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Abstract: 

Proper installation of rooftop photovoltaic generation in distribution networks can 

improve voltage profile, reduce energy losses, and enhance the reliability. But, on 

the other hand, some problems regarding harmonic distortion, voltage magnitude, 

reverse power flow, and energy losses can arise when photovoltaic penetration is 

increased in low voltage distribution network. Local battery energy storage system 

can mitigate these disadvantages and as a result, improve the system operation. 

For this purpose, battery energy storage system is charged when production of 

photovoltaic is more than consumers’ demands and discharged when consumers’ 

demands are increased. Since the price of battery energy storage system is high, 

economic, environmental, and technical objectives should be considered together 

for its placement and sizing. In this paper, optimal placement, sizing, and daily (24 

hours) charge/discharge of battery energy storage system are performed based on 

a cost function that includes energy arbitrage, environmental emission, energy 

losses, transmission access fee, as well as capital and maintenance costs of battery 

energy storage system. All simulations are carried out in DIgSILENT and MATLAB 

linked together. Results show that by using the proposed approach, overvoltage 
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and energy losses are decreased, reverse power flow is prevented, environmental 

emission is reduced, and economic profit is maximized. 

Keywords: Photovoltaic (PV), Battery energy storage system (BESS), Distribution network, 

Optimal planning and operation, high penetration. 

1. Introduction 

Recently, utilization of renewable energy sources (RES) in electrical networks is 

getting inevitable due to the global energy tension and environmental concerns of 

fossil-fuel-based electricity generation [1].  

Photovoltaic (PV) generation is growing very fast while its cost is dropping rapidly 

[2]. Single phase rooftop PVs (<10 kW) owned by utility customers are being 

installed in low voltage (LV) distribution networks. The penetration of such PV 

systems is increased in many places throughout the world, including Iran, due to 

solar radiation, gradual elimination of energy subsidies, and government 

incentives.  

Utilizing PV systems can help to reduce the dependence on conventional power 

plants, improve voltage profile, and decrease energy losses [3]. However, in the 

case of high PV penetration in LV distribution network, reverse power flow may 

occur when the PV production exceeds the consumers’ load [4]. This situation may 

lead to overvoltage, increase of total harmonic distortion (THD) and fault current, 

blinding of protection and false tripping, risk of islanding operation [5], and 

decrease reliability [6]. 
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To reduce the negative impacts of high PV penetration, there are two main 

approaches including conventional (commercially available) and emerging 

mitigation methods [1]. Reconductoring and on-load tap changing (OLTC) are 

examples of conventional methods. Emerging methods include reactive power 

(VAR) control by PV inverters, distributed energy storage systems, coordinated 

control between utility equipment and PV inverters, installation of devices such as 

dynamic voltage restorer (DVR) and distributed static compensator (DSTATCOM), 

etc. 

Negative impacts of high PV penetration such as increased voltage magnitude, 

reverse power flow, and energy losses can be mitigated by optimal placement, 

sizing and/or charge/discharge scheduling of battery energy storage system 

(BESS). In this regard, many researchers have studied proper installation of energy 

storage in distribution networks with high PV penetration. In [7], optimal daily 

energy profiles of storage systems co-located with PV generation are calculated 

and it is shown that significant control abilities in peak shaving, voltage stability, 

and reducing distribution losses can be achieved. Optimal sizing of battery energy 

storage co-located with PV is evaluated in [8] for the goals such as voltage 

regulation. In another study, a coordinated hierarchical control scheme is 

presented for static synchronous compensators (STATCOM) and BESS in order to 

mitigate the overvoltage problem, but, cost/benefit analysis is not performed for 

the BESS [9]. Cost/benefit analysis is  performed in [10] to determine the optimal 

location and size (without optimal operation) of community energy storage (CES) 

by considering energy arbitrage, peak power generation, energy loss reduction, 

upgrade deferral of transmission and distribution (T&D) systems, CO2 emission 
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reduction, and reactive power support. BESS is applied in [11] for peak shaving 

and smoothing the distribution load profile. To achieve these goals, a real time 

control is developed which performs smoothing and peak shaving, simultaneously. 

