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Preface

This doctoral thesis addresses problems regarding the behaviour of monopod bucket
foundations under cyclic loading. The monopod bucket foundation is a sub-structure
concept for offshore wind turbines which has been developed in Denmark by the
company Universal Foundation A/S in collaboration with Aalborg University. The
supervisor and coordinator of my Ph.D. project, Lars Bo Ibsen, is one of the main
developers of the monopod bucket foundation concept. The present volume includes
five introductory chapters and five scientific papers. The introductory chapters
outline the premises, the aims and the conclusions of the scientific work. The five
papers form the scientific content of the Ph.D. thesis.

I have been employed at Aalborg University from August 2011 to September 2014.
The Ph.D. project was financially supported by “The Danish National Advanced
Technology Foundation”through the platform “Cost-effective deep water founda-
tions for large offshore wind turbines”. The financial support is greatly acknowl-
edged. During the period spent at Aalborg University, I have been involved in the
following activities: conducting experiments on bucket foundations, post-processing
and analysis of experimental data collected in the laboratory, giving lectures of soil
mechanics and supervising master students.

The first six months of my Ph.D. studies were spent on designing and setting up
a laboratory rig and on gaining insight into the behaviour of bucket foundations.
The following two years were spent on carrying out an experimental campaign and
on post-processing the experimental data. Within these two years, I worked for
four months with the geotechnical research group of the University of Bologna. The
researchers of the University of Bologna have extended knowledge on the behavioural
patterns of shallow foundations on sand and, together with them, I was able to
analyse thoroughly the experimental data and develop a new interpretation model.
The last eight months of my experience were dedicated to writing scientific papers
based on the main outcome of the Ph.D. project.

Aalborg, September 2014

Aligi Foglia
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Summary in English

To enable a prosperous development of offshore wind energy, economically feasible
technologies must be developed. The monopod bucket foundation is likely to become
a cost-effective sub-structure for offshore wind turbines and has the potential to make
offshore wind more cost-competitive in the energy market. This thesis addresses
issues concerning monopod bucket foundations in the hope of providing tools and
ideas that could be used to optimize the design of this sub-structure.

The work is focussed on the behaviour of bucket foundations under lateral cyclic
loading. Other related and propaedeutic topics, such as bucket foundations under
transient lateral loading and under monotonic lateral loading, are also investigated.
All the scientific work is fundamentally based on small-scale experimental tests of
bucket foundations in dense water-saturated sand.

The most important scientific documents on bearing capacity and installation of
bucket foundations are reviewed and the results from the models found in literature
are compared to the experimental results obtained in the current study. Monotonic
tests of bucket foundations under lateral loading until failure are compared with
existing failure envelopes. A jacked installation test is successfully compared with
existing models.

Tests of bucket foundations under lateral loading applied at different loading rates
are analysed. As expected, the bearing capacity of bucket foundations under tran-
sient lateral loading increases dramatically with the loading rate. Though, there is
no difference in the initial stiffness. Pore pressure transducers inside and around
the foundations recorded the distribution of the pore water pressure during load-
ing. Horizontal and rotational displacements are not found to be influenced by the
loading rate.

A comprehensive experimental campaign of bucket foundations under lateral cyclic
loading is interpreted with an existing empirical model that calculates the long-term
rotation. The model is calibrated for dense sand. The model calibration reveals
that the parameters are significantly dependent on the relative density but not on
the embedment ratio. The ultimate capacity of bucket foundations pre-subjected
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to cyclic loading is found to be larger than the monotonic capacity recorded with
standard quasi-static tests.

A macro-element model for bucket foundations supporting offshore wind turbines is
developed on the base of monotonic tests. To simulate the cyclic loading response,
a boundary surface model is integrated into the macro-model. The model is able to
reproduce the monotonic and cyclic experimental results quite well. Nevertheless, a
proper strategy on how to evaluate the parameters of the boundary surface model
is yet to be established.
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Resumé (Summary in Danish)

For at sikre en positiv udvikling af offshore-vindenergi må økonomisk rentable teknolo-
gier udvikles. Bøttefundamentet bliver sandsynligvis en omkostningseffektiv sub-
struktur for havvindmøller og har potentialet til at gøre offshore-vind mere prismæs-
sigt konkurrencedygtigt. Denne afhandling omhandler problemstillinger i forbindelse
med bøttefundamenter i h̊ab om at frembringe redskaber og ideer, der kan bruges
til at optimere udformningen af denne sub-struktur.

Arbejdet er fokuseret p̊a bøttefundamentets opførsel under cyklisk belastning. An-
dre relaterede emner, s̊asom bøttefundamenter udsat for tværlast med forskellige
hastigheder, bliver ogs̊a undersøgt. Alle videnskabelige arbejder er grundlæggende
baseret p̊a småskala-forsøg med bøttefundamenter installeret i vandmættet, fastle-
jret sand.

De vigtigste videnskabelige dokumenter omhandlende bæreevne og installation af
bøttefundamenter gennemg̊as, og resultaterne fra litteraturen holdes op imod resul-
tater opn̊aet i dette studie. Forsøg med bøttefundamenter under sideværts ensidig
belastning sammenlignes med eksisterende brudflader. Forskellige brudflader sam-
menlignes, og der vises god indbyrdes overensstemmelse. Den målte modstand for et
forsøg med nedpresset installation stemmer godt overens med eksisterende modeller.

Otte forsøg med tværbelastede bøttefundamenter ved fire forskellige belastnings-
hastigheder analyseres. Som forventet stiger bæreevnen drastisk med belastnings-
hastigheden dette p̊a trods af, at der ingen forskel er i den oprindelige stivhed.
Poretryksmålere i og omkring fundamenterne registrerer fordelingen af poretryk un-
der belastning. Horisontale flytninger og rotationer er ikke p̊avirket af belastnings-
hastigheden.

Et omfattende forsøgsprogram af cyklisk tværbelastede bøttefundamenter fortolkes i
forhold til en eksisterende model, der beregner den permanente rotation. Modellen er
kalibreret til fast sand. Kalibrering af modellen viser, at parametrene er væsentligt
afhængige af den relative lejringstæthed, men ikke af penetrationsforholdet. Den
ultimative kapacitet af et bøttefundament, som indledningsvis har været udsat for
cyklisk last, p̊avises at være større end kapaciteten ved en ensidig p̊avirkning.
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En makroelementmodel er udviklet p̊a basis af monotone og cykliske forsøg. Mod-
ellen er i stand til at gengive b̊ade monotone og cykliske forsøgsresultater ganske
godt. Ikke desto mindre er en ordentlig strategi for, hvordan man vurderer de cyk-
liske parametre, endnu ikke udviklet.
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CHAPTER 1

Renewable Energy in Europe

Nowadays society is facing a great challenge: getting off fossil fuels. This must be
done for at least two reasons. First; more than 100 years of fossil resources usage
has most likely led to significant global warming and climate change. Second; fossil
fuel is so limited that humanity can no longer rely on that only. Coping with these
challenges requires a multi-directional plan that includes all the different aspects of
the issue (MacKay, 2009). For a carbon-free revolution to happen, society should
start living more sustainably by adjusting its lifestyle, by adopting smart energy
devices and by replacing fossil-fuel-based power plants with renewable energy power
plants.

During the last two decades, renewable energies have emerged in the global energy
market. The statistics given in the following refer to the year 2013 and are taken
from two reports of the European Wind Energy Association (EWEA, 2013; EWEA,
2014). Figure 1 illustrates that at the end of 2013, the share of renewable energies
in Europe was around 38% of the total installed capacity. Of the total renewable
energy installed, 34% was wind energy. Figure 2 shows the breakdown of new
capacity installed in 2013 in Europe. Renewable energies seem to have the prominent
majority and wind energy has the largest percentage of new installed capacity. In
Figures 1 and 2, PV stands for photovoltaic systems.

Among the renewable energies, offshore wind is going to be a key technology espe-
cially in those European countries characterised by long cost lines and noticeably
windy seas. At the end of 2013, around 5.6% of the total wind power capacity (6526
MW) was installed offshore. In the decades to come, its development rate is likely
to increase significantly. Only for offshore wind, the forecast of the European Wind
Energy Association for the coming years is: 40 GW by 2020, 150 GW by 2030 and
460 GW by 2050 (EWEA, 2013).
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Renewable Energy in Europe

Wind turbine performance is enhanced on sea water, where wind is faster and stead-
ier than on land. Moreover, offshore wind seems to be more generally accepted by
civil society avoiding the so-called “not in my back yard”issue. The advantages of
open sea sites are however outweighed by the large initial investment required for
offshore wind energy converters. Indeed, this technology is relatively young and
still a high risk is associated to that. This makes potential investors often scep-
tical and reluctant to overtake such projects. A major part of the costs involves
the sub-structures of offshore wind turbines (OWTs). To discern the real cost of
sub-structures construction and installation from the total investment cost is not
an easy task. According to the specifics of each project, the costs of construction,
installation and maintenance of sub-structures fluctuate from 20% to 30% of the
total investment.

Another raising cost factor related to sub-structures for OWTs is the large area
involved in offshore wind projects. Traditional offshore structures, such as oil and
gas platforms, require only very limited seabed area to be investigated and the
cost of the sub-structure might be small in comparison to the total investment.
On the contrary, offshore wind farms need an extensive area to be investigated
and a universal foundation concept capable to provide a firm support on different
stratigraphies. Pursuing research on cost-competitive offshore wind sub-structures
is one way by which the cost of offshore wind energy can be reduced significantly.

In the next chapter, foundations and sub-structures for OWTs are presented. Partic-
ular attention is given to the most commonly used technologies and to the innovative
concepts that might save initial investment costs and eventually reduce the cost of
energy.

Nuclear 14%

Fuel oil 5%

Hydro 16%

Wind 13%

PV 9%
Others 2%

Gas 22%

Coal 19%

Figure 1: Breakdown of power mix in 2013 in
Europe (EWEA, 2014)

Wind 32%

PV 31%

Gas 21%

Coal 5%

Others 10%

Figure 2: Breakdown of new power installa-
tions in 2013 in Europe (EWEA, 2014)
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CHAPTER 2

Foundations and sub-structures

Strictly speaking, sub-structures and foundations are not the same thing. Although
the two terminologies are sometimes interchangeably used, here a clear definition
is given as follows. Support structures include all the structural elements below an
offshore wind turbine, cf. Figure 3a. Two main components are included in the
support structure, the tower and the sub-structure. The part of the sub-structure
that is interfaced with the soil is the foundation.

Before presenting the general characteristics of foundations for offshore structures
and sub-structures for offshore wind, it is fundamental to underline the unique load-
ing condition of OWTs. In general, sub-structures for offshore wind converters have
to withstand a very large overturning moment together with a relatively large hori-
zontal load and a small vertical load. In Figures 3b and 3c, the loading configurations
applied to sub-structures (dashed line) and foundations (solid bold line) are shown.
If the sub-structure has multiple foundations (sub-structure with multipod foun-
dation), Figure 3c, the overturning moment is transferred to the soil by means of
axial loading in tension and compression distributed over the foundations. If, on the
contrary, the sub-structure has one foundation only (sub-structure with monopod
foundation), Figure 3b, the foundation has to withstand the overturning moment
directly.
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Foundations and sub-structures

Figure 3: a) components of an offshore wind turbine system; b) load configuration of a sub-
structure with monopod foundation; c) load configuration of a sub-structure with multipod foun-
dation

In the oil and gas industry, foundations are mostly used to support jacket structures
and to hold floating facilities (anchoring systems). Conversely, OWTs have been by
far bottom-fixed sub-structures with monopod foundations. The overturning mo-
ment has therefore much more importance in the design compared with foundations
for oil and gas facilities. This aspect becomes even more relevant since OWTs are
relatively lighter than oil and gas platforms and thus more susceptible to overturning
moment. The dimensionless group V/(γ′D3), where V is the vertical load, γ′ the
effective unit weight of the soil and D the foundation diameter, is larger than 3 for
jackets for oil and gas platforms (Randolph and Gourvenec, 2011) while it ranges
between 0.1 and 1 for OWTs. As it will be explained in greater details in the arti-
cles attached to this thesis, this feature influences the behaviour of the foundations.
Before applying design criteria conceived for oil and gas platforms to offshore wind
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Foundations and sub-structures

turbines, clear proves of applicability should be given.

Throughout this doctoral thesis only planar loading (i.e. vertical load, horizontal
load and overturning moment acting in the same plane) is considered. The reader
should bear in mind that this is a simplification; real offshore loading conditions
act in multiple directions in the three-dimensional space. However, this simplified
approach does not prevent behavioural patterns of offshore foundations from being
investigated.

In the following, the main features of each foundation and sub-structure concept
are briefly described. Most of the general information given is taken from two main
sources: Randolph and Gourvenec (2011) and Lesny (2011).

2.1 Offshore Foundations

The foundations are the parts of the support structure that interact with the seabed.
Depending on the sub-structure, one or more foundations distribute the loads com-
ing from the superstructures to the soil strata. The most common non-temporary
foundations present in the offshore environment include: deep (or piled) foundations,
shallow foundations and anchoring systems. Anchoring systems are widely used in
the offshore environment but are not included here as they have not been extensively
used for offshore wind turbines. Anchoring systems will perhaps be adopted more
in the future when floating sub-structures will be optimised for commercial use.

2.1.1 Deep foundations

Piled foundations can be subdivided into large diameter piles (between 4 and 8
m in diameter), for sub-structures with monopod foundations, and small diameter
piles (from 2 to 4 m in diameter), for sub-structures with multipod foundations.
Piled foundations are the best option for offshore structures when the shallow soil
encountered is soft or when there is the likelihood of foundation slide problems due
to large horizontal loads. Most piles are driven into the soil with hydraulic hammers.
In the presence of soil strata such as calcareous sediments or rock, also drilled and
grouted piles can be adopted. Piles supporting jackets are driven into the seabed
through the sleeves integrated at the jacket base (post-piling) or through mobile
piling templates transported by the jackup vessels (pre-piling). Large diameter piles
are hammered down through a frame leaning out from the installation vessel. A
crucial aspect when assessing the capacity of a piled foundation is the evaluation of
the post-installation soil conditions. To model the load transferred to the soil, the
soil-pile interaction is schematised with non-linear springs (cf. Figure 4). t-z curves
describe the relationship between mobilised shear stress and vertical displacement
of axially loaded piles. p-y curves describe the relationship between soil resistance
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Foundations and sub-structures

Figure 4: Simplified scheme of soil-structure interaction for axially loaded piles and horizontally
loaded piles. After Randolph and Gourvenec (2011)

and lateral displacement of laterally loaded piles. Piles supporting jacket structures
(small diameter piles) are mainly subjected to vertical loading. The axial capacity of
a piled foundation has two contributions: the base resistance and the shaft resistance.
In sandy soils the shaft resistance is assessed based on the cone resistance whereas
in clayey soils it is quantified as a function of the undrained shear strength. The
ultimate base resistance is defined with an allowable vertical displacement criterion
and is calculated by summing the two contributions of pile wall and soil plug. The
response of axially loaded piles is influenced by cyclic loading. The main effect of
cyclic loading is the shaft resistance degradation. This is caused by pore pressure
development in cohesive soils and by soil densification in sandy soils. To take cyclic
degradation into account some rules for updating the spring stiffness of each cycle
can be implemented in numerical models. Jardine et al. (2012) review the methods
to estimate the cyclic loading effects of piles.

Large diameter piles have to bear large lateral loads in terms of combined mo-
ment and horizontal load. The current design base for laterally loaded piles is the
well-known p-y curves approach. This method was developed some decades ago for
slender piles. Whether this design method is appropriate for large diameter (and
thus stiffer) piles or not is a controversial and ongoing topic of discussion among
researchers (LeBlanc et al., 2010; Haigh, 2014). Furthermore, the standard p-y
method considers simplistically the cyclic loading response. Some of the cyclic load-
ing effects such as gapping, change in stiffness and ultimate post-cyclic resistance
are nowadays widely investigated (Achmus et al., 2009; Kirkwood and High, 2014;
Klinkvort and Hededal, 2014).
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Foundations and sub-structures

2.1.2 Shallow foundations

Shallow foundations are the obvious alternative to pile foundations when bedrock
or very stiff soils are present. These foundations transfer the loads to the superficial
layers of soil. In case of weak superficial soil strata, shallow foundations are provided
with a skirt that transfers the loads to deeper and stronger soil. In Figure 5, flat and
skirted foundations are depicted together with the possible loading configurations.
Shallow flat foundations are normally subjected to combined loading. The bearing
capacity of flat footings under combined loading relies on the compressive behaviour
of the most superficial soil strata. Shallow flat foundations do not have any resis-
tance against tension, except for their own weight. The prominent moment loading
featured by OWTs might cause the foundation to be only partly in compression. If
the foundation is required to be only in compression, significant ballast should be
provided or the diameter should be enlarged.

Commonly, skirted foundations have embedment length to diameter ratio smaller
than one. In addition to the increase in bearing capacity, the skirt allows pure tensile
loads to be sustained as a result of suction generated within the foundation. This
characteristic makes this foundation ideal for sub-structures with multiple founda-
tions. Skirted foundations react to combined loading with both base resistance and
skin friction. According to geometry and loading condition, skirted foundations can
also be named as: suction caissons, suction bucket, bucket foundations or suction
anchors. As suggested by Clukey et al. (1995), “suction”is a suitable term that iden-
tifies two distinct characteristics of the foundation. First, the foundation is installed
by pump-induced under pressure. Second, when a certain loading rate is exceeded,
suction passively develops underneath the foundation under tensile or general load-
ing. Shallow foundations are preliminary designed with the classic baring capacity
method. More accurate estimation of their response can be obtained with interac-
tion diagrams, macro-models and numerical models. The effect of short-term cyclic
loading can be evaluated with the well-known method proposed by Andersen (2009)
and based on cyclic model tests.

