2/D2, for each

s ∈ [0, D]; therefore, P (S̄ ≤ s) = s6/D6, which gives the

pdf fS̄(s) = 6s5/D6.

To compute fR3|S̄ , we study the “number of ways” in

which one can fit a triangle of side-lengths r12, r13 and r23
inside Cs when one of the triangle’s vertices is fixed on the

circle. The side lengths must satisfy the triangle inequalities,

which is equivalent to Q(r12, r13, r23) := 2r212r
2
13+2r212r

2
23+

2r213r
2
23 − r412 − r413 − r423 > 0. It is also required that

r̄ := max(r12, r13, r23) ≤ s.

In Fig. 3, point Ai represents node i. Assuming Ai is on

Cs we have

f i
R3

(r12, r13, r23)

= f i
Rjk|Rij ,Rik

(rjk |rij , rik)f i
Rij

(rij)f
i
Rik

(rik) (11)

where superscript i indicates conditioning on node i being

on Cs, and {i, j, k} ≡ {1, 2, 3}. For each j 6= i, the pdf of

Rij = |AiAj | is [26]

f i
Rij

(rij) =
8rij
πs2

arccos
(rij

s

)

, rij ∈ [0, s]. (12)

To obtain f i
Rjk|Rij ,Rik

, we use the law of cosines R2
jk = R2

ij+

R2
ik − 2RijRik cosΘi, with Θi := ∠AjAiAk. For each j 6=

i, we further define Θij = ∠OAiAj ; we have Θij |Rij ∼
U(−θ̄ij , θ̄ij)), with θ̄ij = arccos

( rij
s

)

< π/2. Since Θi =
Θij − Θik (i.e., the difference between two independent and

uniformly distributed variables), it follows that Θi|Rij , Rik

has a trapezoidal distribution with pdf

f i
Θi|Rij ,Rik

(θi|rij , rik)

=















1
2max(θ̄ij ,θ̄ik)

, if 0 ≤ |θi| ≤ |θ̄ij − θ̄ik|,
θ̄ij+θ̄ik−|θi|

4θ̄ij θ̄ik
, if |θ̄ij − θ̄ik| ≤ |θi| < θ̄ij + θ̄ik,

0, if θ̄ij + θ̄ik ≤ |θi| < π.



Now, we make the transformation Y = cosΘi and ob-

tain the pdf of Y from its cdf, which is computed as

F i
Y |Rij ,Rik

(y|rij , rik) = 1 − P (cosΘi > y). Then, we use

the law of cosines and transformation theorem to obtain

f i
Rjk|Rij ,Rik

. We distinguish between several cases depending

on the diameter d of the circumscribed circle (4). When

d > s, the only way in which the triangle can be inside Cs
while node i is on Cs is when the triangle is obtuse (i.e.,

2r̄2 > r212 + r213 + r223) and its largest side length r̄ is either

rij or rik. Using (12) in (11), we obtain

f i
R3

(r12, r13, r23)

=











32d
π2s4 (θ̄ij + θ̄ik − θi), if d ≤ s,
64d
π2s4 arccos

(

r̄
s

)

, if d > s, 2r̄2 >
∑

i<j r
2
ij ,

0, else,

(13)

for all r12, r13, r23 ∈ R+ that satisfy Q(r12, r13, r23) > 0 and

r̄ ≤ s. Since each node can be on the circle with probability

1/3, it follows that fR3|S̄ =
∑3

i=1 f
i
R3

/3, which gives

fR3|S̄(r12, r13, r23|s)

=



























64d
3π2s4

[

∑

i<j

arccos
( rij

s

)

− π
2

]

, if d ≤ s,

128d
3π2s4 arccos

(

r̄
s

)

, if d > s, 2r̄2 >
∑

i<j

r2ij ,

0, else.

(14)

We have used that θ1+ θ2+ θ3 = π and when d > s the node

corresponding to the obtuse angle cannot be on Cs.

Finally, by plugging (14) into (10), we calculate the integral

by distinguishing between the cases d ≤ D and d > D, and

arrive at the closed-form expression (5).
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