In [11], the economic purpose (price arbitrage) is not considered, therefore, BESS 

charge/discharge is only calculated for peak shaving. Authors of [12] proposed an 

algorithm that is capable of integrating sizing, placement, and operational 

strategies of BESS taking into account energy losses, but, without considering 

environmental emission. The minimum energy storage required to be installed in 

LV grid to prevent the overvoltage is calculated in [13]; optimal sizing and 

placement of BESS is calculated, but, daily charge/discharge is not considered. 

Authors of [14] proposed optimal sizing (without sitting) of BESS in the residential 

LV distribution network for peak shaving, valley filling, load balancing, and 

management of distributed RES. In [15], sizing energy storage based on Open 

Distribution Simulator (OpenDSS) is proposed, but, optimal sizing, sitting, and 

charge/discharge are not done simultaneously. Authors of [16] proposed a new 

framework to integrate CES units in an existing residential community system with 

rooftop PV units. In [16], the location, sizing, and operational characteristics of CES 

are calculated to minimize the annual energy loss, enhance load following control, 

and improve the voltage profile, respectively. In [17], a coordinated control of 

distributed BESS with traditional voltage regulators including the OLTC and step 

voltage regulators (SVR) is proposed, but, environmental effects are not analyzed. 

Authors of [18]  discussed optimal sizing and operation of BESS to contribute to 

local distribution network operation through peak shaving, voltage control, and 

levelling out power production from RES. The work in [19], optimizes the size of 
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BESS based on a cost/benefit analysis when BESS is applied for voltage regulation 

and peak load shaving, but, optimal charge/discharge is not taken into account. 

Optimal planning and operation of energy storage is performed in [20] for peak 

shaving, reducing reverse power flow, and energy price arbitrage in distribution 

network with high penetration of RES, but, voltage regulation is not taken into 

account. In [21], the storage is utilized to compensate long-term and short-term 

voltage variations originated from sudden change of PV output. The strategy of 

charge/discharge is presented without any optimization. Authors of [22] 

determined the soft open point (SOP) of distribution network with the aim of 

optimal operation of energy storage to mitigate overvoltage arising from high RES 

penetration.  A method is proposed in [23] to optimize the location and size of the 

distributed energy storage system (DESS). The optimization function is based on 

best economical investment without considering energy price arbitrage. In [24], by 

considering high RES penetration, optimal sizing and operation of BESS is 

proposed to maximize the house independence from the grid and minimize the 

power flow peaks from and to the grid. An optimization method is developed in 

[25] for allocation of BESS in distribution system considering capital, land-of-use, 

and installation costs without taking into account the benefit of energy price 

arbitrage. Authors of [26] proposed an optimal planning approach for distributed 

energy storage to achieve better economic solution considering total power losses, 

but, without analyzing environmental effects. In [27], an optimization model is 

presented to minimize the net present value (NPV) of BESS and energy losses 

while reduction of environmental emission is not considered. Optimal location, 

capacity, and power rating of batteries are calculated in [28] to determine the 
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economic technology by considering high RES penetration. Authors of [29] 

presented a strategy for optimal integration of BESSs by considering voltage 

regulation and loss reduction without taking into account the benefit of energy 

price arbitrage. An approach for proper utilization of the energy storage system to 

mitigate the effects of intermittent nature of PV has been presented in [30], but, 

optimal BESS planning is not included. 

In the present work, it is assumed that distribution system operator (DSO) has got 

the ownership of BESS. Optimal placement, sizing, and operation of BESS are taken 

into account in LV distribution network considering high PV penetration. Optimal 

planning and operation of BESS is performed based on a cost function in order to 

make the BESS installation economical. In addition, sizing and sitting are done 

simultaneously with daily charge/discharge. Also, the objectives including energy 

price arbitrage, transmission access fee, energy losses, and environmental 

emission are taken into account simultaneously. The objective (cost) function 

consists of these objectives, and capital and maintenance costs of BESS. In this 

objective function, loss reduction and environmental benefits are converted to 

economic benefits. Other technical goals including reverse power flow and voltage 

regulation are considered as constraints. 