Figure 5: a) flat foundation for sub-structures with monopod foundation; b) skirted foundation
for sub-structure with monopod foundation; c) skirted foundation for sub-structure with multipod
foundation
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Foundations and sub-structures

2.2 Sub-structures for OWTs

Sub-structures are made of concrete or steel and connect the turbine tower to the
seabed. Sub-structures can have three general configurations: sub-structures with
monopod foundation (gravity based foundation, monopile, monopod bucket foun-
dation), sub-structures with multipod foundation (jackets, tripods, tripiles) and
floating sub-structures (Hywind, Windfloat, Blue H, etc.). As mentioned earlier,
sub-structures govern the way in which the loads from the superstructure are trans-
ferred to the foundations.

2.2.1 Sub-structures with monopod foundation

Monopod structures are connected to the ground by means of one foundation only.
The load transferred to the foundation consists of predominant overturning moment,
considerable horizontal load and relatively small vertical load.

Gravity based foundations Gravity based foundations (GBFs) are made of re-
inforced concrete or steel and withstand the environmental forces by means of a
prominent vertical load due to self-weight and ballast. GBFs are normally built
on dry docks and transported offshore on vessels. Some types of GBFs reach the
installation site by floating, towed by barges. The ballast material used to sink the
structure and ensure its stability can be concrete, water, sand or gravel. Frequently,
before laying the structure, the seabed must be adjusted in order to obtain a horizon-
tal profile. GBFs have been favoured over other sub-structures in the early stage of
the offshore wind development. This was certainly due to their technical simplicity
in very shallow water depths. However, the large amount of material used to ensure
a sufficient stabilising vertical load and the soil preparation procedure increase the
cost of these sub-structures. Even though GBFs are generally considered uneco-
nomical, they are currently being considered as possible options for some consented
wind parks in the North Sea (4C Offshore, 2014).

Monopiles Monopiles have been used as the predominant type of sub-structure
for offshore wind turbines in the last two decades. This structure is composed by
a pile foundation supporting a transition piece which is the interface between the
foundation and the turbine tower. Few years ago there was scepticism in using
monopiles in water depth exceeding 20-25 m. Nowadays 6 MW wind turbines can
be mounted on monopiles in water depths up to 30 m. Furthermore, new projects
are being developed for the installation of monopiles in water depths exceeding 35
m (Seidel, 2014). As pointed out by Seidel (2014) with monopiles being installed in
deeper water, not only the magnitude of loads increase but also the type of load-
ing is prone to change in favour of a more significant action of the waves. The
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Foundations and sub-structures

wall thickness of a standard monopile goes from 40 to 70 mm. In the last years,
a lot of research effort has been put into optimizing the design of these structures.
Currently, important research projects on monopiles are undertaken by the PISA
project. So far, monopiles have been driven into the seabed by ramming with hy-
draulic hammers. Limiting values for the noise emission during pile driving were
introduced by the German authorities (BSH, 2013). To cope with these stringent
regulations, new installation methods such as drilled monopiles (Hautmann, 2013)
and vibro-piles (LeBlanc et al., 2013) are being investigated. Beside these two new
technologies, also noise mitigation techniques for the installation of monopiles are
being tested (Reimann et al., 2013).

Monopod bucket foundations Monopod bucket foundations are made of steel
and consist of three main components: a flange on which the turbine tower is
mounted, a skirted foundation, and a lid that interfaces flange and foundation. A
picture of a monopod bucket structure with diameter 15 m and embedment length
7.5 m is shown in Figure 6. All the steel elements are welded to one another onshore
and the entire structure is then transported offshore with a jackup vessel.

Figure 6: Real-scale monopod bucket foundation on the deck of a jackup vessel
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Figure 7: Real-scale installation of a monopod bucket foundation in Frederikshavn, Denmark

Once the structure has reached the designated location, the foundation is installed by
means of suction applied within the bucket. In 2002 a monopod bucket was installed
a few meters off the shore of Frederikshavn to support a 3.0 MW wind turbine (Ibsen,
2008). A picture of the monopod bucket foundation installed in Frederikshavn in
2002 is illustrated in Figure 7. In 2009 a monopod bucket foundation for a met
mast was towed from the port of Frederikshavn to the wind park Horns Rev 2
and installed by suction (LeBlanc, 2009). In September 2013 a monopod bucket
foundation supporting a met mast was installed at Dogger Bank, in the British
sector of the North Sea.

2.2.2 Sub-structures with multipod foundation

Sub-structures with multipod foundation are connected to the ground by means of
three or four foundations. The large overturning moment from the superstructures is
transferred to the foundations through vertical load in compression and in tension.
Sub-structures with multiple foundations are conceived to support wind turbines
with nominal power output larger than 5 MW in water depths exceeding 35 m.

Jackets Jackets are three or four legged steel frames founded on shallow founda-
tions or piles. These systems were already fully developed for offshore oil and gas
platforms. For this reason, jackets are generally considered very reliable and have
been the most common sub-structures with multipod foundation so far adopted.
The majority of the jackets for OWTs have four legs and are founded on piles.
The construction of the steel frame is completed onshore. The sub-structure is then
transported offshore and lifted with a crane of adequate capacity. Once the structure
has reached a stable position on the seafloor, piles are driven into the soil through
guiding sleeves at the four corners of the jacket. Pre-piling installation technologies,
where the foundations are installed before laying the jacket, can also be adopted.
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As demonstrated by oil and gas platform projects such as Draupner E and Sleipner
SLT (Bye et al., 1995), jackets can be founded also on skirted foundations. Dong
Energy is currently working on a three legged jacket structure founded on bucket
foundations.

Tripods and Tripiles Tripods and tripiles are steel structures which consist of
three legs founded on three piles. For tripods, the three legs are connected below
the water level. For tripiles, the connecting node is situated above the water level.
Tripods and tripiles were installed in the German sector of the North Sea to support
5 MW wind turbines in around 40 m water depth. While tripiles were only used in
the wind park Bard 1, tripods have been used more often (Alpha Ventus, Borkum
Phase 1 and Global Tech 1) and could be competitors of jacket structures in future
projects.

2.3 Floating sub-structures

As reported in EWEA (2013), a significant European offshore wind potential is
situated at water depths grater than 60 m, where conventional bottom-fixed sub-
structures would not be feasible. For example, water depths between 50 m and 220 m
cover the 66% of the North Sea. Besides, the Atlantic Ocean and the Mediterranean
Sea present even deeper water. In light of these observations, floating sub-structures
for OWTs could play a relevant role in the future. Floating sub-structures are
anchored to the ground by means of tethers or mooring lines. Tethers transfer the
environmental forces to the foundations through tensile load whereas mooring lines
through horizontal load. Floating sub-structure technologies are still in their infancy
and will need at least another five years to enter competitively the offshore wind
market (EWEA, 2013). Two well-known examples of floating sub-structures are
Hywind and Windfloat. A prototype of Hywind supporting a 2.3 MW wind turbine
was installed in 2009 off the west coast of Norway. In 2011 a prototype of Windfloat
was deployed off the coast of Portugal. Most of the projects are still on pilot or
prototype stage. Some of these technologies will perhaps be mature enough to be
commercially deployed by 2017.
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CHAPTER 3

Aims and objectives

3.1 Overall aim

As emphasised in Chapter 1, offshore wind energy is necessary to enable the transi-
tion to renewable energy in Europe. In light of this, it is of fundamental importance
to pursue research on offshore wind energy aiming at reducing its cost.

The cost of construction and installation of sub-structures can represent 30% of the
total investment of a wind farm. Monopod bucket foundations are the object of this
thesis as they could be a convenient sub-structure in various design situations.

The monopod bucket foundation could be ideal for the following reasons:

• no transition piece is needed. This would reduce the wind turbine installa-
tion time and avoid the problems related to the grouted connections of the
transition piece

• the installation process, being very silent, is not dangerous for sea mammals.
This might be a key feature, especially in the German sea sectors

• as opposite to monopiles, the installation process is theoretically fully re-
versible, meaning that the whole structure could be potentially recovered at
the end of its life-time

The research presented in this thesis is dedicated to the development of tools and
ideas that aim at optimizing the design of monopod bucket foundations. More
specifically, geotechnical aspects regarding the skirted foundation response under
environmental loading are investigated.
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3.2 Brief literature review and specific objectives

The literature review extensively presented in the first paper attached to this thesis
reveals that bucket foundations for oil and gas platforms have been widely inves-
tigated. In fact, the vast majority of the studies on bucket foundations addresses
issues concerning the installation process and the response of the foundation under
predominant axial loading.

Monotonic response of monopod bucket foundations under general loading has re-
cently received attention in works such as Villalobos et al. (2009), Achmus et al.
(2013a) and Ibsen et al. (2014). Villalobos et al. (2009) experimentally derive a
yield surface for skirted foundations with embedment ratios equal to 0.5 and 1.
Achmus et al. (2013a) run numerical simulations in order to extrapolate a nor-
malised failure surface for the preliminary design of monopod bucket foundations.
Ibsen et al. (2014) also derive a failure surface on the base of small-scale expeimen-
tal tests. Relatively few studies on bucket foundations cover the response of the
structure under short-term cyclic combined loading. The well-established approach
of Andersen (2009) estimates the settlements of shallow foundations subjected to
different packages of load cycles in drained and undrained conditions. Byrne and
Houlsby (2004) and Nguyen-Sy (2006) adopt the framework of hyperplasticity to
model the response of bucket foundation under short-term cyclic general loading.

Offshore wind turbines supported by monopod bucket foundations have to with-
stands millions of load cycles during their lifetime. The estimation of the cyclic
loading-induced irreversible displacements accumulated during the normal opera-
tional time of the turbine is a key element for serviceability and fatigue limit state
design (DNV, 2014). The behaviour of monopod bucket foundations under lateral
cyclic loading is thus of vital importance but yet not fully explored. Zhu et al.
(2013) carried out a comprehensive experimental programme regarding cyclic lat-
eral loading of a bucket foundation with embedment ratio equal to 0.5. Based on the
experimental results, Zhu et al. (2013) calibrates the empirical framework proposed
by LeBlanc et al. (2010) and define also how stiffness and displacement components
change with the number of cycles. By means of the stiffness degradation method
(Achmus et al., 2009), Achmus et al. (2013b) analyse the cyclic response of bucket
foundations. The numerical simulations indicate an influence of the skirt length on
the cyclic response and also an effect of the load magnitude on the rate of accumu-
lation.

This doctoral project deals primarily with investigations on the long-term response of
skirted foundations for monopod sub-structures under cyclic loading. Preparatory
topics such as bucket foundations subjected to monotonic loading and transient
loading, are also explored. According to the bibliographic research, the effect of
embedment ratio on the cyclic lateral response has not been explored with a physical
model. Besides, an all-embracing macro-model capable of describing monotonic and
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long-term cyclic response of bucket foundations for offshore wind turbines has not
been developed. On the basis of these observations, the specific objectives of this
thesis are:

• to create a comprehensive database of small-scale cyclic loading tests of bucket
foundations with different embedment ratios under monotonic and cyclic lat-
eral loading

• to give an empirical interpretation of the experimental data aiming at extend-
ing the empirical model proposed by Zhu et al. (2013) to buckets with different
embedment ratios in dense sand

• to refine the data interpretation by developing a more sophisticated analytical
model. In particular, it is attempted to integrate the cyclic loading behaviour
within the framework of macro-element models based on the theory of elasto-
plasticity

Foglia 15



Aims and objectives

16 Foglia



CHAPTER 4

Description of the research project

The research content of this thesis is included in five scientific papers. The five papers
have basically two common topics: geotechnical physical modelling and behaviour
of bucket foundations. This chapter outlines the content of the scientific documents
describing premises, objectives and methodologies adopted. Besides, the connections
between the five contributions are highlighted.

4.1 Paper I - Bucket foundations: a literature review

Skirted foundations have been used for oil and gas platforms since the early eighties
(Hogervost, 1980). A great deal of studies on installation and bearing capacity
of these structures is available in literature. The first enclosed paper is an internal
report dealing with the state of the art of bearing capacity and installation of bucket
foundations. In addition to a review on previous studies, the paper contains a
number of comparisons between models found in literature and novel experimental
data collected during the doctoral project. The objectives of this paper are:

• to have a background knowledge on shallow foundations and to identify the
research area that still needs to be explored

• to check the quality of some experimental results by comparing the test data
with models existing in literature

• to provide an up-to-date list of essential scientific documents on shallow foun-
dations and bucket foundations
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The report starts with the analysis of shallow footings and shows a comparison be-
tween the best-known methods to evaluate the bearing capacity. The analysis is
then extended to skirted foundations and the result of two physical experiments is
interpreted with three different models. A section of the report is entirely dedicated
to a close examination of the interaction diagrams of flat footings and skirted foun-
dations. A number of experimental points are plotted together with the relevant
interaction diagrams present in literature. The pushing penetration mechanism of
bucket foundations is analysed and three analytical models are used to interpret the
experimental results. Two sections of Paper I gather a list of recommended readings
concerning bucket foundations for offshore wind turbines and oil and gas platforms.

4.2 Paper II - A preliminary study on bucket founda-
tions under transient lateral loading

The second scientific document is a corrected version of the conference article Foglia
et al. (2013). In the course of the doctoral project, a mistake regarding the inter-
pretation of the pore pressure distribution was found in Foglia et al. (2013). In
the revised version of the article enclosed here, the pore pressure interpretation is
corrected and the part of the conclusions related to that is changed accordingly.

One of the design drivers of monopod bucket foundations for offshore wind turbines
is the drained response of the foundation. However, when the structure is hit by
extreme or rare events such as freak waves or emergency stop of the rotor, the suction
caused by the high loading rate of these actions induces an enhancement in bearing
capacity. This aspect is not taken into account by the current standards. Paper
II deals with the physical modelling of bucket foundations under transient loading.
A short experimental campaign including eight tests on two different buckets is
presented with the following objectives:

• to understand which loading rate causes transient loading on small-scale bucket
foundations

• to obtain information on the pore pressure distribution under and around a
bucket foundation subjected to transient loading

• to gain insight into bearing capacity and displacement patterns of bucket foun-
dations in partially drained conditions

The physical model is described and the experimental programme is presented. A
preliminary interpretation of the results in terms of load-displacement curves, dis-
placement trajectories and pore pressure distribution is attempted. The information
regarding the loading rate effects were taken into consideration when designing the
experimental campaign presented in the third paper.

18 Foglia



Description of the research project

It should be mentioned that the author did not perform the experimental tests. The
contribution of the author to this paper is to be found in the physical model design
and in the presentation and interpretation of the experimental observations.

4.3 Paper III - Monopod bucket foundations under cyclic

lateral loading

Understanding the response of offshore foundations under long-term lateral cyclic
loading is necessary to ensure that serviceability and fatigue limit states are not
breached during the lifetime of the structure. The dangerous effects that must
be prevented are drastic changes in the natural frequency of the system and the
accumulation of significant irreversible displacements. A practical empirical model
to estimate the long-term plastic rotation of monopiles was proposed by LeBlanc et
al. (2010). The model was then calibrated for bucket foundations in loose sand by
Zhu et al. (2013).

In the third paper attached to this thesis, the issue of bucket foundations under lat-
eral cyclic loading is dealt with. The document includes the bulk of the experimental
campaign conducted during the doctoral project. The experimental programme pre-
sented comprises 7 tests series, for a total number of 33 tests of bucket foundations
under monotonic and cyclic loading. The experimental data is interpreted with the
following aims:

• to calibrate the empirical model of LeBlanc et al. (2010) for bucket foundations
in dense saturated sand

• to understand how the long-term displacement accumulation is affected by
embedment ratio, relative density and loading frequency

• to investigate the post-cyclic monotonic response of bucket foundations

After presenting the problem and the attempted solutions, the attention is focussed
on the physical model design. In the latter section the theoretical design of the
modelling is thoroughly described and details on the experimental programme and
on the test setup are given. The calibration of the empirical model for bucket
foundations with three different embedment ratios in very dense silica sand is then
accomplished on the base of the experimental post-processed data. The last section
of the paper describes a real design situation in which the empirical model is used
together with a finite element simulation to preliminary estimate the long-term
accumulated rotation.
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4.4 Paper IV - Investigations on macro-element mod-
elling of bucket foundations for offshore wind tur-
bines

The interpretation of the experimental data proposed in Paper III is merely em-
pirical and may not be sufficient to model complex soil-foundation-superstructure
interaction problems. The fourth paper covers a more sophisticated interpretation
of the experimental results based on the macro-element approach. As elucidated in
Wood (2012), macro-element models can reveal behavioural patterns of non-linear
geotechnical problems. Well-established macro-elements for shallow and embedded
footings for oil and gas facilities exist in literature and are used by industry practice
(Zhang et al., 2014; Houlsby and Cassidy, 2002). Much more limited are the studies
on cyclic behaviour of shallow foundations for offshore wind turbines (Nguyen-Sy,
2006). The main objective of this work is to create a macro-element model capable
to reproduce the experimental monotonic and cyclic behavioural patterns of bucket
foundations for offshore wind turbines.

The first chapter includes a literature review of macro-models for shallow foun-
dations. In the following chapter the physical experiments used to calibrate and
validate the model are reported. Then, all the components of the macro-model are
presented and their validity discussed. The macro-model is finally implemented in
a Matlab script and comparisons between experimental data and analytical model
are shown.

4.5 Paper V - Laboratory experiments of bucket foun-

dations under cyclic loading

Long-term cyclic loading experimental tests of monopod bucket foundations are
very rare in the literature (Zhu et al., 2013). Paper V is an internal report which
describes in detail all the procedures that have been necessary to carry through the
experimental program. The entire experimental programme is listed with the main
features of each test. The most important plots are shown and information on how
to handle the raw data is given. The objectives of this document are:

• to give practical and detailed information on the physical model used in order
to enable future researchers to perform analogous experiments

• to establish a database of experiments of bucket foundations for offshore wind
turbines against which various models could be calibrated and validated
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CHAPTER 5

Conclusions

To optimise the design of monopod bucket foundations, issues concerning their re-
sponse under cyclic loading must be addressed. In the five scientific papers included
in this thesis, the behaviour of bucket foundations under lateral cyclic loading and
other related topics, are explored. This chapter contains the conclusions of each pa-
per and some recommendations for future research. No conclusion is drawn about
the fifth paper since it is merely illustrative and descriptive.