Benefits of energy price arbitrage, environmental emission, and transmission 

access fee are maximized when BESS is charged in low energy price, emission rate, 

and transmission access fee and discharged while these rates are high. On the 

other hand, overvoltages that occur due to high penetration of PV are decreased by 

charging the BESS when PV systems produce maximum energy. Therefore, the 
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optimal charge/discharge of BESS is complicated. In this paper, an auxiliary 

objective function is defined for increasing energy price arbitrage, reducing 

transmission access fee and environmental emission, and mitigating undesired 

impacts of high PV penetration by considering BESS constraints.  

DIgSILENT and MATLAB are linked together because modeling of network 

equipment such as transformer, feeder, load, and power flow study are more 

accurate and realistic in DIgSILENT while MATLAB provides more powerful 

optimization tools. 

2. BESS modeling 

In the case of high PV penetration in LV distribution network, reverse power flow 

may occur when the PV production exceeds the consumers’ load. This situation 

may lead to overvoltage and increase energy losses [4] (Fig. 1).  

 

Fig. 1. Overvoltage by high penetration of PV 

BESS can mitigate these disadvantages. Recently, thanks to the technological 

developments, the price of BESS is decreased, but still is high. As a result, 

economic, environmental, and technical objectives should be considered for 
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planning and operation of BESS, in order to ensure its affordable utilization. Also, it 

should be noted that storing energy may take several hours. Furthermore, BESS 

should charge and discharge during each day. As a result, BESS needs to have 

features such as efficiency [31], low self-discharge, high cycle life, and low price. 

Among popular BESS, the main drawback of Lead-acid batteries is their limited 

cycle life and the main disadvantage of Nickel–cadmium (Ni–Cd) cells is the 

presence of toxic heavy metal Cadmium [32]. Lithium-ion (Li-ion) batteries are 

mainly an option in short time scale applications, due to their relatively high daily 

self-discharge, between 1 to 5%. Vanadium Redox Battery (VRB) is a special type 

of flow batteries. Due to small self-discharge [32] per day, it is suitable for long 

storage duration such as hours or months. Also, VRB have the highest cycle life, 

and thus, are adopted in this paper. The cycle life is about 12000 [33] even if the 

battery depth of discharge (DoD) is 100%.  

Technical parameters of VRB are summarized in Tables 1 [34]. 

TABLE 1. Technical parameters of VRB 

Discharge time Self-discharge 
per day 

Suitable storage 
duration 

Cycle life 
(cycles) 

Efficiency 
(%) 

specific energy 
(Wh/kg) 

energy density 
(Wh/l) 

Seconds–10 h Small Hours–months 12,000+ 75 10–30 16–33 

Considering losses of transformer, power convertor system (PCS), battery, and 

pumping, the VRB efficiency is assumed about 75% [35]. Since the specific energy 

and energy density are low, VRB is suitable for small and medium scale 

applications.  

The cost of VRB is divided into module and electrolyte cost including the tank. The 

VRB has a low module cost and a relatively high electrolyte cost [36]. 
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2.1. Capital and Maintenance Cost 

BESS cost consists of capital and maintenance costs. Capital cost includes battery 

and power electronic system price. This cost is shown in (1) 

CBESS = �CSSmax + CWSWmax� (1) 

where CS includes PCS and balance of plant (BOP) costs. Smax is maximum power 

of BESS, CWS is the battery cost, and Wmax is the maximum energy capacity of BESS.  

The PCS cost consists of the power converter, breaker, transformer, and all 

equipment necessary for serving the load and isolating the BESS. The BOP cost 

includes grid connection at the point of common coupling (PCC), land, and 

improvements (e.g., access, services, etc.) [37]. 

Maintenance and operating cost is shown in (2)   

CM&O = (CMfSmax + CMvWmax)       (2) 

where CMf and CMv are the fixed and variable costs for maintenance and operation. 

Fixed operation and management costs include projected annual costs for BESS 

parts and labor, annual property taxes, and insurance. These costs for the PCS 

include standby losses and VRB maintenance in accordance with vendor 

recommendations. Variable operation and management costs include standby 

losses [37]. 

Maintenance activities include confirming the operability of system protective 

devices, calibrating sensors and instrumentation, inspecting for unusual vibrations, 

noise or odors, inspecting for abnormal conditions of connecting cables and piping, 

inspecting insulation resistance, servicing the battery controller, pumps, fans, and 

other system components [37]. 
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2.2. BESS Constraints 

For the best performance, the daily charged and discharged energies by 

considering BESS efficiency should be equal. This constraint is expressed as (3) 

��Pi
B,d − η𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵 × Pi

B,c�
24

i=1

= 0 (3) 

 where Pi
B,d and Pi

B,c are discharge and charge rates of BESS in ith hour and η𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵 is 

BESS efficiency. As shown in inequalities of (4) the maximum power and energy 

capacity of BESS should be considered.  

Table 2 shows the economic parameters of the battery used [35]. 

TABLE 2. VRB parameters 
CS ($/kW) 426  

CWS ($/kWh) 100  
CMf ($/kW) 9  

CMv ($/kWh) 0  

3. Optimization function and constraints 

 As mentioned before, when PV penetration in LV distribution network increases, 

some problems may occur. Local BESS can improve these disadvantages. On the 

other hand, in order to ensure affordable BESS utilization, this paper introduces a 

cost function to increase benefit and mitigate the disadvantages. This cost function 

is expressed as (5) based on NPV: 

0 ≤ Pi
B,d ≤ Smax   , 0 ≤ Pi

B,c ≤ Smax       ∀𝑖𝑖 , � Pi
B,d ≤

24

i=1

Wmax (4) 
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 where BARB is energy price arbitrage benefit, BENV, BLOSS, and BTRANS are the 

profit of reducing environmental emissions, energy losses, and transmission access 

fee, respectively. As explained later, energy price arbitrage, environmental 

emission, and energy losses reductions are defined as daily profits which are 

multiplied by 365 to calculate the annual benefit. Similarly, since transmission 

access fee is set monthly, its benefit is multiplied by 12 to provide the annual profit. 

CM&O is the maintenance and operation cost. Since BESS benefits and costs occur 

during the planning and operation horizon (here, N=25 years with respect to PV 

life expectancy [38] and BESS cycle life [33]), its value is multiplied by � 1+ir
1+dr

�
n

to 

calculate the present value. ir and dr are inflation and discount rates (respectively 

equal to 1.5% and 9% [39]) and n is the year that these benefits and costs occur. 

CBESS  is the capital cost. In order to optimize these benefits and costs more 

accurately, in this economic objective function, environmental benefit (BENV) and 

technical benefit (BLOSS) are converted to economic benefits by rates of damage 

cost for emission and daily energy price (these rates are defined in Sections 3.2 and 

3.4). In the following section, these benefits and costs are introduced.  

3.1. Benefit of Energy Price Arbitrage 

Energy price in restructured distribution systems is different for different periods; 

therefore, distribution company should charge and discharge BESS in low and high 

energy price, respectively to ensure a cost-effective BESS installation. The benefit 

𝐶𝐶𝐶𝐶 = � �[(BARB + BENV + BLOSS) × 365 + BTRANS × 12 − CM&O] × �
1 + ir
1 + dr

�
n

�
N

n=1

− CBESS  

(5) 
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of energy price arbitrage is expressed as (6), where prEN,i  is the hourly energy 

price. 

BARB = � ��Pi
B,d − Pi

B,c� × prEN,i  �
24

𝑖𝑖=1

 (6) 

3.2. Benefit of Environmental Emission Reduction 

Traditional power plants are important sources for greenhouse (CO2, CH4, and 

N2O) and toxic gases (SO2, NO2, and CO) [40]. Damage cost of power plant air 

pollutant covers health and environmental effects [41]. In this paper, climate 

changes are considered to model the damage cost of environmental emission. Most 

damages of climate changes are referred to CO2 [42]. Damage cost for CO2 can be 

divided into market and nonmarket impacts [43]. In this paper, it is assumed that 

damage cost for CO2 is equal to 0.0257 $
𝑘𝑘𝑘𝑘

 [44]. CO2 emission rate from marginal 

power plants is different for different hours of the day (see Fig. 2). BESS could be 

charged at the time of base load, i.e. less emission rate, and discharged in peak load 

to reduce environmental emission. On the other hand, PVs reduce greenhouse gas 

emission [45]. Therefore, emission rate of PV as a clean power plant can be set to 

zero. By increasing PV penetration, reverse power flow occurs in some hours. As 

previously mentioned, reverse power flow is prevented by optimization constraint. 