5.1 Paper I - Bucket foundations: a literature review

The bibliographic research reveals that bucket foundations have been studied for over
fifty years as optimum solutions for offshore structures. The installation procedure
seems to be by now well-established and its reliability has been proven in many real-
scale projects and in various soils. However, an interesting remark is that large-scale
tests and real-scale monitoring of the bucket bearing capacity were mostly performed
on suction anchors and on multiple bucket foundations.

Using the standard DNV (2014) to estimate the bearing capacity of flat footings un-
der pure vertical loading could be very conservative. Perhaps, the ultimate bearing
capacity of flat footings should be estimated with more innovative methods such as
the method of characteristics (Martin, 2003).

Considering now the bearing capacity of skirted foundations under combined loading,
it seems that the failure envelopes of standard methods and those of more innovative
methods (experimentally derived interaction diagrams) give the same capacity in the
region of the load space relevant for offshore wind turbines. Interaction diagrams
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though, should not be underestimated since they can better model the soil-structure
non-linearity.

An experimentally derived interaction diagram evaluated with a reasonable value
of the friction angle appears to be in agreement with the preliminary design tool
developed by Achmus et al. (2013a).

A reassuring finding is that the novel experimental tests of installation and bear-
ing capacity of bucket foundations, are successfully compared with the methods
suggested in literature.

5.2 Paper II - A preliminary study on bucket founda-
tions under transient lateral loading

The foundations tested were instrumented with multiple pore pressure transducers
around and inside the bucket. The physical model results may be valuable to cali-
brate numerical simulations of the pore pressure distribution of bucket foundations
subjected to rapid lateral loading. In addition, the information on the development
of the pore pressure was necessary to design the experimental campaign on cyclic
loading presented in Papers III and V.

The analysis of the displacement trajectory demonstrates that the vertical displace-
ment is greatly influenced by the loading rate whereas the horizontal and the rota-
tional displacements are not.

As expected, a high loading rate leads to an increased bearing capacity and con-
sequent reduction of the vertical displacement. However, the data indicates that
the effect becomes significant only when a very large displacement (exceeding the
serviceability limit state) is mobilised. Indeed, the initial stiffness and the initial
vertical displacement trajectory are not affected by the loading rate. This discov-
ery, which was already pointed out by various authors, corroborates the idea that
the undrained capacity can be considered only when designing the foundation with
respect to rare and extreme events.

The measurements performed with the laboratory rig can be considered entirely
reliable. However, the actuator showed limited capacity when dealing with high
loads to be exerted in a very short time. This finding led to substantial modifications
and improvements of the experimental rig.
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5.3 Paper III - Monopod bucket foundations under cyclic
lateral loading

Three monotonic lateral loading tests of bucket foundations with embedment ratios
1, 0.75 and 0.5, show different failure mechanisms. Even though the soil samples were
very dense, only the bucket with embedment ratio equal to 1 shows a pronounced
softening branch after the loading peak. This kind of behaviour could be seen in
analogy with the findings of Vesić (1973) for shallow foundations under pure vertical
loading.

One of the test series was designed to investigate the rate of rotation accumulation
as a function of increasing load magnitude. From these tests it can be observed that
plastic adaptation (i.e. accumulation rate of the rotational displacement tending to
0) occurred within the first 300-400 cycles, even for high load magnitudes.

The examination of the post-cyclic monotonic tests disclosed an interesting trend.
The ultimate capacity becomes greater than that of a standard monotonic test, as
though the failure surface would expand during the cyclic loading phase. This effect
is attributed to the soil densification occurring during the cyclic loading phase.
Perhaps more trivially, the initial stiffness of the post-cyclic tests was also found
greater than the monotonic one. One test series deals with tests having the same
loading configuration but different loading frequency (within 0.025 and 0.1 Hz).
Since the sand sample was water saturated a marked difference in displacement
patter among the tests was expected to be observed. Nonetheless, the experiments
do not show any marked and consistent difference.

All the tests under a certain value of load magnitude are found to be in substantially
drained conditions. These tests are employed to calibrate the empirical framework
of LeBlanc et al. (2010) for bucket foundations in dense saturated sand. As already
pointed out by previous authors, the relative density of the material affects the model
parameters. More importantly, the calibration of the empirical method revealed
that the three foundations tested respond equally to cyclic loading. The method
though remains small-scale based, and thus applicable to real cases only with strict
engineering judgement.

5.4 Paper IV - Investigations on macro-element mod-

elling of bucket foundations for offshore wind tur-
bines

A macro-element model capable to represent the experimental results of a bucket
foundation under monotonic and cyclic lateral loading is derived.
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A yield surface, originally thought for shallow footings (Nova and Montrasio, 1991),
is modified to account for the presence of the skirt. For loading paths relevant to
offshore wind turbines, the surface shows to be in good agreement with another yield
surface derived for bucket foundations. The yield surface at failure (failure surface) is
calibrated against eight monotonic tests with five different eccentricity over diameter
ratios. Two (out of four) parameters of the hardening rule are extrapolated from
a pure vertical load test until failure. One (out of two) parameter of the plastic
potential and another parameter of the hardening law are obtained by using the
displacement trajectory of a monotonic test with negligible horizontal load. The
remaining two parameters are estimated by trial and error against the experimental
results. Load-displacement curves and displacement trajectories of experimental
tests and analytical simulations are compared. The comparison is fairly successful
except for the horizontal displacement of two tests which is underestimated by the
model by a factor 2.

To incorporate the modelling of the cyclic loading response, the boundary surface
model of di Prisco et al. (2003) is simplified and integrated in the flow rule of the
monotonic macro-model. The additional parameters required are calibrated by trial
and error against four cyclic loading tests. The cyclic macro-element model shows
a good prediction ability with respect to the long-term normalised accumulated
rotation of the foundation. The results shown in the paper enhance confidence in
using macro-element models for monopod bucket foundations supporting offshore
wind turbines.

5.5 Future work

The experimental observations and the tools presented in this thesis are meant to
be a step forward in the understanding and modelling of skirted foundations under
long-term cyclic lateral loading. Some future research directions are suggested below.

The analysis of the long-term behaviour of bucket foundations concerned only accu-
mulated displacement and post-cyclic response. Dynamic properties such as stiffness
and hysteresis loops should also be investigated on the base of the experimental re-
sults.

The experimental tests were proven to be in substantially drained conditions. How-
ever, it is of interest to explore other drainage conditions by using a less permeable
material or by increasing the loading frequency. It is then suggested that future
long-term analysis should be carried out with different materials and with an instru-
mentation capable of trustfully measuring the pore pressure development during
cyclic loading.

As already mentioned, all the loading conditions considered in this thesis are planar
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(moment, horizontal load and vertical load acting in the same plane). More realistic
response could be obtained by increasing the degrees of freedom of the system.
Besides, more sophisticated investigations should include multidirectional and multi-
magnitudes packages of loading.

Small-scale experiments in single gravity can give broad indications on general pat-
tern of response of geotechnical structures. The direct implications of 1g tests to
real-scale foundations are indeed very limited. To gain more insight into geotech-
nical problems, the findings of small-scale experiments should be corroborated with
centrifuge tests, with numerical simulations and ultimately with large-scale tests.

The results achieved with the macro-model presented are promising. Nevertheless,
seven new parameters are necessary for the boundary surface model definition. To
understand the real meaning of each parameter a sensitivity analysis of the cyclic
parameters should be performed. Furthermore, this would help to deepen the knowl-
edge of the model and perhaps to elaborate a systematic strategy with which the
cyclic parameters could be calibrated over a reasonable number of tests.
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Ibsen, L. B. (2008). Implementation of a new foundations concept for offshore wind
farms. Keynote of the Nordic Geotechnical Meeting (NGM), Copenaghen

Kirkwood, P. B. and Haigh, S. K. (2014). Centrifuge testing of monopiles subject
to cyclic lateral loading. In Proceedings of the 8th International Conference of
Physical Modelling in Geotechnics (ISFOG), Perth, Gaudin C. and White D. J.
(Eds). CRC Press

Klinkvort, R. T. and Hededal, O. (2013). Lateral response of monopile supporting
an offshore wind turbine. Geotechnical Engineering 166, No. 2, 147-158

Jardine, R., Puech, A. and Andersen, K. H. (2012). Cyclic loading of offshore
piles: potential effects and practical design. In Proceedings of the 7th Interna-
tional Conference of Offshore Site Investigation and Geotechnics (OSIG): Inte-
grated Geotechnologies, London

LeBlanc, C. (2009). Design of Offshore Wind Turbine Support Structures. Ph.D.
thesis, Aalborg University

28 Foglia



BIBLIOGRAPHY

LeBlanc, C., Byrne, B. W. and Houlsby, G. T. (2010). Response of stiff piles in sand
to long-term cyclic lateral loading. Géotechnique 60, No. 2, 79-90
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Bucket foundations: a literature review

Aligi Foglia and Lars Bo Ibsen

Department of Civil Engineering, Aalborg University

In this report, bearing behaviour and installation of bucket foundations are re-

viewed. Different methods and standards are compared with the experimental

data presented in Foglia and Ibsen (2014a). The most important studies on

these topics are suggested. The review is focussed on the response of monopod

bucket foundations supporting offshore wind turbines.

1 Introduction

Settlements and bearing capacity of shallow foundations have been studied for over one century

and yet many issues are still to be addressed and resolved. This technical report covers some of

the fundamental topics that were experimentally and/or theoretically explored throughout the

experimental campaign conducted by Foglia and Ibsen (2014a). This literature review compares

different approaches and, when relevant, the comparison isintegrated with the experimental

results collected in Foglia and Ibsen (2014a).

The bearing capacity of rigid flat footings is the necessary starting point to understand the re-

sponse of bucket foundations under general loading. The focus is then shifted towards the

bearing capacity of bucket foundations, as these are the main object of the experimental work

(Foglia and Ibsen, 2014a). Two methods are used to predict the bearing capacity of the experi-
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Figure 1: a) standard flat footing; b) buried or embedded footing; c) skirted foundation or bucket
foundation

mental tests. Innovative and more traditional methods to evaluate the bearing capacity of bucket

foundations under general loading are discussed. The installation process is described and three

methods are used to interpret the jacked installation of a small-scale foundation.

Figure 1 illustrates the types of shallow foundations examined in this study. Throughout the

report, the terms bucket foundation and skirted foundationare used interchangeably.

2 Bearing capacity under vertical loading

2.1 Flat footings

Shallow foundations under pure vertical loading are traditionally designed on the base of the

classic bearing capacity theory proposed by Terzaghi (1943). For a flat embedded footing with

2



width,D, and area,A = DL, the bearing capacity can be expressed as:

qu =
Vu

A
= cNcsc + qNq + 0.5γ′DNγsγ (1)

whereNc, Nq andNγ are the bearing capacity factors,c is the cohesion of the material,q is

the surcharge (q = σ′

v(d
′) = γ′d′; whered′ is the depth of excavation),γ′ is the effective unit

weight of the soil andsc andsγ are the shape factors that account for rectangular and circular

shapes of the foundation. For most of the authors, the shape factors are functions ofD, L, and,

for some calculation methods (Brinch Hansen, 1970; Vesić,1973), also of the friction angle,

φ′. Circular and square footings haveD = L and thus their shape is considered to affect the

bearing capacity in the same manner (CEN, 2004; Fang, 1991).

By multiplying qu by the area of the foundation, the ultimate vertical load of the footing,Vu, can

be obtained. In practice, equation 1, uncouples and superimposes the three terms influencing

the bearing capacity. The solution proposed by Terzaghi (1943) is based on the work conducted

by Prandtl (1920) who adopted the theory of plasticity to analytically solve the problem of a

rigid body penetrating into a granular material. The bearing capacity factors are by definition

functions of the friction angle and, after Terzaghi (1943),many authors have proposed new for-

mulations for their estimation (Meyerhof, 1963; Brinch Hansen, 1970; Vesić, 1973). Among

the authors there is general agreement about the value of thefactorsNc andNq. On the con-

trary,Nγ can vary significantly, especially for friction angles larger than 40◦ (Bowles, 1996).

Meyerhof (1963) Brinch Hansen (1970) and Vesić (1973) propose also that the depth factors,

dc, dq anddγ, and one further shape factor,sq, are to be included in equation 1. Though, the

depth factors are not included in current standards (CEN, 2004; DNV, 2014).

More recently, Bolton and Lau (1993) and Martin (2005) have used the method of characteristics

to obtain the exact value of the bearing capacity factors forstrip and circular footings with rough

and smooth interface. In Bolton and Lau (1993) and Martin (2005) the depth and shape factors
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Figure 2: Estimation of the bearing capacity of a flat circular footing with seven different meth-
ods

are not evaluated since the bearing capacity factors obtained with the method of characteristics

already embrace the effects of shape and depth. Exact valuesof the vertical bearing capacity of

shallow foundations can be obtained with the software ABC developed by Martin (2003) and

based on the method of characteristics. Houlsby and Martin (2003) used the same method to

estimate the bearing capacity factors of spudcan foundations on clays considering the effects of

embedment, roughness, strength heterogeneity and cone angle.

In Figure 2 the evaluation of the bearing capacity of a circular foundation (D = 5 m) on sand

(φ′ = 35◦) with seven different methods is illustrated. A rough soil-footing interface is chosen

for the estimation. In Figure 2 it can be observed that the bearing capacity equation given by

DNV (2014) seems to be the most conservative. Furthermore, depending on the normalised
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depth, the approaches of Martin (2005) and Bolton and Lau (1993) give the largest value ofqu.

2.2 Skirted foundations

As mentioned by Villalobos (2006), when the ultimate vertical load of a bucket foundation,Vs,

is being investigated, multiple issues emerge. For example, the soil plug inside the foundation

can be assumed to be rigid or flexible. If the soil plug is assumed to act as a rigid block, the

bearing capacity is calculated at the level of embedment (d = d′; whered is the length of the

skirt):
Vs

A
= qNqdqsq + 0.5γ′DNγdγsγ (2)

Equation 2 is written for a skirted foundation in non-cohesive soil.

Clearly, assuming rigid skirt and flexible soil plug would bemore realistic. In case of pure

vertical loading though, the result would not change dramatically. Conversely, in case of com-

bined loading, Bransby and Yun (2009) showed that due to a failure mechanism inside the

skirt, the capacity of skirted foundations with flexible soil plug could be significantly lower

than that of solid embedded foundations. For this reason, asrecommended in Randolph and

Gourvenec (2011), internal skirts should be included in thebucket foundation design to ensure

a non-flexible soil plug.

Another issue is related to the effect of installation on thevolume of material surrounding the

foundations. This aspect is discussed in Chapter 4.

The contribution of the friction on the outer surface of the skirt should also be taken into account.

A straightforward estimation of the skin friction resistance,Vf, can be obtained by integrating a

constant shear stress,τo, over the skirt lengthd:

Vf = 2πR

∫ d

0

τodz = πRγ′Ktan(δ)d2 (3)

whereτo is the shear stress on the outer surface of the skirt,R is the outer radius of the bucket,

K is the lateral earth pressure coefficient andδ is the interface friction angle.
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In an attempt to estimate the vertical bearing capacity of bucket foundations, small-scale vertical

loading tests until failure were carried out at different scales and on different sands by Villalobos

(2006) and Larsen (2008). Villalobos (2006) run displacement controlled vertical loading tests

of buckets withD = 50.9 mm and with seven different embedment ratios (d/D from 0 to 2), on

loose and dense sand samples. As expected, he found punchingshear mechanism for the loose

samples and general shear mechanism for the dense samples. He interpreted his results with the

bearing capacity equation:

Vs = Dπ

∫ d

0

τodz + A (qNq + 0.5γ′DNγ) (4)

where it was assumedK = 2 andδ= 16◦. Nq andNγ were calculated for smooth interface

according to Bolton and Lau (1993) and to Martin (2005), respectively. He found that by using

the peak friction angle, the estimation ofVs overestimates the experimental results for both loose

and dense sample.

Larsen (2008) carried out several vertical loading tests ofbuckets with diameter varying be-

tween 50 and 200 mm and four different embedment ratios (d/D from 0 to 1). Larsen (2008)

calculatedVs as a linear function ofd/D andVu:

Vs

Vu
= 1 + c

(

d

D

)

(5)

Larsen (2008) estimated the parameterc as 2.9 while the bearing capacity factors forVu were

deducted according to Martin (2005). Equation 5 was first putforward by Byrne and Houlsby

(1999) who estimatedc as 0.89.

In Foglia and Ibsen (2014a) the results of two vertical loading tests until failure performed with

a novel experimental rig, are presented. A detailed description of the test setup is given in

Vaitkunaite et al. (2014). Two buckets withD = 300 mm were tested. One foundation had

d/D = 1 (test S64) and the other hadd/D = 0.75 (test S63). It is worth to emphasise that,

given the dimension of the foundations tested, laboratory tests of such a kind are rare. The
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Figure 3: Installation and bearing capacity test until failure, test S64

relative density,Dr, of the sand sample was estimated with a small-scale cone penetration test

as77%. TheV − h curve of test S63 is shown in Figure 3, whereh is the penetration depth

of the foundation. In the figure, the part of the curve after the full contact lid-soil (full skirt

penetration) is shown in a magnified inner plot. The entire curve can be divided in two different

parts. In the first part the increase inV is due only to the skirt resistance. This part of the curve

is, in reality, the jacked installation phase, which is analysed in section 4.2. Once full contact lid-

soil (full skirt penetration) is established, the penetration curve has a sudden stiffness increase

caused by the lid which becomes the predominant bearer. According to Vesić (1973), the soil

supporting a footing under vertical load can fail followingthree mechanisms: general shear,

local shear and punching shear. Figure 3 clearly shows that no general shear failure of the soil

occurred. During the test, soil bulging was observed meaning that the soil around the foundation

(unloaded soil) was visibly involved in the failure mechanism. According to this observation
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a local shear failure of the soil appears to have occurred (Vesić, 1973). As already mentioned,

general failure was reported by Villalobos (2006) in all thetests on dense sand (Dr = 88% and

Dr = 83%). This difference in failure mechanism can be attributed tothe different scale of the

physical models or to the discrepancy in relative density.