For this purpose, BESS should be charged in the periods with reverse power flow 

(i.e. charging with zero emissions rates in the time of surplus PV generation). 

Therefore, this energy does not cause environmental emission. As a result, the 

benefit can be expressed as  



13 
 

BENV = � ��Pi
B,d − Pi

B,c + Pi
rev� × EMIrate,i × prENV�

24

𝑖𝑖=1

 (7) 

where Pi
rev is hourly reverse power flow (divided by the number of batteries) 

before optimization, EMIrate,i is hourly CO2 emission rate for typical operation 

schedule of power plants in a day, and prENV  is the damage cost of CO2 emission.  

3.3. Benefit of Transmission Access Fee 

In deregulated power systems, distribution company should pay the transmission 

access fee for using transmission equipment. Transmission access fee varies at 

different hours of a day. Distribution company could charge and discharge BESS 

respectively in low and high access fees. Similar to benefit of environmental 

emission, no transmission access fee should be paid for BESS charging by reverse 

power. This benefit is expressed as below 

BTRANS = � ��Pi
B,d − Pi

B,c + Pi
rev� × prTRANS,i�

24

𝑖𝑖=1

 (8) 

where prTRANS,i  is hourly transmission access fee considered as the average value 

per month. 

3.4. Benefit of Loss Reduction 

When PV penetration is increased, the local energy production may be more than 

consumers’demand. As a result, power is reversed to the transmission network 

and voltage magnitude and energy losses may be increased. To cope with this 

problem, BESS is charged when production of PV is more than consumers’demand 

and discharged when consumers’ demand is increased. This benefit can be 

modeled as (9) 
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BLOSS = ��PLOSS_LESSi × prEN,i�
24

𝑖𝑖=1

   (9) 

where PLOSS_LESSi is hourly loss reduction in a day.  

3.5. Technical Constraints 

Technical constraints include voltage magnitude of the distribution system buses 

and reverse power flows expressed as (10) 

0.95 < 𝑉𝑉𝑖𝑖
𝑘𝑘 < 1.05     ∀𝑖𝑖, ∀𝑘𝑘 ∈ 𝑁𝑁𝑏𝑏 ,               𝑃𝑃𝑖𝑖

𝑎𝑎𝑎𝑎𝑎𝑎 ≤ 0       ∀𝑖𝑖 (10) 

where 𝑉𝑉𝑖𝑖
𝑘𝑘 is per unit phase 𝑎𝑎 bus voltage at node 𝑘𝑘 of the studied network with 𝑁𝑁𝑏𝑏 

nodes and hour 𝑖𝑖 of a day. Also, 𝑃𝑃𝑖𝑖
𝑎𝑎𝑎𝑎𝑎𝑎  is phase 𝑎𝑎 active power of distribution 

transformer (MV/LV) at hour 𝑖𝑖 of a day (i.e. active power should be negative which 

is equal to power consumption). 

4. Optimal management approach 

A solution method that combines the genetic algorithm with linear programing 

method (GALP) is proposed in this paper to find the optimal solution for number, 

placement, sizing, and scheduling of BESS [35]. In [35], GA is used to transform the 

cost function to an LP that can be solved by Simplex Method. GA and LP are run 

only in MATLAB. Modeling of network equipment such as transformer, feeder, 

load, and power flow study are more accurate and realistic in DIgSILENT than 

MATLAB. In addition, since data exchange between these two applications is time 

consuming, running GA in DIgSILENT increases the speed of optimization. Also, 

running LP in MATLAB is simpler than DIgSILENT. Therefore, in the present paper, 

GA and system modeling are performed in DIgSILENT and LP is run in MATLAB. 
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These software programs are linked together and results of one are used by the 

other. 