The ultimate bearing capacity gained with S63 and S64 is plotted in Figure 4 together with

equation 4 and equation 5. The critical friction angle of thesand used in the test is reported in

Larsen (2008) to be equal toφcr = 31◦. According to Bolton (1986) that would give a peak

friction angle,φpeak, of 39.6◦. In Figure 4, it can be seen that equation 4 captures very wellthe

bearing capacities trend with an unexpectedly high value ofthe friction angle,φ′= 45◦. Equation

5, with the empirical parameterc proposed by Larsen (2008) and a friction angle close to the

critical one (φ′= 39◦), predicts the result of test S63 but overestimates the bearing capacity of

test S64.
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Figure 4: Bearing capacity of bucket foundations estimatedwith two different methods and
experimental results
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3 Bearing capacity under general loading

3.1 Flat footings

While most onshore foundations are characterised by predominant vertical loading,V , offshore

foundations must withstand general loading with significant components of, horizontal load,

H, and moment,M . Well-established design criteria for onshore foundations are not always

suitable for offshore systems. For instance, the ultimate bearing capacity of shallow foundations

for onshore systems is often unlikely to occur. Conversely,the ultimate bearing capacity of

offshore structures (and particularly that of offshore wind turbines) could be breached owing to

exceptionally large overturning moments, and cannot therefore be overlooked.

Following the classic bearing capacity theory, when a shallow foundation is subjected to general

loading conditions, an array of empirically derived coefficients reducesVu. For flat footings on

sand under pure vertical loading, equation 1 becomes:

Vu

A
= 0.5γ′DNγsγ (6)

If the foundation is subjected to general loading, the effect of M is taken care of by reducing

the foundation area as a function of the eccentricity induced by the overturning moment (e =

M/V ). Besides, the effect of the horizontal load is introduced through the inclination factoriγ .

As a result of that, the ultimate vertical load of flat foundations on sand under general loading

is calculated as:
Vgu

A′
= 0.5γ′DNγsγiγ (7)

whereA′ is the effective foundation area calculated as a function ofe. A number of authors

attempted the assessment of theiγ coefficient by using analytical and empirical methods. Got-

tardi (1992) conducted a detailed review of the different expressions proposed in literature. The

most used coefficients in engineering practice are those of Meyerhof (1953) and Brinch Hansen
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(1970). According to Meyerhof (1953) the inclination factor can be written as:

iγ =

(

1−
θ

φ′

)

2

(8)

whereθ is the angle of inclination of the resultant force,θ = arctan(H/V ). The expression of

Brinch Hansen (1970) foriγ, does not include the friction angle and is written as:

iγ =

(

1− 0.7
H

V

)

5

(9)

Similarly, DNV (2014) expressesiγ as:

iγ =

(

1−
H

V

)2

(10)

Note that Meyerhof (1953) includes the friction angle in thedefinition of the inclination factor.

By using these traditional approaches, the non-linearity of the geotechnical problem, which is

rather significant for general loading, is simplistically considered through a superposition of

different effects. To reflect properly the non-linearity ofthe system and consider directly the

interaction betweenV ,H andM , interaction diagrams (or failure envelopes) were conceived.

Interaction diagrams encompass a region of the three-dimensional load space within which the

foundation does not violate the failure criterion. Roscoe and Schofield (1956) and Butterfield

and Ticof (1979) were pioneers of this technique which is used today as fundamental element for

macro-models (Gottardi et al., 1999; Cremer et al., 2001; Houlsby and Cassidy, 2002; Bienen

et al., 2006).

Expressions of theH − V interaction from the inclination factors of Meyerhof (1953), Brinch

Hansen (1970) and DNV (2014) can be simply obtained by including iγ in the bearing capacity

formula and expressingH as a function ofV (Gottardi, 1992; Byrne, 2000). In Figure 5 the

experimentally deduced interaction diagrams of Butterfield and Gottardi (1994) and Houlsby

and Cassidy (2002) (Model C) are plotted together with the classic bearing capacity methods.
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Figure 5: Comparison of different interaction diagrams forflat footings in the normalised load
plane

As similarly pointed out by Byrne (2000), the classic methods of Meyerhof (1953) and Brinch

Hansen (1970) are conservative forV/Vu > 0.3. More importantly, the four envelopes are alike

for V/Vu < 0.3. Note that this is also the region of the load space relevant for offshore wind

turbines. It is also worth to note that the DNV (2014) method gives the most conservative failure

envelope and agrees with the other curves only forV/Vu < 0.1.

Even though the interaction diagrams appear to agree with the traditional methods in the region

of interest, their importance is undeniable. In fact, they form the base of macro-models and

are thereby essential to model sophisticated problems regarding the interaction between soil,

foundation and superstructure. An analogue plot to Figure 5could be obtained also forM .

Though, the envelopes of Meyerhof (1953), Brinch Hansen (1970) and DNV (2014) would be

equal as they all use the same approach to account for the presence ofM .
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Failure envelopes have been lately incorporated in the API standards (API, 2011). Other well-

known failure envelopes for shallow foundations are: Salec¸on and Pecker (1995), for footings

on clay; Martin and Houlsby (2000), for spudcan foundationson clay; Byrne and Houlsby

(2001), for footings on carbonate sand; Randolph and Puzrin(2003), for circular foundations

on clay (upper bound solution); Bienen et al. (2006), for footings in six degrees of freedom.

3.2 Skirted foundations

The same principle explained for flat footings is applicableto skirted foundations as well. When

a skirted foundation on sand is subjected to general loading, the sustainable vertical load,Vgs,

can be evaluated as:
Vgs

A′
= qNqiqsqdq + 0.5γ′DNγiγsγdγ (11)

According to Meyerhof (1953) the inclination factor,iq, can be written as:

iq =

(

1−
θ

90◦

)2

(12)

The equation of Brinch Hansen (1970) foriq is:

iq =

(

1− 0.5
H

V

)5

(13)

The DNV (2014) recommends thatiq is calculated according to:

iq =

(

1−
H

V

)

4

(14)

Since the surcharge component increases the degree of non-linearity of the problem, closed

analytical solutions forH to plot the interaction diagram for the methods of Meyerhof (1953),

Brinch Hansen (1970) and DNV (2014), cannot be obtained for skirted foundations. Numerical

solutions are however obtainable and these are shown in Figure 6 together with the experimen-

tally derived failure envelope of Ibsen et al. (2014).
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Figure 6: Comparison of different interaction diagrams forskirted foundations in the normalised
load plane

A yielding surface for bucket foundations was experimentally investigated by Villalobos (2006)

(see also Villalobos et al. (2009)). The ellipsoid extrapolated by Villalobos (2006) has equation:

f =

(

H

V0h0

)

2

+

(

M

DV0m0

)

2

− 2e0
H

V0h0

M

DV0m0

− β2

12

(

V

V0
+ t0

)

2β1
(

1−
V

V0

)

2β2

(15)

whereV0 is the preconsolidation vertical load,t0 is the tension parameter (t0 = V/V0), h0, m0,

e0, β1 andβ2 are the non-dimensional parameters andβ12 is defined as:

β12 =
(β1 + β2)

(β1+β2)

ββ1

1
ββ2

2
(t0 + 1)(β1+β2)

(16)

Ibsen et al. (2014) (see also Larsen, 2008) proposed a failure envelope on the base of the yielding

surface of Villalobos (2006). The failure envelope of Ibsenet al. (2014) has the form of equation

15 but withVs instead ofV0. In this report we are interested in the ultimate resistanceof the

foundation and the envelope proposed by Ibsen et al. (2014) is therefore used.
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Note that, in the legend of Figure 6, the friction angle is indicated also for Brinch Hansen

(1970). This is because thedγ proposed by Brinch Hansen (1970) depends onφ′. Instead, as

mentioned earlier, depth factors are not included in the formulation of DNV (2014). In Figure

6 it is seen that, for skirted foundations, the three classicbearing capacity approaches give a

rather similar representation of the failure load. In a similar fashion to flat footings, the failure

envelope derived experimentally gives the largest prediction of bearing capacity. As in Figure

5, in the relevant region for offshore wind turbines, all themethods predict a similar bearing

capacity. The classic methods seem to be particularly conservative for0.3 < V/Vs < 0.9.

Eight monotonic tests until failure of a bucket foundation with d/D = 1 andD = 300 mm,

are presented in Foglia et al. (2014). The tests were conducted withV/Vs = 0.0026 and with

five differentM/(HD) ratios. The failure points of this test series are represented in Figure 7

together with the interaction diagram of Ibsen et al. (2014).
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Figure 7: Experimental results of a bucket foundation(d/D = 1) against the original and the
modified interaction diagram of Ibsen et al. (2014)
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The experimental points are overestimated by the failure envelope. This is attributed to the fact

that the failure envelope of Ibsen et al. (2014) was calibrated only over tests withV/Vs = 0.5.

As shown in Foglia et al. (2014), by settingt0 = 0.007 the curve matches well the experimental

results. The choice of adapting the failure surface by changing t0 = 0.007 is not randomly

made.t0 is in fact a rather straightforward parameter to be evaluated as explained in Foglia et

al. (2014).

Recently, another interaction diagram on the (M −H) load plane has been numerically derived

in Achmus et al. (2013a). The numerical simulations were calibrated against large scale tests.

According to Achmus et al. (2013a) the normalised ultimate horizontal load in very dense sand

can be expressed by:

(

Hu

γ′d2D

)

= −0.011

(

d

dref

)

(M ′

u)
2
− 0.43

(

d

dref

)

0.2

M ′

u + 14.1

(

dref

d

)

0.6

(17)

wheredref is a reference embedment length equal to 1 m andM ′

u is expressed by:

M ′

u =

(

Mu

γ′d3D

)(

d

dref

)

0.8

(18)

In a similar way,H ′

u is defined as:

H ′

u =

(

Hu

γ′d2D

)(

d

dref

)0.6

(19)

The failure envelope expressed by equations 17-19 can be compared with the envelope of Ibsen

et al. (2014). In order to obtainM ′

u andH ′

u values from the failure criteria of Ibsen et al.

(2014), it is necessary to estimate the vertical bearing capacity of the bucket foundation,Vs.

The foundation considered for the calculation hasD = 16 m, d = 12 m and is subjected to

V = 20 MN. Vs is calculated with the software ABC in a non-cohesive soil with γ′ = 10 kN/m

and for three values of the friction angle. The comparison isshown in Figure 8.
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Figure 8: Interaction diagrams of Ibsen et al. (2014) against failure criteria of Achmus et al.
(2013a)

Note that the axes of Figure 8 areH ′ andM ′. These are defined as equations 18 and 19 but

with H andM instead ofHu andMu. The curves shown in Figure 8 from Ibsen et al. (2014)

are quite influenced by the choice ofV and by the type of soil. In spite of this, it is remarkable

that forφ′ = 35◦ the two methods give similar predictions.

Beside the failure envelope, Achmus et al. (2013a) formulated an expression for the initial

stiffness. Furthermore, the numerical simulations revealed an interesting feature of the bearing

behaviour: when a bucket foundation approaches failure, a gap between lid and soil occurs. This

detachment between soil and structure induces the skirt to bear all the load. The latter infor-

mation is crucial and would technically implicate that the traditional bearing capacity methods

are inadequate instruments to evaluate the capacity of bucket foundations under predominant

general loading. Nevertheless, from Figure 6 it is clear that these methods give a fairly similar
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result to small-scale experiments.

3.3 Additional literature

Failure envelopes Other failure envelopes for skirted foundation can be foundin: Mangal

(1999), exploration of the foundation behaviour in partially drained conditions; Bransby and

Randolph (1998), Bransby and Yun (2009), Gourvenec (2007) and Gourvenec and Barnett

(2011), investigation on combined loading of bucket foundations in undrained condition with

numerical and analytical methods; Cassidy et al. (2006), development of a plasticity model for

skirted foundations in clay.

Monopod bucket foundations for offshore wind turbines Since the monopod bucket foun-

dation has been considered a cost-competitive option for offshore wind turbine sub-structures

(Ibsen, 2008), great attention has been given to the cyclic lateral response of skirted founda-

tions. The main publications on this topic are: Kelly et al. (2006), field tests compared with

1g laboratory tests; Achmus et al. (2013b), numerical simulations; Zhu et al. (2013) and Foglia

and Ibsen (2014b), 1g physical models. Interesting are also the contour diagramsfor suction

bucket under lateral loading foundations in silt extrapolated by Watson and Randolph (2006) on

the base of centrifuge experiments.

Tensile capacity, offshore wind turbines Jacket sub-structures supporting offshore wind tur-

bines can be founded on driven piles or bucket foundations. The load transferred to the foun-

dations is in this case axial, in tension and compression. Bucket foundations for jacket sub-

structures have been widely investigated. Feld (2001) performed small-scale 1g tensile loading

tests with different loading rates. These tests were compared to numerical models and a simple

analytical model. The tensile capacity was found to be greatly influenced by the loading rate.

Byrne and Houlsby (2002) undertook 1g cyclic and monotonic tensile loading tests. To model
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the appropriate drainage time, a viscous pore fluid was chosen to saturate the soil sample. The

experiments revealed that the rate-dependency becomes significant only at large displacements.

Centrifuge tests exploring monotonic and cyclic uplift of bucket foundations were carried out

by Senders (2008) who also developed a theoretical model to calculate the pull-out resistance.

Interestingly, he observed that unless the cyclic magnitude exceeds the frictional resistance,

cyclic degradation does not occur. Very recently, Thieken et al. (2014) have reported a number

of numerical simulations of bucket foundations under transient tensile loading. In terms of rate-

dependency and sustained loading (equivalent to cyclic loading in this case), the simulations

corroborated what was found experimentally by previous studies. Thieken et al. (2014) also

found that, as opposite to the drained up-lift capacity (frictional resistance), lid and skirt are

equally involved in the partially undrained resistance. Pullout field tests on clay and on sand are

respectively presented in Houlsby et al. (2005) and Houlsbyet al. (2006).

Bucket foundations for oil and gas platforms Bucket foundations have been mostly used

as foundations for jacket structures supporting oil and gasplatforms or as anchoring systems

for tension leg platforms or floating platforms. Bucket foundations for floating platforms and

tension leg platforms are often named suction anchors as their embedment length is larger than

the diameter.

According to the type of sub-structure or mooring system (jacket, catenary, taut line) the foun-

dations are subjected to different loading conditions. Forjackets and for mooring systems in

vertical configuration, the tensile loading governs the foundation design. Experimental tests

on tensile loading were overtaken for example by: Wang et al.(1977), breakout capacity in

three different soils; Steensen-Bach (1992), monotonic loading in clay and sand; Andersen et

al. (1992), pull-out capacity method based on laboratory tests and validated against field tests;

Clukey et al. (1995), centrifuge study on monotonic and static tensile resistance in clay; Whittle
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et al. (1998), static and sustained loading in clay; El-Gharbawy and Olson (1998), monotonic

and cyclic loading in clay.

When floating platforms are connected to the seabed through taut lines, the suction anchor is

subjected to combined horizontal load and vertical load in tension. Instead, in case catenary

moorings are adopted, the suction anchors have to withstandhorizontal load only. Early studies

on these issues are Hogervost (1980) and Larsen (1989). Morerecently, Andersen et al. (2005)

wrote a compendium on design and analysis of suction anchorsin clay. Supachawarote et al.

(2004) run numerical simulations of suction anchors in clayderiving the failure envelope in the

(V −H) load plane identifying the optimum load attachment position.

The knowledge contained in these papers will perhaps turn out to be valuable when designing

anchoring systems for floating offshore wind turbines or wave energy devices.

4 Installation

4.1 Bucket installation by suction

The first documents on the installation of bucket foundations have been published more than half

a century ago (Goodman et al., 1961; Sato, 1965). One of the first offshore structures supported

by skirted foundations is Gullfaks C (Tjelta et al., 1988). This was a very heavy structure to

be installed in relatively soft soil. In order to avoid a significant enlargement of the foundation

area, concrete skirts of 22 m were provided to the structure.To prove the penetrability of long

concrete skirts, large-scale tests of two steel cylinders connected through a concrete panel were

performed (Tjelta et al., 1986). To help the consolidation process this structure was provided

with an active drainage system consisting of filters mountedon the skirt wall. Information on

the monitoring campaign regarding Gulfaks C is given in Tjelta et al. (1992).

As explained in dedicated sections in Lesny (2011) and Randolph and Gourvenec (2011), the

installation of bucket foundations can be divided into two main phases. The first phase consists
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of self-weight penetration into the superficial layer of theseabed. The penetration achievable

during this installation stage depends on the properties ofthe soil and on the weight of the upper

structure. In the second phase, a pumping system pumps out water from inside the bucket creat-

ing suction (or under pressure). Frequently, to ensure a fully controlled penetration, the suction

is combined with water injection at the skirt tip. A comprehensive study on this technique was

undertaken by Cotter (2010). The suction applied within thefoundation produces two phenom-

ena: seepage flows around and inside the bucket and differential pressure acting on the lid. In

soils with low permeability (fine grained), the decisive effect is the differential pressure. In

soils with high permeability, the action of the seepage flowsis predominant. Seepage flows are

directed towards the lid within the soil plug and towards theskirt tip in the soil surrounding

the foundation. In addition, the seepage flows reduce significantly the end bearing resistance of

the skirt tip. Evidence of this effect is given for instance in Bye et al. (1995) and Tjelta (1994)

where, previous to the installation of the Europipe 16/11-ERiser jacket, field tests on a steel

cylinder were performed.

As underlined by Tjelta (2014), many issues could be encountered during the installation of

bucket foundations. According to Tjelta (2014), possible problems during the installation

phases could relate to soil limitations, structural limitations or pumping system limitations.

Soil limitations are mainly two: soil plug heave and piping channels. When the under pressure

is applied to permeable soils, piping channels will occur ifthe critical hydraulic gradient is

exceeded. Soil plug heave, instead, may occur in fine grainedsoils if the under pressure is

larger than the resistance of the soil plug. A simple method to estimate the maximum under

pressure allowed before soil plug heave, is described in Randolph and Gourvenec (2011).

Structural limitations concern strength of the top plate, buckling of the shell and buckling of the

top plate. The effect of geometric imperfections on buckling is analysed in Madsen et al. (2013).

In Figure 9 a picture of the large-scale installation tests conducted in 2012 in Frederikshavn
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Figure 9: Field tests of the installation of a bucket foundation with d = 4 m andD = 4 m,
Frederikshavn 2012. On the right-hand side the pumping system

is illustrated. Note the multi-shield (anti-buckling) shape of the cross section as opposed to

standard circular cross sections. Pumping system-relatedissues can be cavitation of the water

and pump leakages. To avoid cavitation, the suction applieddoes not have to exceed the vapour

pressure of the water. The deeper the water the more pressurecan be applied before breaching

the vapour pressure limit.

Small-scale and real-scale studies addressing installation issues are numerous in literature (Sen-

pere and Auvergne, 1982; Rusaas et al., 1995; Alhayari, 1998; Solhjell et al., 1998; Chen and

Randolph, 2004; Tran et al., 2004; Houlsby et al., 2005). A complete procedure for suction-

assisted penetration design is described, and proved against real measurement and small-scale

tests, in Houlsby and Byrne (2005). Villalobos (2006) examines the penetration of small-scale

bucket pointing out the differences in bearing behaviour between jacked and suction installation.

For bucket foundations the installation phases are important parts of the design process. Scrupu-

lous installation analysis should be conducted for every new site. Besides, to mitigate the risk,

small-scale or large-scale experiments could be considered. A picture of one field test of a
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Figure 10: Field tests of installation and bearing capacityof a bucket foundation withd = 2 m
andD = 2 m, Frederikshavn 2002

bucket foundation with diameter 2 m and embedded length 2 m isdepicted in Figure 10.

4.2 Bucket installation by pushing

Although penetration by pushing (or jacking) has relatively little applicability to real cases,

it is of interest to analyse this phenomenon in the context ofsmall-scale experimental tests.

Test C41, presented in Foglia and Ibsen (2014a), is the representative experiment used for the

installation comparisons. The bucket used in the test hasD = 300 mm,d = 300 mm and wall

thickness,t = 1.5 mm.

A straightforward interpretation of the total installation force of the physical experiments,Vi, is

possible by using a simple linear model. The contribution ofthe skirt tip end bearing,Vend, can

be simply superimposed to that of the internal and external frictional resistance acting on the
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skirt,Vskirt, as follows:

Vi = Vend+ Vskirt (20)

The skirt tip end bearing resistance can be calculated by assuming a footing of width equal to

the skirt thicknesst, and length equal toπ(D +Di)/2:

Vend = tπ
(D +Di)

2
(0.5tNγγ

′ + hγ′Nq) (21)

whereh is the given penetration depth andDi is the internal diameter of the bucket foundation.

Villalobos (2006) calculatedVend considering the penetration of two corps into the sand:

Vend = tπ
(D +Di)

2
(tNγγ

′ + 2hγ′Nq) (22)

The difference between the two approaches for the foundation used in test C41, is shown in

Figure 11. The plot shows that the choice of how to calculateVend is not negligible. Houlsby

and Byrne (2005) also adopted equation 21.Vskirt can be calculated by summing the internal

and the external shear resistance acting on the skirt wall:

Vskirt = Diπ

∫ h

0

τidz +Dπ

∫ h

0

τodz (23)

The shear stresses are calculated as:

τi = τo = Kσ′

vtan(δ) (24)

whereσ′

v is the vertical earth pressure at the given penetration depth, δ is the interface friction

angle taken equal toφ′/3 andK is the passive coefficient of horizontal earth pressure calculated

according to Villalobos (2006):

K =
2− cos2φ′

cos2φ′
(25)

This value ofK is derived taking into account the soil arching effect caused by the shear stresses

acting on the surface of a skirt penetrating into the soil.
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Figure 11: Comparison of the contributions toVi. Calculations performed withφ′ = 40◦

In Figure 11 it can be seen that, as expected, the frictional force caused by the shear stresses

on the skirt surface has a smaller contribution to the penetration resistance than the skirt tip

end bearing. Besides, it should be pointed out that the higher the friction angle the larger the

discrepancy betweenVendandVskirt. The installation curve of test C41 against three linear model

curves, are shown in Figure 12. The linear model, with an input friction angle ofφ′ = 44, gives

a good estimation until 100 mm of penetration. In general though, the linear model is not able

to predict the experimental observations.

Two more advanced non-linear theoretical methods to obtainthe jacked penetration curves of

bucket foundations are suggested in Houlsby and Byrne (2005). These models have been proven

valid by a number of studies and they embrace the effect of increase in stresses due to the

frictional forces acting on the skirt during penetration. The first model considers a constant

increment of stresses with depth. The second model allows the stresses to vary linearly with
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Figure 12: Linear estimation of the penetration resistancewith three different friction angles
against experimental curve

depth. In the following, these two models are referred to as:non-linear model 1 and non-linear

model 2. Further details on the models are not mentioned here. The reader should refer to

Houlsby and Byrne (2005) and Villalobos (2006) for theoretical explanations and numerical

implementation

Senders (2008) investigated the behaviour of bucket foundations supporting tripods. He con-

ducted centrifuge tests addressing installation and vertical cyclic response of the foundations.

Senders (2008) implemented the second non-linear method ofHoulsby and Byrne (2005) to

interpret centrifuge experimental data. He concluded thatwith adequate input parameters the

method is able to predict the experimental behaviour.

Cotter (2010) conducted numerous installation tests on three different soil samples. He mainly

investigated the installation process with respect to the suction needed for the penetration and
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Figure 13: Non-linear model 1 against experimental results

to the skirt tip injection for steering the bucket into the ground. Cotter (2010) chose the second

non-linear method of Houlsby and Byrne (2005) to predict theexperimental data during self-

penetration of the bucket foundation. Also Villalobos (2006) successfully implemented the

approaches presented in Houlsby and Byrne (2005). The non-linear models are plotted together

with the installation curve of test C41 in Figures 13 and 14. Simulations for several values of

φ′ were run. In the figures the best result achieved for one valueof the friction angle is shown.

The calculation factors chosen for the simulations were those suggested by the previous studies

mentioned above:m = 2 (for non-linear model 1),f1 = 1 andf2 = 2 (for non-linear model 2).

Note, in Figure 14, a discontinuity in correspondence toh = 150 mm owing to a change in the

solutions of non-linear model 2 whenh ≥ Di/2f1.

The non-linear model 2 interprets the experimental trend better than the linear model. However,

non-linear model 1 seems to fit best the experimental observations. Of course, by choosing
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Figure 14: Non-linear model 2 against experimental results

another set of input parameters (K, δ, f1 andf2) non-linear model 1 might be able to better

interpret the experimental results.

5 Conclusions

The bearing capacity of a flat footing is estimated with sevendifferent methods. The formula

given by DNV (2014) seems to give the most conservative estimation. Two methods to estimate

the bearing capacity of bucket foundations are compared against experimental results. The

method proposed by Villalobos (2006) predicts well the experimental data for a very high value

of the friction angle. The method proposed by Larsen (2008),with a friction angle similar to the

peak friction angle, predicts one experimental point but seems to overestimate the trend shown

by the experimental data.

Interaction diagrams for flat footings are presented and evaluated against classic methods. The
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bearing capacity calculated with DNV (2014) gives the smallest prediction. However, in the

relevant region for offshore wind turbines, full agreementbetween the methods is found. Also

for skirted foundations, interaction diagrams and classicapproaches are compared. Similarly to

what observed for flat footings, the largest discrepancy between classic methods and interaction

diagrams is seen out of the relevant region for offshore windturbines. The failure envelope de-

rived by Ibsen et al. (2014) is shown to overestimate the experimental results at smallV/Vs. The

tensile parametert0 can however be modified to obtain a better description of the experimen-

tal points. The interaction diagram for bucket foundationsproposed by Achmus et al. (2013a)

is proven to be reasonably in agreement with experimentallyderived envelopes and appears

thereby to be a powerful preliminary design tool.

Three methods to estimate the jacked installation of bucketfoundations are adopted to interpret

one experimental curve. As expected, the non-linear modelsshow better prediction abilities

than the linear model.

From the literature review of the bucket bearing behaviour it is clear that a large amount of

knowledge has been collected on bucket foundation supporting floating structures and sub-

structures with multiple foundations. Only recently, the research focus has turned to monopod

bucket foundation.

The authors would like to emphasize that real-scale installation of bucket foundations has been

proven over the last 30 years in many soil conditions. Therefore, this design and construction

phase should not be an issue any longer. More rational research directions include the behaviour

of buckets under predominant overturning moment and the dynamic properties of the founda-

tion. Finally, the monopod bucket foundation concept will have proper industry recognition

once its bearing behaviour will be proven in real offshore environment.
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Nomenclature

A area of the foundation
A′ effective area of the foundation
D foundation width (diameter for circular cross section)
Di internal diameter of bucket foundations
Dr relative density
H horizontal load
H ′ normalised horizontal load
H ′

u normalised ultimate horizontal load
K coefficient of lateral earth pressure
L length of the foundation
M moment
M ′ normalised moment
M ′

u normalised ultimate moment
Nc, Nq, Nγ bearing capacity factors
R outer radius of the bucket
V vertical load
Vu ultimate vertical load of flat footings
Vs ultimate vertical load of skirted foundations
Vf vertical contribution of the frictional resistance of the skirt
Vgu ultimate vertical load of flat footings under general loading
Vgs ultimate vertical load of skirted foundations under general loading
Vi penetration resistance during jacked installation
Vend contribution of tip end bearing to the installation resistance
Vskirt contribution of the skirt to the installation resistance
V0 preconsolidation vertical load
c cohesion
d′ depth pf excavation
d length of the skirt
dref reference skirt length
dc, dq, dγ depth factors
e load eccentricity
h penetration depth
h0, m0, t0, e0 dimensionless parameters of the failure surface
iq, iγ load inclination factors
m, f1, f2 dimensionless parameters of the non linear installation models
q surcharge
qu ultimate bearing capacity of flat footings
sc, sq, sγ shape factors
t thickness of the skirt
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β1, β2, β12 dimensionless parameters of the failure surface
δ interface friction angle
φ′ effective soil friction angle
γ′ effective unit weight of the soil
θ angle betweenH andV
τo shear stress on the outer skirt
τi shear stress on the inner skirt
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sands.Géotechnique51, No. 5, 463-466

Byrne, B. W. and Houlsby, G. T. (2002). Experimental investigations of response of suction

caissons to transient vertical loading.Journal of Geotechnical and Geoenvironmental Engi-

31



neering128, No. 11, 926-939

Cassidy, M. J., Randolph, M. F. and Byrne, B. W. (2006). A plasticity model describing caisson

behaviour in clay.Applied Ocean Research28, 345-358

CEN (2004).Eurocode 7. European committee for standardisation

Chen, W. and Randolph, M. (2004). Radial stress changes around caissons installed in clay by

jacking and by suction. InProceedings of the International Ocean and Polar Engineering

Conference (ISOPE), Toulon, Vol. 2, 493-499

Clukey, E. C., Morrison, M. J., Garnier, J. and Corté, J. F. (1995). The response of suction cais-

sons in normally consolidated clays to cyclic TLP loading conditions.Offshore Technology

Conference (OTC), Houston, paper 7796

Cotter, O. (2010).The installation of suction caisson foundations for offshore renewable energy

structures. Ph.D. thesis, Oxford University

Cremer, C., Pecker, A. and Davenne, L. (2001). Cyclic macro-element for soilstructure interac-

tion: material and geometrical non-linearities.Journal of Earthquake Engineering6, No. 25,

1257-1284

DNV (2014).Design of Offshore Wind Turbine Structures. Det Norske Veritas, Offshore stan-

dard DNV-OS-J101

El-Gharbawy, S. and Olson, R. (1998). The pullout capacity of suction caisson foundations

for tension leg platforms. InProceedings of the International Ocean and Polar Engineering

Conference (ISOPE),Montreal, Vol. 1, 531-536

Fang, H.-Y. (1991).Foundation Engineering Handbook. Springer

Feld, T. (2001).Suction buckets, a new innovative foundation concept, applied to offshore wind

turbines. Ph.D. thesis, Aalborg University

Foglia, A. and Ibsen, L. B. (2014a).Laboratory experiments of bucket foundations under cyclic

loading. DCE Technical report No. 177, Department of Civil Engineering, Aalborg Univer-

32



sity

Foglia, A. and Ibsen, L. B. (2014b).Monopod bucket foundations under cyclic lateral loading.

DCE Technical Memorandum No. 49, Department of Civil Engineering, Aalborg University

Foglia, A., Govoni, L., Gottardi, G. and Ibsen, L. B. (2014).Investigations on macro-element

modelling of bucket foundations for offshore wind turbines. DCE Technical Memorandum

No. 48, Department of Civil Engineering, Aalborg University

Goodman, L. J., Lee, C. N. and Walker, F. J. (1961). The feasibility of vacuum anchorage in
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ABSTRACT  
 
This study aims at investigating the behaviour of monopod bucket 
foundations through a 1g physical model. The foundations are installed 
in dense water-saturated sand and are subjected to lateral load. The 
response of bucket foundations in different drainage conditions is 
explored by running tests with different loading rates. Particular focus 
is given to the response of the foundation under transient loading 
(simulating a 50 year wave or emergency stop of a wind turbine). 
Important knowledge on the pore pressure development within and 
around the foundation during loading is obtained. 
 
KEY WORDS:  Bucket foundation; dense sand; loading rate; rapid 
loading. 
 
INTRODUCTION  
 
Bucket foundations 
 
Offshore wind farms will play a significant part in the European energy 
market of the coming years. Today, the main challenge faced by the 
offshore wind market is to reduce the costs of turbine support 
structures. The monopod bucket foundation is one possible solution to 
this problem. 
This kind of sub-structure is made of steel and does not need any 
transition piece between the foundation and the turbine tower. The 
foundation is an upside-down bucket with diameter, D, and length of 
the skirt, d. A typical real-scale foundation has a diameter of 12-18 m 
and an embedment ratio, d/D, of 0.5-1.  
Conventional foundation types such as gravity based foundations, 
monopiles and spread-out foundations have been successfully used the 
last ten years in spite of high manufacturing and installation costs.  
The monopod bucket foundation is installed by suction assisted 
penetration, and, given proper soil conditions and water depths, has the 
potential to become a cost-effective foundation for offshore wind 
turbines.  
The bucket foundation (also referred as to suction caisson or suction 
bucket) has been used several times as embedded shallow foundation 
for offshore oil and gas facilities. Tjelta (1995) is an interesting 
document on the issues encountered when installing a 4 legs jacket 
structure supported by bucket foundations.   
The loading conditions of offshore wind turbines differ considerably 
from those of oil and gas platforms. New design drivers are therefore 

needed, and, throughout the last decade, a number of studies have been 
conducted to explore the behavioural pattern of response of bucket 
foundations for offshore wind turbines (Villalobos, 2009; Larsen, 
2008). The first bucket foundation supporting a wind turbine was 
installed in 2002 a few meters offshore in Frederikshavn, Denmark 
(Ibsen, 2008).  
The design criteria for bucket foundations are based on those for 
shallow foundations. Typically, although offshore environment is 
characterized by partially drained conditions, the bucket foundation 
design is driven by the drained capacity.  
Sea states include wind waves and swells which act on offshore 
structures as a cyclic series of fluctuating pressure. In shallow water 
depth, breaking waves can heavily impact the structure in a very short 
time frame. Within the in-service design situation, extreme events such 
as freak waves (Haver and Andersen 2000) and emergency stops of the 
rotor, have to be considered. Designing a bucket foundation to 
withstand extreme events by adopting the drained parameters may be 
too conservative. This article addresses this issue by exploring the 
response of the bucket foundation in different drainage conditions. The 
method used is a 1g small-scale physical model.  
 