The load demand expressed as per unit is shown in Fig. 2 that is measured by a 

power analyzer introduced in Section 5. To get hourly load demand, maximum 

demand of all buses are multiplied by load demand of Fig. 2.  This figure also 

illustrates the daily measured power production of the PV in per unit. The rated 

powers of PV systems are multiplied by PV production of Fig. 2 to calculate hourly 

power production. Hourly CO2 emission factor from marginal power plants, 

extracted from [46], is shown in Fig. 2, too. 

 

Fig. 2. Load demand (pu), PV daily power production (pu), and hourly CO2 emission factor 

Assumed hourly energy price [47] and transmission access fee [35] are shown in 

Fig. 3. 
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Fig. 3. Hourly energy price and transmission access fee 

According to (6)-(8), the benefits are maximized when BESS charges in midnight 

because energy price, emission rate, and transmission access fee are lower than 

noon and sundown (see Figs. 2 and 3). On the other hand, overvoltage that is 

occurred by high penetration of PV is decreased when BESS is charged around 

noon (see Fig. 2) because PV systems produce maximum energy. As a result, 

optimal daily charge/discharge of BESS can be determined by an auxiliary 

objective function that is shown in (11). In this auxiliary objective function that 

should be maximized, constraints (3) and (4) should be taken into account. 

𝐹𝐹𝐹𝐹 = � ��Pi
B,d − Pi

B,c� × �−α × PPV,i
pu + (1 − α) × �

prEN,i

1000
+ �EMIrate,i × 0.0257� +

prTRANS,i

30
�

pu
� �

24

𝑖𝑖=1

 (11) 

where PPV,i
pu is the daily power production of the PV (pu) and 𝛼𝛼 is a parameter 

ensuring that overvoltage is decreased and benefit of energy price arbitrage, 

environmental, and transmission access fee is increased. In order to convert all 

units to $ 𝑘𝑘𝑘𝑘ℎ� , prEN,i  and prTRANS,i  are divided by 1000 and 30, respectively, and 
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EMIrate,i is multiplied by 0.0257 (i.e. damage cost for CO2).  With 𝛼𝛼 = 1 the 

weighting factor of energy price, emission rate, and transmission access fee factor 

is equal to zero, therefore BESS will be scheduled based on the PV production. 

Because of negative sign in front of PV production factor, in order to maximize 

auxiliary objective function, BESS is scheduled in the opposite of PV production to 

charge surplus PV production. Thus, with 𝛼𝛼 = 1, only overvoltage is reduced. With 

𝛼𝛼 = 0, the weighting factor of PV production is equal to zero. Therefore, because of 

positive sign in front of (1-α), BESS is scheduled to reduce emission rate and 

transmission access fee and increase energy price arbitrage. The optimal 𝛼𝛼 is 

calculated between 0 and 1 based on objective functions (5) and (11). 

In the first step of solving method, GA is run in DIgSILENT program language 

(DPL) and initial values of Smax, Wmax, and 𝛼𝛼 are determined and fed to MATLAB. 

Then, an auxiliary objective function that is shown in (11) is solved by the LP with 

considering constraints (3) and (4), therefore, optimal daily charge/discharge of 

BESS are calculated and fed to DIgSILENT. In the next step, number and placement 

of BESS are determined by GA in DPL. Then, the cost function of (5) is calculated 

considering the voltage magnitude and reverse power flow constraint obtained by 

unbalanced 3 phase load flow in DIgSILENT. This procedure continues for a preset 

maximum number of iteration (30 here). The flowchart of this method is shown in 

Fig. 4.    
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Fig. 4. Optimization flowchart 

5. Simulation results 

Fig. 5 portrays an unbalanced LV distribution system located in Yazd province, 

Iran. This system is connected to a medium voltage system through a 20 kV/ 0.4 kV 

transformer feeding 137 residential loads. In this network, 2 single phase PV 

systems each with the capacity of 5 kW are connected between phase a and neutral 

and located at the end of feeders. In the real distribution network, there are two PV 

systems named PV1 and PV2, however, PV3 and PV4 each with the capacity of 5 

kW are also connected to the simulation study to make the effect of PV high 

penetration more pronounced. Furthermore, PV3 and PV4 are also connected 

between phase a and neutral to better evaluate their impact on voltage magnitude 

and feeder power. 
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In the simulation study, the impact of PV penetration increased to 93% (20 kW) is 

evaluated; PV penetration is defined as the ratio of total PV rating power to 

maximum apparent power of load. In this regard, note that total maximum active 

and reactive load for phase a of the distribution transformer is 19.6 kW and 9 

kVAr, equal to 21.6 kVA.  