Transient loading 
 
According to Byrne (2000), a transient load can be defined as that load 
whose loading rate has an influence on the soil/structure interaction. 
This can be the case for both monotonic and cyclic loading. 
Theoretically, the loading rate influences the structure behaviour only 
in case the soil is saturated with a fluid. Offshore soil conditions are 
always water-saturated, however, relatively few experimental studies 
have been conducted on the loading rate dependency of offshore 
shallow foundations.   
A fundamental work on transient loading is Vesić et al. (1965). Several 
vertical loading tests of footings on dry and saturated sand were 
conducted at different loading rates, and, the bearing capacity found 
was compared to the static one. Rather surprisingly they found that in 
both cases the bearing capacity decreased for displacement rates in the 
range 0.003-0.3 mm/s. Instead, for displacement velocities faster than 3 
mm/s the dry samples reached the static ultimate capacity whereas the 
saturated samples presented significantly increased ultimate resistance.  
Mangal and Houlsby (1999) demonstrated that for shallow foundations 
the interaction diagrams for combined loading are transient-dependent. 
Houlsby et al. (2005) found that the tensile capacity of bucket 
foundations depends markedly on the pulling out rate.  
Byrne and Houlsby (2002) and Byrne and Houlsby (2004) run several 
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cyclic loading tests in oil saturated sand and found that the loading rate 
has an impact on the bucket behaviour only at small displacements. 
Rapid loading element tests were conducted for instance by Ibsen and 
Lade (1998) where samples were brought to cavitation-failure.  
From the mentioned literature it is clear that a transient effect, even 
though small, exists and that is generally beneficial to the bearing 
capacity of a shallow foundation. 
The reason for this effect is quite well expressed in studies such as Bye 
et al. (1995) and Vesić et al. (1965). When loading rates are large 
enough, the water does not have time to migrate through the pores of 
the soil and transient undrained condition occurs. Fully undrained 
conditions would not allow any volumetric change and, in dense sand, 
this would cause negative pore water pressure (suction, or under 
pressure). At this state, as long as the water flow attempts to reestablish 
the pressure equilibrium, the bearing capacity increases dramatically. In 
some cases it is even likely that the ultimate strength is dictated by the 
cavitation of the pore fluid.  
This article intends to give an insight into the response of bucket 
foundation structures when subjected to single extreme events 
characterized by a high loading rate. This is accomplished by testing a 
small-scale bucket foundation under lateral loading applied at different 
velocities. The study presents the results of 8 tests. In particular, the 
case of rapid loading is focused on. The most important model 
innovation is the possibility of tracing the patterns of pore pressure 
development inside and along the skirt by means of 8 pore pressure 
transducers. A scaling law for the pore pressure distribution around and 
inside the foundation is proposed and important information on the 
drainage conditions during loading are achieved. The patterns of 
displacement as well as the load-displacement curves are presented and 
commented upon.  
 
A  SCALING LAW FOR PORE PRESSURE DEVELOPMENT 
DURING TRANSIENT LOADING  
 
Single gravity physical models can give qualitative information on 
geotechnical problems. Expressing the quantities involved with non-
dimensional groups is fundamental to generalize results and to identify 
the governing variables of a given phenomenon. In this study we are 
primarily interested in the pore pressure, ∆p, developed underneath and 
around a bucket foundation, under lateral loading. A simple way of 
interpreting the results of this experimental campaign is proposed in the 
following.  
The response of a geotechnical structure is the result of the interaction 
between soil, foundation and environmental loading. ∆p [FL-2] is 
expected to be a function of the displacement rate, v[LT-1], the soil 
permeability, k [LT-1], the drainage length, L [L] and the unit weight of 
the pore fluid, w [FL-3]: 
 

 wLvkfp ,,,                                                                           (1) 

 
The drainage length is assumed to be proportional to the skirt length 
and diameter: 
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A non-dimensional pore pressure development can thus be expressed 
by a dimensionless group as follows: 
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Figure 1. Drawing of the test setup. Tank, instrumented bucket, 
hydraulic piston and data sampling system.  
 

 
 
Figure 2. Picture of the test setup. Displacement, pore pressure and 
force transducers. 
 
Table 1. Properties of Aalborg University Sand No. 1.   
                                                                                                                                   

Property Value 
d50, [mm] 0.14 
Cu = d60 / d10 1.78 
Specific grain density ds 2.64 
Maximum void ratio emin 0.86 
Minumum void ratio emin 0.55 

 
Where g is an unknown function which can be found by conducting 
small-scale experiments.  
Obviously, the pore pressure measured in laboratory tests is much 
smaller than that developed in full-scale. However, if the dimensional 
analysis is successful, the non-dimensional pore water pressure pattern 
should resemble the one of full-scale systems. 
 
EXPERIMENTAL SETUP 
 
The testing equipment is sketched in Fig.1. It consists of a pressure 
tank, an instrumented foundation, a hydraulic piston, a data logger, a 
control system and a computer. The pressure tank has a diameter of 
2100 mm and a height of 2166 mm. The tank contains a soil layer of 
730 mm which lies over a drainage layer of 90 mm. The soil is Aalborg 
University sand No. 1, its properties are listed in Table 1. A 
permeability study of the sand used was carried out by Sjelmo (2012). 
In that study, an expression of the permeability, as a function of the 
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Figure 3. Vertical and horizontal section of the bucket foundation with 
position of the pore pressure transducers.  Horizontal displacement 
applied from left to right. 
 
Table 2. Test program. Bucket A has d = 0.25 m and D = 0.5; bucket B 
has d = 0.5 m and D = 0.5.   
 

Test  
number 

Bucket 
type 

Displacement rate 
v [mm/s] 

1 A 0.01 
2 A 0.1 
3 A 1.0 
4 A 10.0 
5 B 0.01 
7 B 0.1 
8 B 1.0 
9 B 10.0 

 
void ratio, was derived. 
Two bucket foundations were used in the experiments. Bucket A has D  
= 500 mm and d/D = 0.5 while bucket B has D = 500 mm and d/D = 1.  
The foundations were instrumented with 8 pore pressure transducers, 
and five displacement transducers. Two displacement transducers were 
linear variable differential transformers (LVDTs). The LVDTs were 
placed vertically on the lid. The remaining three displacement 
transducers were mounted on an independent frame and horizontally 
connected to the structure. A picture of the instrumented foundation 
after a test is illustrated in Fig. 2. A drawing that shows the position of 
the pore pressure transducers is depicted in Fig. 3.    
The displacement transducers recordings are corrected and computed to 
give rotational displacement, , vertical displacement, w, and horizontal 
displacement, u. The sign convention used is that put forward by 
Butterfield et al. (1997). The load reference point is the center of the 
bucket lid, on the soil side.  
On the lid a vertical beam was mounted. The beam was connected to 
the hydraulic piston with a steel cable with an eccentricity of 480 mm 
from the bucket lid. To measure the lateral force, F, caused by the 
applied displacement, a load cell was fit between the cable and the 
piston.  
 
TEST DESCRIPTION AND TESTING PROGRAM 
 
Before each test the soil sample was prepared in a systematic manner to 
ensure uniform and consistent conditions. Firstly, water was let in the 
tank by applying an upward gradient of 0.9. By doing this, the sample 
was loosened up and brought to zero-condition. Secondly, the sample 
was mechanically vibrated to recreate dense conditions. Thirdly, a 
series of small-scale cone penetration tests (CPTs) was conducted with 
three purposes: test the soil uniformity, ensure the test repeatability and 
calculate the soil parameters. The relative density was found ranging 
from 78 % to 89 % with an average of 84 %.  
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Figure 4. Force against applied displacement of bucket B.  
 
The foundation was driven into the soil by means of a hydraulic jack. 
To prevent pressure within the bucket to occur, one air valve on the lid 
was open during penetration and sealed afterwards. Once the 
installation was complete, the piston was connected to the loading 
beam and the pressure inside the tank was set to 200 kPa. Such a choice 
was made to ensure that the water pressure did not exceed the 
cavitation limit at any time during the test. 
The test was carried out by applying a designated displacement to the 
loading piston and thereby to the point of load application. The 
designated displacement of the piston was 40 mm. In each test the 
displacement velocity was set as listed in Table 2. The horizontal 
displacement transducer mounted at the same height of the load 
application point measured the exact displacement experienced by the 
structure during the test, namely the applied displacement. The 
displacement measured by this transducer, h1, indicates whether or not 
the test was properly controlled. The deflection due to the bending 
moment of the vertical bar is neglected.   
During the test, the foundation was subjected to monotonically 
increasing horizontal and moment loading and constant vertical loading 
(only the weight of the foundation and equipment). 
The non-dimensional group normally used to represent the vertical load 
of a foundation is V / (’D3), where ’ is the effective unit weight of the 
soil and V the vertical load. This ratio equals 0.43 and 0.54 respectively 
for bucket A and bucket B. Nowadays a typical wind turbine structure 
would have this ratio between 0.1 and 1. In contrast, a bucket 
foundation for oil and gas facilities would have in general V / (’D3) > 
3 (Randolph and Gourvenec, 2011). This clarifies also why offshore 
wind turbine structures need other design drivers than those 
traditionally used for offshore oil and gas platforms.  
 
PRESENTATION OF RESULTS 
 
Bearing behaviour and displacement trajectories 
 
An essential graph to understand the experiments is illustrated in Fig. 4 
for bucket B, and, in Fig. 5, for bucket A. These figures show the 
horizontal force exerted by the piston against h1. It can be observed 
that none of the tests reaches the 40 mm of horizontal displacement the 
actuator was designed for. This is likely to be due to the limited 
capacity of the hydraulic piston to exert large forces with fast loading 
rate. In other words, the designated displacement could not be 
mobilised and the tests cannot be entirely compared to each other. 
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Figure 5. Force against applied displacement of bucket A. 
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Figure 6. Magnified view of Fig. 4. 
 
However, it is noticeable that all the curves reach 20 mm of horizontal 
displacement, and, therefore, the tests can be examined with some 
restrictions. Seemingly, the experiments were not fully controllable 
after the first 20 mm of horizontal displacement. The presentation and 
the discussion of the results will be limited only to the comparable part 
of the experiments. Note that most of the following graphs will be 
plotted with the applied displacement, h1, on the x-axis.  
Not unexpectedly, Figs. 4~5 indicate that the loading rate has an effect 
on the lateral response of the foundations tested. Every test presents a 
dramatic reduction of the stiffness after a few millimetres of 
displacement applied (from 1.5 to 2.5 mm). This stiffness reduction is 
pronounced in tests 1, 2, 3, 5, 7 and 8. For both buckets, it is impressive 
how the fastest tests do not show any stiffness reduction after the very 
first millimetres of displacement. Furthermore, it is worth noting that 
the foundation, at the end of test 4, is subjected to a force which is four-
fold that seen in test 3. The same difference was expected also between 
tests 8 and 9, though much less displacement could be applied to them.  
It is of great interest to consider the initial stiffness since that is the part 
of the load-displacement curve that is relevant for real environmental 
loading. A magnified view of the initial stiffness region of the h1-F 
graph for bucket B is illustrated in Fig. 6. The graph shows that the 
loading rate does not seem to have relevant influence on the initial 
stiffness.  
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Figure 7. Vertical displacement of bucket A against the applied 
displacement. 
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Figure 8. Rotational displacement of bucket A against the applied 
displacement. 
 
The displacement trajectories presented in the following show curves 
that refer to bucket A. Bucket B was found to behave qualitatively in 
the same manner. The analysis of the pattern of displacements reveals 
that only the vertical displacement, w, is influenced by the loading rate. 
In Fig. 7, the h1-w curve, is illustrated. w is largest for the slowest test, 
test 1, and decreases consistently for increasing loading rates. The plot 
of the rotational displacement, , against h1 is depicted in Fig. 8. No 
significant discrepancy is found between the curves. The same trend 
was shown by the horizontal displacement, u.   
 
Pore pressure 
 
According to the loading rate the pore pressure pattern changes 
significantly among the tests. A typical record of a pore pressure 
transducer against the actuator movement is illustrated in Fig. 9. For 
clarity, the pore pressure response of tests 4 and 9, is separately plotted 
in Figs. 10~11. It is immediately apparent that in the tests conducted 
with the smallest loading rate the pore pressure is negligible for both 
buckets. Note that the curves of tests 1 and 5 cannot be distinguished 
since they are superimposed. For tests 2, 7, 3 and 8, the load is partly 
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Figure 9. Pore pressure measurements of pp 5. 
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Figure 10. Pore pressure measurements of pp 5 for the tests with largest 
loading rate. 
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Figure 11. Pore pressure measurements of pp 8 for the tests with largest 
loading rate. 
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Figure 12. Pore pressure profile along the skirt and underneath the lid 
of bucket B. Horizontal displacement applied from left to right. 
 
transmitted to the water and the pore pressures are larger for bucket B. 
This can be attributed to an increase in the drainage path due to a 
longer skirt (Eq. 3). Also, it is singular how in the first 2.5 mm of 
applied displacement, the pore pressure recorded underneath bucket A 
was larger than that of bucket B (see Fig. 9 test 3 against 8 and 2 
against 7).    
Considering now the fastest tests, namely tests 4 and 9, it appears that 
for both foundations the pore pressure develops differently to the other 
tests. Fig 10 shows the pore pressure of the skirt tip (pp5) while Fig 11 
shows the pore pressure of the centre of the bucket lid (pp8). The 
transducers placed on the lid, pp 2, pp 8 and pp 7 show a larger 
pressure for bucket B in the beginning which is matched by that of 
bucket A during the test. Instead, the external transducers along the 
skirt, pp 4, pp 5 and pp 6, follow the same trend in both buckets with 
the pore pressure underneath bucket A slightly greater. More 
importantly, for both buckets, the tests conducted at the fastest 
displacement rate present no flattening part. The pore pressure for these 
tests seems to increase indefinitely (as the load does) and thus the 
condition within the tests can be said to be substantially undrained. 
A sketch of the pore pressure profile is illustrated in Fig. 12. Across the 
diameter the pore fluid response seems to have equal magnitude. Rather 
curiously, a discontinuity in the pore pressure profile underneath the 
foundation was seen for the fastest tests in both buckets. A transducer 
failure is to be excluded since the readings of the two buckets were 
recorded by different transducers. To be excluded is also a non-uniform 
soil condition. Although some doubts remain on the origin of this 
phenomenon, it is most likely a consequence of the drainage condition.  
 
INTERPRETATION OF THE RESULTS 
 
For offshore wind energy converters, one of the conditions for which 
the serviceability limit is breached, is the excessive tilt of the structure 
(DNV, 2011). Excessive tilt leads to a change in the acting forces that 
might compromise the wind generator performance or cause 
degenerative settlements. An attempt to scale up the rotation of small-
scale experiment of bucket foundations was made by Kelly et al. 
(2006). When applying such scaling to the tests presented here, the 
rotation measured in small-scale, S, is approximately the 20 % of the 
large-scale rotation, L, of a standard foundation. Now, considering a 
large-scale tilting limit  LT = 0.5⁰ the small-scale limit would be ST =  
0.1⁰ (according to Kelly et al., 2006). By examining Fig. 8, this 
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corresponds to approximately h1 = 2 mm. It can be observed that, by 
setting this value of ST, the loading rate does not influence markedly 
the behaviour of the two buckets tested (cf. Figs. 4~6). It should also be 
emphasized that for bucket B, the loading rate independency holds for a 
larger displacement (see Fig. 4 against Fig. 5).  
Furthermore, test 1 and 2 present exactly the same H-h1 curve but a 
fairly dissimilar trend of w. This means that even though the loading 
rate produces no effects on the load-displacement behaviour, it may 
affect the trajectory of the vertical displacement.  
Turning now to the interpretation of the pore pressure, the 
dimensionless pore pressure measured inside the bucket against the 
dimensionless group derived in Eq. 3 is plotted in Fig. 13. The values 
of ∆p / (wD) in circles and crosses refer to all the tests performed and 
to two pore pressure transducers. Even though the features of the 
experiments change considerably, this representation of the results 
gives a fairly consistent distribution of ∆p / (wD). This means that the 
proposed non-dimensional groups is a good means by which the pore 
pressure development of different bucket foundations, subjected to 
various loading rate, may be represented.  
A power law in the form: 
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                                                             (4) 

 
is fitted to the experimental points as a preliminary interpretation of the 
results. The parameters of Eq. 4 may be properly calibrated by 
including all the pore pressure readings and by conducting new tests 
with buckets of various sizes. These findings could be used to validate 
numerical results of water pressure development of a bucket foundation 
under lateral monotonic loading. 
 
CONCLUSIONS AND FUTURE WORK 
 
From the tests result it is evident that a bucket foundation under fast 
monotonic loading has enhanced bearing capacity at large 
displacements. A striking finding of this study, though not new, is that 
the loading rate produces no marked influence on the initial stiffness.  
As demonstrated in the results interpretation, within the serviceability 
design, the loading rate effect might be negligible. Consequently, the 
effect of the loading rate should be considered only when designing a 
foundation to withstand extreme environmental conditions.  
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Figure 13. Experimental data plotted in non-dimensional form. Bucket 
A and B, pp 5 and 8, four different loading rates.   
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Figure 14. Experimental data and fitting function.   
 
To interpret the pore pressure development, a simple dimensionless 
group was derived as a function of drainage length, loading rate and 
soil permeability. The simple interpretation of the pore pressure 
development has been shown to be somewhat successful. Some 
unexpected results from the pore pressure, such as the discontinuity in 
the internal pressure profile, remain unclear.  
Scaling laws that address drainage patterns should be more deeply 
investigated and large-scale tests shall be performed in order to prove 
whether the patterns found in small-scale resemble those of large-scale 
foundations. It is deemed that by improving both the experimental rig 
and the comprehension of the model, extraordinary results may be 
obtained. The actuator capacity should be enhanced to cope with large 
foundation capacities encountered at fast loading rate. Besides, to have 
a full picture of the pore pressure distribution, pore pressure transducers 
should be placed also on the bucket front, and not only on the back. An 
extensive testing program undertaken with an improved experimental 
setup will be essential to complete the observations outlined in this 
study.    
 
ACKNOWLEDGEMENTS 
 
The experiments presented in this paper were carried out in cooperation 
with Mr. Åsmund Sjelmo. His contribution to this study is 
acknowledged. 
 
REFERENCES 
 
Bye A, Erbrich C, Rognlien B and Tjelta TI (1995). “Geotechnical design 

of bucket foundations,” Proc. 27th Annual Offshore Technology 
Conference OTC, Huston, Texas, pp 869-883. 

Byrne MW (2000). “Investigations of suction caissons in dense sand,” 
PhD Thesis, Oxford University. 

Byrne BW and Houlsby GT (2002). “Experimental investigations of the 
response of suction caissons to transient vertical loading,” Journal of 
Geotechnical and Geoenvironmental Engineering ASCE, Vol. 11, pp 
926-939. 

Byrne BW and Houlsby GT (2004). “Experimental investigations of the 
response of suction caissons to transient combined loading,” Journal of 
Geotechnical and Geoenvironmental Engineering ASCE, Vol. 3, pp 
240-253. 

Butterfield R, Houlsby GT, and Gottardi G (1997). “Standardized sign 
conventions and notation for generally loaded foundations,” 



7 
 

Geotechnique, Vol 47, Nr. 2, pp 79-90. 
DNV (2011). Offshore standard: Design of offshore wind turbine 

structures, Det Norske Veritas, DNV-OS-J101.  
Haver S and Andersen OJ (2000). “Freak waves: rare realizations of a 

typical population or typical realizations of a rare population?,” Proc. 
10th International Offshore and Polar Engineering Conference, ISOPE 
Seattle, USA, pp 123-130. 

Houlsby GT, Kelly RB and Byrne BW (2005). “The tensile capacity of 
suction caissons in sand under rapid loading” Proc. Frontiers in 
Offshore Geotechnics, ISFOG, Taylor and Francis Group, pp 405-410. 

Ibsen LB (2008). “Implementation of a new foundations concept for 
offshore wind farm,” Nordic Geotechnical meeting, Sandefjord, 
Norway. 

Ibsen LB and Lade PV (1998). “The strength and deformation 
characteristics of sand beneath vertical breakwaters subjected to wave 
loading,” Aalborg University Geotechnical Engineering Papers, Soil 
Mechanics Paper No. 23. 

Kelly RB, Houlsby GT and Byrne BW (2006). “A comparison of field 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

and laboratory tests of caisson foundations in sand and clay,” 
Geotechnique, Vol 56, Nr. 9, pp 617-626. 

Larsen KA (2008). “Static behaviour of bucket foundations,” PhD 
Thesis, Aalborg University. 

Mangal JK and Houlsby GT (1999). “Partially-drained loading of 
shallow foundations on sand,” Proc. 31st Annual Offshore Technology 
Conference OTC, Huston, Texas.  

Randolph M and Gourvenec S (2011). “Offshore geotechnical 
engineering,” Spon Press. 

Sjelmo A (2012). “Soil-structure interaction in cohesionless soils due to 
monotonic loading,” MSc Thesis, Aalborg University. 

Tjelta TI (1995). “Geotechnical experience from the installation of the 
Europipe jacket with bucket foundations,” Proc. 27th Annual Offshore 
Technology Conference OTC, Huston, Texas, pp 897-905. 

Vesić AS, Banks DC and Woodard JM (1965). “An experimental study 
of dynamic bearing capacity of footings on sand” Proc. 6th Int. Conf. 
on Soil Mech. And Foundation Eng., Montreal, 2 pp 209-213.  

Villalobos FA (2006). “Model testing of foundations for offshore wind    
turbines,” PhD Thesis, Oxford University. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 





Paper III

Title:

Monopod bucket foundations under cyclic lateral loading

Authors:

Foglia, A. and Ibsen, L. B.

Year of publication:

2014

Published in:

DCE Technical Memorandum No. 49, Department of Civil Engineering, Aalborg
University.

A journal publication based on this Technical Memorandum can be found under:

Foglia, A. and Ibsen, L. B. (2016). Monopod Bucket Foundations Under Cyclic
Lateral Loading. International Journal of Offshore and Polar Engineering 26, No.
2.

Number of pages:

16





1 
 

Monopod bucket foundations under cyclic lateral loading 

 

Abstract  

The monopod bucket foundation can be a cost-reducing sub-structure for offshore wind turbines. To avoid 

problems during the turbine operation, the long-term effect of cyclic loading must be considered in the design 

of the foundation. In this paper a 1g testing rig is adopted to extend the knowledge on bucket foundations 

under lateral cyclic loading. The test setup is described in detail and a comprehensive experimental 

campaign is presented. The foundation is subjected to cyclic overturning moment, cyclic horizontal loading 

and constant vertical loading, acting on the same plane for thousands of cycles. Three buckets with different 

embedment ratios are tested. The data interpretation is focused on the long-term permanent rotation of the 

foundation and, particularly, on understanding how the controlling variables influence the potential for 

rotation accumulation. New and more general parameters of an empirical model predicting the long-term 

plastic rotation are proposed on the base of the experimental results.    

 

List of notation  

 ‘              effective unit weight of the sand 

Dr              relative density of the sand 

D              foundation diameter 

d              foundation embedment (skirt length) 

t                     wall thickness 

fL                     cyclic loading frequency 

N              number of cycles 

H              horizontal load acting on the load reference point 

h              eccentricity of the horizontal load 

M              overturning moment acting on the load reference point M = hH 

MR              ultimate monotonic moment 

Mmax , Mmin maximum and minimum cyclic overturning moment  

Hmax , Hmin maximum and minimum horizontal load 

V                     vertical load acting on the load reference point 

N              rotational displacement of the foundation after N cycles 

0              rotational displacement of the foundation at N = 1 

s                     rotational displacement of the foundation under monotonic loading when M = Mmax 

T                     rotation tolerance 

f                     rotational displacement at the end of a cyclic test 

N

~
                      normalised accumulated rotation 

ζb                     cyclic loading magnitude ratio, ζb = Mmax / MR 

ζc                     cyclic loading ratio, ζc = Mmin / Mmax 

Tb, Tc,              parameters of the empirical model                       
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1. Introduction 

To make offshore wind competitive in the energy market, cost-effective solutions for foundations and 

installation technologies must be developed. The monopod bucket foundation, given the right soil profile, can 

be a cost-reducing sub-structure for offshore wind turbines. This steel structure includes a bucket foundation 

and a conical shaft. The shaft is the interface between the support structure and the turbine tower. As 

opposed to monopile foundations, no transition piece is needed. The bucket foundation, known also as 

suction caisson, is a shallow skirted foundation with circular cross section of diameter, D and skirt length, d. 

This foundation concept has been adopted for decades in the oil and gas industry as an alternative to drilling 

or driving for anchoring mooring buoys (Senpere and Auvergne, 1982) or as a foundation for jackets (Bye et 

al., 1995). A picture of a monopod bucket foundation placed on the deck of an installation vessel is shown in 

Figure 1. This full-scale structure was installed at Dogger Bank, in the British Sector of the North Sea. The 

dimensions of this structure are: D = 15 m, d = 7.5 m and wall thickness, t = 30 mm.  

The installation consists of two phases: first, the foundation penetrates the seabed for a few meters by its 

own weight; second, suction assisted penetration is carried out until the skirt is fully embedded. This 

installation technology prevents the generation of noises that can be harmful for marine mammals. 

Furthermore, such installation process can be fully reversed, ensuring the full recovery of the structure at the 

end of the lifetime. DNV (2011) states that repeated loading may lead to irreversible soil deformation (and 

thus irreversible foundation displacement) that could jeopardize the turbine operation. When designing in the 

serviceability limit states (SLS) or in the fatigue limit states (FLS), this is to be accounted for by calculating 

the cumulative displacement with an adequate method. 

 

 

Figure 1: Large-scale monopod bucket foundation on the deck of a jackup vessel 
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Another important consequence of repeated loading is that it may lead to changes in the natural frequency of 

the system and, in the worst case, trigger resonance.  

The offshore environment presents adverse loading conditions, i.e. large overturning moment, M, and 

horizontal load, H, due to the action of waves. The condition is worsened for offshore wind turbines as these 

are light structures with M/(VD) typically larger than 1. 

 

The drained and undrained response of shallow embedded foundations under general loading is widely 

explored in literature (Gourvenec, 2007; Villalobos et al., 2009, Barari et al. 2012, Achmus et al. 2013b, 

Ibsen et al., 2014a, Ibsen et al., 2014b). Andersen (2009) presents a framework to estimate the settlements 

of shallow foundations subjected to cyclic loading due to storms. A well-established method to predict the 

response of offshore foundations under long-term cyclic lateral loading (i.e. millions of load cycles) does not 

exist yet. Lately, many research contributions have been given to this issue. Numerical models of monopiles 

were developed by Achmus et al. (2009) and subsequently by Depina et al. (2013). Monopiles were also 

tested in single gravity physical models by Peralta (2010) and Taşan et al. (2011). Centrifuge modelling has 

also been attempted. Watson and Randolph (2006) carried out an experimental campaign testing a bucket 

foundation and deriving fatigue contours for few hundreds of cycles. More recently Klinkvort and Hededal 

(2013), Garnier (2013) and Kirkwood and Haigh (2014) run lateral cyclic loading centrifuge tests on 

monopiles. Achmus et al. (2013a) run numerical simulations of bucket foundations under cyclic loading 

investigating the effect of load magnitude, relative density and embedment ratio, d/D. 

Comprehensive state of the art studies on cyclic loading of offshore foundations are Jardine et al. (2012), 

Randolph (2012) and Andersen et al. (2013).  

 

This paper deals with the issues related to permanent displacements of bucket foundations engendered by 

cyclic loading. In particular, the accumulation of rotational displacement is addressed, as recommended by 

standards (DNV, 2011) and industry practice.  A similar study on this issue has been conducted by Zhu et al. 

(2013). They performed tests on dry loose sand with a bucket of D = 200 mm, and d/D = 0.5 under two 

different vertical loads. The experimental data was interpreted with the empirical model proposed in LeBlanc 

et al. (2010) and the parameters of the model were found independent of the vertical load applied. 

The main objective of this study is to generalise the method to buckets with three different embedment ratios. 

A comprehensive experimental campaign concerning bucket foundations subjected to lateral cyclic loading is 

presented. The physical model design is thoroughly described and the experimental results are interpreted. 

The effect of loading frequency and relative density on the pattern of response is addressed. The post-cyclic 

behaviour and the robustness of the foundation in terms of cyclic loading are also investigated. In order to 

add practical value to the study, cyclic capacity curves are constructed and used in a design case.  

 

2. Physical model design 

2.1 Scope and aims of the modelling 

Conducting geotechnical experiments in 1g is a delicate issue and, when designing the experimental setup, 

all the choices must be choices of meaning. The geotechnical system taken as prototype to resemble in 
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small-scale experiments is a bucket foundation supporting a 5 MW wind turbine installed in dense silica 

sand. The diameter of the foundation is D = 15 m while the moment to horizontal load ratio is M/(HD) = 2. 

The scale of the model is 1:50. 

In general, when the results of small-scale experiments are to be scaled up, adequate scaling laws are 

required. In this work, rather than scaling up results directly to prototype scale, the intention is to capture 

general behavioural patterns of the foundation. To recreate similar responses in two different scales, non-

dimensional groups are to be retained between small-scale and prototype-scale. Three simple dimensionless 

groups were considered in this study: M/(HD), t/D and V/(  ‘D3) where   ‘  is the effective unit weight of the 

sand and V is the vertical loading. In real-scale wind turbine structures V includes the self-weight of the 

foundation and the weight of the whole superstructure. A realistic ratio V/(‘D3) for large-scale bucket 

foundations supporting wind turbines ranges between 0.1 and 1. The typical value of t/D lies in the range 

0.002 – 0.003. As these groups were to be conserved, the physical model was designed accordingly. For the 

entire experimental campaign M/(HD) was set to 1.98 while V/(‘D3) was between 0.73 and 0.89, depending 

on the bucket tested. The non-dimensional group t/D was 0.005 for all the buckets. Although the latter 

exceeds the maximum value suggested by industry practice, it is deemed that this group would affect the 

model accuracy only in case of differences in order of magnitude. 

Since the pore pressure development is not of primary interest in this study, the loading frequency was not 

scaled and only tests conducted in substantially drained conditions were interpreted with the empirical 

model. The drainage condition of the tests was evaluated on the base of the findings of Foglia et al. (2013) 

as explained further in the paper. 

It is well-known that realistic shear strength of the soil in 1g models can be achieved by increasing the void 

ratio of the soil we would have in large-scale. In so doing the path toward the critical state line of the soil in 

small-scale would resemble that in large-scale and dilation would be suppressed (Cerato and Lutenegger, 

2007, LeBlanc et al., 2010, Wood, 2004). However, here the aim is not to scale up the ultimate capacity and 

the stiffness of the monotonic behaviour. If serviceability and fatigue limit state design situations are 

investigated, the load magnitudes involved are limited and no dilation is likely to occur. Thus, it is argued that 

preparing the sand at very low Dr would result in samples more prone to disturbance and, more importantly, 

would lead to overly conservative results in terms of permanent displacements as a result of an unrealistic 

potential for compaction. For this reason, in an attempt to better capture the displacements accumulation, the 

relative density of the prototype-scale is conserved in small-scale. The samples were densely packed also to 

obtain general failure of the foundation and gain thereby a clear reference failure moment from the 

monotonic tests. 

The aim of this experimental campaign was to extend the previous analysis of Zhu et al. (2013) by changing 

some essential features of the model. The novel analysis concerns buckets of three different bucket 

geometries, the effect of loading frequency and the post-cyclic behaviour. Besides, the soil sample is water 

saturated, densely packed and the foundations tested are 100 mm larger in diameter.  

 
2.2 Description of the model 

The experimental rig used to carry out the testing program was designed and constructed at Aalborg 
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University. The system was designed on the base of the rig employed by LeBlanc et al. (2010). A sketch of 

the equipment is illustrated in Figure 2. A sand box (1600 x 1600 x 1150 mm) and a loading frame are the 

main components of the setup. The sand box is made of steel and is equipped with a drainage layer at the 

bottom. The drainage system consists of perforated pipes, 100 mm of drainage material (gravel) and sheets 

of geotextile dividing the layers. The pipes let the water evenly within the sand container. The water is 

provided by a tank and the water gradient is regulated with valves. The loading frame surrounds the sand 

box and provides a firm support to the equipment for monotonic and cyclic loading. Two screw jacks are 

mounted on the sides of the loading frame, one for lateral monotonic loading and the other for the foundation 

installation. To apply cyclic loading to the foundations, the rig is integrated with a loading beam hinged on 

one side of the box, four pulleys, three weight-hangers, few meters of steel wire and additional steel frame. 

An electric motor capable of exerting constant rotational motion is mounted on the hinged beam. The cyclic 

loading is induced to the system by applying a rotational motion to weight-hanger 1 which in turn cause the 

hinged beam to oscillate in the vertical direction.  

The foundation is subjected to cyclic loading through a vertical beam bolted on the bucket lid which is directly 

connected to the system with two wires, one on each side. The features of the cyclic loading applied can be 

adjusted by changing the set of weights on the weight-hangers. Three foundations with diameter, D = 300 

mm, and embedment ratios equals to 1, 0.75 and 0.5, were tested. Throughout the paper the buckets will be 

addressed by using their embedment ratio (d/D = 1, d/D = 0.75 and d/D = 0.5). The skirts of the foundations 

have all the same wall thickness, t = 1.5 mm. This particular thickness was chosen in order to ensure a fully 

rigid response of the foundations during any loading phase. The foundations are instrumented with three 

linear variable differential transformers (LVDTs). Two load cells are mounted on the vertical bar to record the 

net load applied to the foundation. A PC-based data acquisition system is used to transfer data from the 

measurement devices to the computer. The data sampling frequency is set to 2 Hz. The soil used for 

conducting the experimental program is Aalborg University Sand No. 1 (cf. Table 1 for properties). The 

reference system taken for forces and displacements is that proposed by Butterfield et al. (1997).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 2: Schematic illustration of the testing rig Figure 3: Example of biased two-

way cyclic loading  
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Each cyclic test was carried out in four stages: sample preparation, installation, cyclic loading test and post- 

cyclic monotonic test. To ensure repeatability, a systematic sample preparation procedure was carried out 

before each test. A gradient close to the critical one was applied to the sample. Thereafter, mechanical 

vibration of the sand was performed. After vibrating, the uniformity and the compaction state of the sample 

were assessed by analysing small-scale cone penetration tests (CPT) performed in three different positions. 

The sample had a high compaction state, average Dr = 89 %. The bucket was installed in the middle of the 

sand box by means of a screw jack with a penetration rate of 0.02 mm/s. The foundation was installed by 

pushing rather than by applying suction. This has certainly an effect on the foundation capacity (Villalobos, 

2006). However, the potential for rotational displacement accumulation should not be significantly affected as 

it is normalised with the monotonic reference rotation (see the next section).  

Three air valves placed on the lid were let open during the penetration. Once the installation stage was 

complete, the installation rig was dismantled and the air valves were sealed to ensure full contact between 

soil and bottom lid during the test. The vertical beam was then bolted on the bucket lid and connected to the 

system. The number of cycles applied was between 1·104 and 5·104. At the end of the cyclic stage the cyclic 

equipment was meticulously substituted with the monotonic one to run the post-cyclic test. Cyclic loading 

tests were load-controlled. With respect to the load reference point the foundation was subjected to 

sinusoidal cyclic horizontal load, Hmin ≤ H ≤ Hmax, sinusoidal cyclic overturning moment, Mmin ≤ M ≤ Mmax, and 

constant vertical load, V (self-weight of the foundation and weight of the vertical beam).   

The reference monotonic tests were controlled by designating a displacement rate to the point of load 

application. Foglia et al. (2013) conducted test of bucket foundations controlled in the same manner. The 

foundations were instrumented with eight pore pressure transducers placed under the lid and along the skirt. 

Four different displacement rates were tested. Tests carried out with displacement rate in the range 0.01 – 

0.1 mm/s were found to be in substantially drained conditions.  Based on this finding, the reference 

monotonic experiments were designed as displacement-controlled quasi-static tests with a displacement rate 

imposed by the actuator of 0.011 mm/s. 

 

Table 1. Properties of Aalborg University Sand No. 1 

Property  Value  Unit 

Grain diameter corresponding to 50 % passing  0.14  [mm] 

Uniformity coefficient  1.78  [‐] 

Specific grain density   2.64  [‐] 

Maximum dry unit weight  17.03  [kN/m3] 

Minimum dry unit weight  14.19  [kN/m3] 
 

 

2.3 Experimental program 

Before describing all the phases of the experimental program, it is necessary to outline the key elements of 

the empirical model used to analyse the data (LeBlanc et al., 2010). The object of the empirical model is the 

relationship between the normalised accumulated rotation, , and the number of cycle N: 
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where N is the accumulated rotation at cycle of number N, 0 is the rotation at the first cycle, s is the rotation 

of the monotonic test at M = Mmax and Tb, Tc and are the parameters of the model. Tb and Tc depend on the 

cyclic loading features ζb and ζc which are defined as follows: 
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M

M

M

M
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A graphical representation of the two ratios is given in Figure 3. 