 

Fig. 5. Unbalanced LV distribution system located in Yazd province, Iran 

In order to analyze the impact of PV on this distribution network, three power 

analyzers (CHAUVIN-ARNOUX C.A 8335) are used for measurement of PV1 and 

PV2 production as well as the imported active power at LV side of distribution 

transformer (phases a and b) within 10 days. The measured per unit data are 

shown in Fig. 6. 



20 
 

 

Fig. 6. PV1 and PV2 production (pu) and imported active power (pu) of phases a and b 

It can be seen that imported power (from transmission system) of phase a is 

decreased during the PV production and its reduction is more on sunny days. To 

analyze the worst case, PV production is modeled by the second day (see Fig. 2). 

Load demand could be modeled by imported power in the situation where is not 

affected by PVs production. Since two PV systems are connected to phase a, phase 

b imported power is considered for load demand modeling. For example, the 

fourth day phase b imported power is used to model load demand (see Fig. 2) 

Simulation scenarios are presented in Table 3. 

 

TABLE 3. Simulation cases 

Case Description 

1  Without PV and BESS 

2 PV penetration=46% (PV1 and PV2) without BESS 

3 PV penetration=93% (PV1, PV2, PV3, and PV4) without BESS 

4 
PV penetration=93% (PV1, PV2, PV3, and PV4) with optimal placement, 

sizing, and daily charge/discharge of BESS 
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It should be noted that all powers and voltages are calculated for phase a. The total 

daily energy losses, total reverse power flow, and maximum and minimum hourly 

voltage magnitudes for these cases are reported in Table 4.  

TABLE 4. Comparison of cases 
Case Penetration Total daily energy 

losses (kWh) 
Total daily reverse 
power flow (kWh) 

Maximum and minimum voltage 
hourly magnitude of B379 (pu) 

1 0% 14.3 - 0.95 and 0.99 

2 46% 16.3 0.6 0.95 and 1.03 

3 93% 21.3 46.6 0.95 and 1.06 

4 93% 18 - 0.95 and 1.04 

Figs. 7 and 8 display phase a voltage profile at the furthest bus (B379) from 

transformer and imported power from transmission network for Cases 1-4, 

respectively. 

 

Fig. 7. Phase a voltage profiles of B379 in Cases 1-4 
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Fig. 8. Imported power from transmission network in Cases 1-4 

Case 1 

As shown in Table 4 and Figs. 7 and 8, the voltage magnitude at bus B379 drops to 

0.95 pu at peak load. Undervoltage happens on 11 pm. The total daily energy loss is 

14.3 kWh and power flow does not reverse to transmission network in any hour.  

Cases 2 and 3 

As shown in Table 4 and Figs. 7 and 8, by increasing PV penetration to 93%, the 

total daily energy losses increase and reverse power flow occur which the total 

daily values of Cases 2 and 3 are 0.6 kWh and 46.6 kWh, respectively. Also, the 

overvoltage at B379 is 1.06 pu in Case 3, that is marginally upper than voltage limit 

(i.e. +5%) 

Case 4 

In this case, the PV penetration is 93%. Based on the optimization results, Table 5 

indicates optimal number, sizing, placement, and α of BESSs in LV distribution 

network. 
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TABLE 5.  Candidate BESS 
BESS Number Power (kW) Energy (kWh) Bus Placement α (%) 

1 6 26 B530 61 

2 4 26 B524 36 

Simulation results indicate that by using both BESSs, voltage magnitude is limited 

within ±5% and power flow does not reverse to transmission system (as shown in 

Table 4 and Figs. 7 and 8). 

As can be seen in Table 5, the energy capacity of BESSs is equal to 26 kWh; with 

respect to the specific energy and energy density range of VRB (see Table 1), 

weight and space required for each VRB are at least 900 kg and 800 m3, 

respectively. 

The optimal daily charge/discharge of BESSs are shown in Fig. 9.   

 

Fig. 9. Optimal daily charge/discharge of BESS 

As depicted in Fig. 9, both BESSs are charged during high output of PV to decrease 
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24 am) to maximize net benefit. On the other hand, BESS1 is only charged when PV 

production is high because of the higher α rate compared with BESS2. 

Furthermore, both BESSs are discharged at high energy price, emission rate, and 

transmission access fee to maximize the net benefit. Also, due to the BESS losses, 

the charged energy is more than discharged energy; accordingly if the BESS 

efficiency increases, the economic profit will be higher. As a result, in addition to 

self-discharge, cost, and cycle life of BESS, efficiency is an important factor in 

choosing battery type. 

It can be inferred from Fig. 7 that in Case 4 during PV production, voltage 

magnitude is lower than Case 3 and stays within allowable limit due to proper 

charging of BESS. Undervoltages at 5 am and 24 am are more pronounced in Case 4  

compared to Case 3 because BESS2 is charged in these hours to increase economic 

benefit. However, these undervoltages are within allowable limit. On the other 

hand, voltage magnitude in Case 4 during peak load, is higher than Case 3. As a 

result, the voltage profile in Case 4 is smoother than that of Case 3. In Fig. 10, 

hourly voltage magnitudes of some buses in Case 4 are shown. 
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Fig. 10. Hourly voltage magnitude of Case 4 

As can be seen in Fig. 10, by increasing PV penetration, voltage magnitude is 

increased in buses that are further from transformer; however, voltage magnitude 

is limited to ±5%.  

 

Fig. 11. Hourly power losses in Cases 1-4 

The hourly power losses are shown in Fig. 11. It is observed in this figure that by 

increasing PV production in Cases 2 and 3, losses increase during PV production 
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and in Case 4, the losses decrease compared with Case 3, because of BESS 

optimization. However, due to the BESS charging and discharging in Case 4, hourly 

losses increases at 4-6 am and 18-22 pm intervals.  

The net benefit, daily reductions of losses, and environmental emissions are shown 

in Table 6. 

TABLE 6. Net benefit, daily reductions of losses, and environmental emissions 

Net benefit Daily reductions 
of losses 

Daily reduction of 
environmental 

emissions  
7877.4  ($) 3.3 (kW) 13.4 (kg) 

Table 6 shows that proper BESS planning and operation is beneficial and 

environmental emission is reduced. Also, daily energy losses decrease. 

The convergence analysis of GA is performed and the results are shown in Fig. 12. 

 

Fig. 12. Optimization process of GA 
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The population size and maximum iteration are 200 and 30, respectively. It can be 

seen that the iteration number is enough because the slope of increasing net 

benefit decreases gradually during iterations. Also, it is observed in Fig. 12 that by 

increasing the net benefit of (5), the value of (11) that models BESS operation 

benefit is decreased. Therefore, increasing benefit of operation does not lead to 

increase in net benefit of BESS optimization because net benefit also depends on 

capital and maintenance costs of BESS, loss reduction benefit, and technical 

constraints.  

 

6. Conclusion  

This paper proposed an optimal method for simultaneous placement, sizing, and 

daily charge/discharge of battery energy storage system which improved the 

performance of the distribution network to mitigate disadvantages of high 

photovoltaic penetration. Technical and environmental benefits were converted to 

economic benefit and thus, problem was expressed as a cost function. The 

optimization includes this cost function, an auxiliary objective function, and 

constraints of battery energy storage system, reverse power flow, and voltage 

magnitude. The optimization problem has been solved using genetic algorithm 

with linear programing method through linking DIgSILENT with MATLAB. 

Simulations were performed for a real unbalanced three phase distribution system 

and the results indicated the efficiency and viability of the proposed battery energy 

storage system optimization. It was shown that the battery energy storage system 

planning and operation was affordable and environmental emission was reduced. 
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Also, the results showed that proposed optimization limited the voltage magnitude 

of all buses in allowable range and prevented reverse power flow to transmission 

network. The energy losses were also decreased because of battery charging by 

surplus power of photovoltaics. 
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