The model is defined by means of the boundary condition Tc (ζc = 0) = 1.   

The experimental campaign comprises seven test series. Each of them was conducted with clear intention 

and with great attention to details. Table 2 (see at the end of the paper), lists all the tests of the experimental 

campaign. 

In Series 1, 5 and 6, ζc was set to 0 and thereby the parameters Tb could be deduced for the three buckets. 

In Series 2, ζb was set to approximately 0.37 to obtain the parameter Tc. In Series 3 the robustness of the 

foundation against cyclic loading was addressed by conducting tests at increasing ζb. Series 4 was devoted 

to investigate the influence of the loading frequency on the cyclic behaviour. Series 0 includes the three 

monotonic reference tests.  

Technical problems denied the post-cyclic stages of C47 and C39 to be performed. 

 

3. Results  

3.1 Presentation of typical results 

Selected results are presented in order to give an insight into the general behavioural patterns of bucket 

foundations under lateral cyclic loading. It is common practice to present the results of small-scale 

experiments in non-dimensional form. However, in this section qualitative and scaling-independent results 

are shown. Thus, it was deliberately chosen to present the results without scaling. 

Figure 4 shows how the rotational displacement accumulates for two tests and a magnified view of few 

cycles. Even though cyclic amplitude and mean value are very dissimilar in magnitude, the accumulation rate 

appears fairly comparable. In Figure 5, the three monotonic reference tests are plotted. Test S30 developed 

a clear general failure mechanism, with a noticeable peak in moment capacity followed by a softening 

branch. Tests S57 and S48, did not show a distinct peak in moment capacity. Instead, a plateau followed by 

a moderate negative gradient took place. Although the relative density is very high, the general failure of the 

system occurs only for the foundation with the largest embedment ratio. This kind of response could be seen 

in analogy with the findings of Vesić (1973), who investigated how the failure mechanism of shallow 

foundations under pure vertical loading changes as a function of Dr and d/D. MR was taken as the maximum 

moment reached during the test. In the same graph, the points corresponding to the first cycle of all the 

cyclic tests of d/D = 1 are depicted. All the points, except for those of the two tests with highest moment (C39 

and C40), lie along the monotonic curve. This proves the substantially drained condition of these tests. The 

two tests that deviate from the monotonic test had most likely too high loading rate to remain substantially 
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drained. Though, it should be emphasised that the tests which underwent partly drained conditions are not 

taken into consideration when interpreting the data with the empirical model.  

It is worth to notice that also the tests conducted at different loading frequencies (squares on Figure 5) follow 

the fully drained response. Even further in the tests, no significant and consistent alteration of the behaviour 

in terms of displacements was found between the tests of Series 4.  

In Figure 6, the rate of displacement accumulation in terms of rotation (i.e. the permanent rotation 

accumulated every ten cycles, N+10 - N) is plotted against N for three tests of series 2. In general, when the 

rate of accumulation grows with the number of cycles, cyclic progressive failure occurs. This is not the case 

for the tests shown in Figure 6. The plot shows a significant rotational displacement accumulation within the 

first hundreds of cycles, followed by a plastic adaptation in which the rate of accumulation gradually 

decreases until reaching a negligible value. As expected, the larger the ζb the more number of cycles are 

required for the accumulation rate to reduce.  

In Figure 7, the ultimate post-cyclic moment against the rotation at failure of all the tests of d/D = 1 is plotted. 

The large majority of the points exceeds the reference moment (test S30). On average, the post-cyclic 

capacity is 10.5 % larger than the reference capacity.  
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Figure 4: Rotational displacement accumulation for 
two different tests and magnified view of few cycles

Figure 5: Reference monotonic tests S30, S48 and 
S57, post-cyclic phase of C36 and points relative to 
the maximum rotation of the first cycle  

Figure 6: Accumulation rate of the rotational displacement of tests C34, C36 and C38 for the first 1000 cycles 
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The same observation can be made in Figure 5 on the M- plane where the post-cyclic phase of test C36 is 

plotted. The post-cyclic curve has higher initial stiffness and capacity than the reference monotonic curve. 

The failure mechanism is brittle as for the monotonic test.  

 

3.2 Interpretation of the results 

Equation 1 is used to fit all the tests run in substantially drained conditions. In general, the exponent has 

the tendency to reduce as T increases. This suggests that when a foundation system accumulated 

significant rotational displacement in the beginning, it has less potential for accumulation further in the test.   

This is in accordance to what pointed out by Achmus et al. (2013a) where the ratio N/0 was found to have a 

higher rate for low values of ζb. A clear dependency of on the test features could not be detected and, 

therefore, a constant exponent was used to analyse the data. When fitting all the drained tests until N = 

10000 with Eq. (1), the average  turns out to be 0.189 with a standard deviation of 0.034. The value of  

differs significantly from that of Zhu et al. (2013) and this is to be ascribed to the different relative density of 

the sands. 

The results of series 1, 5 and 6 are presented in Figure 8. The points extrapolated using three different 

bucket geometries seem to follow the same trend. This indicates that the parameter Tb does not depend on 

the embedment ratio. This observation contrasts with Achmus et al. (2013b) who found the accumulated 

rotation to be slightly higher for d/D = 0.5. An interpolating curve in the form of a power law was chosen to fit 

the data:  

                                                                  
64.141.2 bbT                                                                   (3) 

In Figure 8, the fit proposed by Zhu et al. (2013) is also plotted. The discrepancy between the two trends 

proves the Tb-dependency on the relative density. The same pattern (i.e. Tb reducing for looser compaction 

states) was found by LeBlanc et al. (2010). Recently, Tb was found dependent on the particle size in a study 

conducted by Abadie and Byrne (2014). However, the uncoupled effect of these two properties of the system 

has not been identified yet. The experimental points of series 2, together with the fit deduced by Zhu et al. 

(2013), are shown in Figure 9. 

0 0.5 1 1.5 2 2.5 3
150

200

250

M
om

en
t c

ap
ac

ity
, M

 [
N

m
]

Post−cyclic rotation, θ
f
 [deg]

Average of post−cyclic capacity

Reference monotonic capacity (S30)

Figure 7: Post-cyclic moment capacity for series 1, 2 ,3 and 4 compared to the monotonic capacity 



10 
 

 

 

 

Despite the significantly different embedment ratio and relative density, the experimental points match the fit. 

It can be concluded that Tc depends neither on the embedment ratio, nor on the relative density. The tests of 

Series 2 also support the idea that Tc peaks in correspondence to a biased two-way loading configuration. 

Interestingly, Kirkwood and Haigh (2014) attributed this phenomenon to the reduction of locked in stresses 

occurring in presence of biased two-way loading conditions.  

 

4. Implication to foundation design 

From the observations on the post-cyclic behaviour (Figure 5 and Figure 7) two distinct implications emerge. 

Firstly, since the foundation was pre-subjected to cyclic M and H the yielding surface expanded and 

therefore it is not surprising that the initial stiffness increases. Secondly, and perhaps more importantly, the 

failure envelope seems to increase when a foundation is pre-subjected to cyclic loading. 

 

In the following, an example of how to put into practice the empirical model is given. As explained earlier in 

the paper, no direct result of the tests is scaled up by means of scaling laws. Instead, it is assumed that 

when the dimensionless groups of large-scale systems are similar to those used in the experimental 

campaign, the general relationship found in small-scale between monotonic and cyclic response is 

applicable in large-scale. 

The example consists in a preliminary estimation of the long-term accumulated rotation of a bucket 

foundation supporting a 5 MW wind turbine. The estimation is preliminary in the sense that it is based only 

on the empirical model which would need to be validated against real-scale measurements over many years 

of turbine operation. As substantially drained conditions are considered, it is reasonable to assume 0 = s. 

The features of the bucket foundation are D = 15 m, d/D = 0.75 and t = 30 mm. The foundation is subjected 

to general loading: constant vertical loading, V = 35 MN, cyclic overturning moment and cyclic horizontal 

loading. A one-way loading configuration (ζc = 0) is chosen and the analysis evaluates both SLS and FLS 

design cases. According to LeBlanc et al. (2010), typical design cases for offshore wind turbines are for SLS, 

N = 102 and ζb = 0.473, whereas for FLS, N = 107 and ζb = 0.295. 
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By simply combining Equations 1 and 3 the accumulated rotation as a function of loading configuration and 

number of cycle can be evaluated: 

                                                           189.064.1

s

N 41.21 NTcb


                                                      (4) 

A design graph relevant to the loading case in object, and based on Equation 4, is illustrated in Figure 10. To 

use Figure 10 in the design case, it is necessary to evaluate the monotonic M – curve in some manner. For 

this purpose, a drained numerical simulation is performed with the software Plaxis 3D. The Hardening Soil 

Model is used to run the drained simulation. Typical dense silica sand parameters are adopted. The ultimate 

moment capacity is defined by the intersection between the tangents to the initial and final points of the 

curve (MR = 462.74 MNm). Equation 4 can be used to estimate the accumulated displacements for SLS 

design, N, SLS = 0.506, and FLS design N, FLS = 0.749. Some authors adopt a very stringent 0.5⁰ as 

maximum rotation criterion justifying such a choice as the limit recommended by DNV (2011). However, DNV 

(2011) suggests this value in the context of a mere example and, in some cases, this stringent limit might 

lead to over-conservative design. The rotation tolerance relative to the normal operation of the wind turbine 

should instead be defined by the turbine manufacturer and the contractors on a case by case basis. 

 

In order to have a graphical understanding of the secant stiffness degradation due to repeated loading, cyclic 

capacity curves can be constructed on the base of Equation 4 and the monotonic M-curve. This can be 

accomplished by simply calculating N for different values of N and ζb. The cyclic capacity curves are plotted 

in Figure 11 as opposed to the monotonic curve. The legend of Figure 10 applies also to Figure 11. By 

entering the graph with the appropriate N and ζb, N, SLS and N, FLS can be graphically found. 

 

5. Limitations of the physical model 

The lateral cyclic loading is applied in terms of sinusoidal and continuous M and H.  

In reality, environmental loads do not fluctuate regularly about a mean value. Imposing sinusoidal M 
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and H on the foundation is, in fact, unrealistic and leads inevitably to conservative prediction of 

displacements (Byrne, 2000). If realistic displacements are to be predicted, a relationship between real 

wave load patterns and equivalent sinusoidal load should be established.  

Offshore environment is featured by a combination of waves, wind and currents, that results in a  

multi-directional load configuration (Fraunhofer IWES, 2009). Regardless, the geotechnical system 

considered in this paper has three degrees of freedom and the three loading components act in a 

single plane. Interestingly, Rudolph et al. (2014) investigated the cyclic behaviour of monopiles 

subjected to changing direction cyclic loading and found an amplification factor of 45% in 1g tests and 

63% in centrifuge. In-plane loading conditions seem to have a beneficial effect on the accumulated 

displacements and therefore reduce the conservatism of the model.  

In addition, the simplified method proposed does not account for the varying loading features of the 

cyclic load. However, this is important when real load time series are considered. In case a more 

sophisticated estimation of the accumulated displacements is needed, loading packages with different 

loading features could be included in the model, perhaps on the base of previous studies such as 

Peralta (2010) and LeBlanc et al. (2010b).    

The empirical model is based on 1g tests only. Thus, it should be corroborated with centrifuge 

experiments or large-scale tests before using it with confidence in real design cases. 

 
6. Conclusions 

Bucket foundations have been extensively used and yet their behaviour under cyclic lateral loading is not 

fully explored. This paper presents a physical model and a comprehensive experimental campaign. The data 

analysis is focused on the long-term accumulated displacement and, particularly, on the rotational 

displacement. Some conclusions can be drawn about the general response of bucket foundations under 

cyclic loading. 

The accumulation rate of the rotational displacement (calculated every ten cycles) is seen to reduce to 

negligible values within the first few hundreds of cycles, regardless of the load magnitude. The permanent 

displacement is not influenced by the loading frequency in the range tested (between 0.025 and 0.1 Hz). 

Post-cyclic curves are found different from the pure monotonic curves in terms of initial stiffness and ultimate 

capacity. This implies that, as expected, cyclic loading-induced permanent displacements affect the elasto-

plastic proprieties of the geotechnical system.  

The experimental data is also interpreted with an existing empirical model and new parameters are 

extrapolated. It is remarkably important to emphasise that the three bucket geometries tested seem to 

respond equally to cyclic loading. This means that, in the range of embedment ratio tested (0.5, 0.75 and 1) 

all the bucket geometries are equally influenced by cyclic loading. On the base of the empirical model, cyclic 

capacity curves are constructed and employed in a practical example. 
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Table 2. List of the experiments 

Series 0  d/D  fL [Hz]  b  c 

S30  1  ‐  ‐  ‐ 

S57  0.5  ‐  ‐  ‐ 

S48  0.75  ‐  ‐  ‐ 

Series 1             

C16  1  0.1  0.403  ‐0.047 

C17  1  0.1  0.536  0.027 

C18  1  0.1  0.304  ‐0.042 

Series 2             

C20  1  0.1  0.358  ‐0.595 

C22  1  0.1  0.383  0.193 

C23  1  0.1  0.381  ‐0.426 

C24  1  0.1  0.367  ‐0.963 

C32  1  0.1  0.421  ‐0.146 

C33  1  0.1  0.382  ‐0.316 

C47  1  0.1  0.378  ‐0.796 

Series 3             

C34  1  0.1  0.252  ‐0.604 

C35  1  0.1  0.484  ‐0.543 

C36  1  0.1  0.583  ‐0.563 

C37  1  0.1  0.687  ‐0.578 

C38  1  0.1  0.758  ‐0.583 

C39  1  0.1  0.856  ‐0.588 

C40  1  0.1  1.155  ‐0.469 

Series 4             

C41  1  0.1  0.400  ‐0.514 

C42  1  0.05  0.420  ‐0.500 

C44  1  0.03  0.389  ‐0.598 

C45  1  0.2  0.387  ‐0.479 

C46  1  0.025  0.419  ‐0.500 

Series 5             

C50  0.5  0.1  0.355  ‐0.054 

C53  0.5  0.1  0.514  ‐0.049 

C54  0.5  0.1  0.339  0.019 

C55  0.5  0.1  0.398  0.040 

Series 6             

C58  0.75  0.1  0.177  0.089 

C59  0.75  0.1  0.244  0.055 

C60  0.75  0.1  0.312  ‐0.055 

C61  0.75  0.1  0.376  ‐0.053 
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foundations for offshore wind turbines
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In this report a macro-element model for bucket foundationsis formulated

and validated against small-scale experimental results. The topics investigated

are the response of the foundation under general monotonic loading and the

long-term accumulated displacements under cyclic loading. The macro-model

for shallow foundations proposed by Nova and Montrasio (1991) is modified

to comply with the response of skirted foundations for offshore wind turbines

under general loading. On the base of di Prisco et al. (2003a), the constitutive

relationship is modified to account for cyclic loading. The validation of the

macro-model against the physical experiments shows promising results.

1 Introduction

Offshore wind turbines (OWTs) are light and dynamically sensitive structures. This determines

a unique loading condition which consists of large cyclic overturning momentM, relatively

large cyclic horizontal loadH and small vertical loadV. The design of these structures is mostly

driven by the dynamic properties of the system and by the long-term response under cyclic load-

ing in terms of stiffness and accumulated displacements (Haigh, 2014). This report deals with

1



the substantially drained response of bucket foundations under monotonic and cyclic loading.

More specifically, a macro-model to evaluate the response ofbucket foundations supporting

OWTs, is formulated. This chapter includes a literature review and a description of the contri-

bution of the paper. The chapter “Physical modelling” presents the experiments used to calibrate

the parameters of the model. The chapter “Analytical modelling” describes the analytical mod-

els used and shows comparisons with the experimental results.

1.1 Literature review

Through macro-element modelling, preliminary estimations of the response of a geotechnical

system can be obtained. This technique is applicable to manykinds of geotechnical problems

but its primary and best-known application is on shallow foundations. In Wood (2012) three

different applications of macro-element modelling are thoroughly described. Generally speak-

ing, a macro-model consists of three elements: geotechnical structure, surrounding soil and

displacement or load field applied to the system,cf. Figure 1. For shallow foundations, the

concept has perhaps its origin with Roscoe and Schofield (1956). During the last decades, the

theory of plasticity has been employed by a number of researchers to investigate the response

of shallow foundations under general loading. The main objective of these studies has been to

overcome the traditional semi-empirical method to calculate the bearing capacity in favor of a

new approach capable of capturing the non-linearity of the problem and suitable for numerical

simulations. An early study on interaction diagrams is Butterfield and Ticof (1979). Subse-

quently, Nova and Montrasio (1991) derived a model for stripfooting. Gottardi and Butterfield

(1993, 1995) carried out important studies on shallow footings, addressing failure surfaces and

displacement patterns under general planar loading. Martin (1994) conceived Model B for

spudcans on clay. Gottardi et al. (1999) developed the basisfor Model C (footings on sand)

which was then completed by Houlsby and Cassidy (2002). Byrne and Houlsby (2001) extrap-
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Figure 1: Fundamental macro-element components: foundation, surrounding soil and three-
dimensional load field

olated the yielding surfaces for footings on carbonate sands. Bienen et al. (2006) explored the

behaviour of footings in six degrees of freedom (6-DOF). To calibrate a macro-model, physical

experiments are essential. Often, in order to extrapolate the necessary model parameters, load-

ing paths that do not resemble possible real loading conditions must be carried out. 1g physical

models have been by far used to obtain the model parameters. Recently, also centrifuge tests

have been conducted on this purpose. To a large extend centrifuge data corroborated the findings

of single gravity modelling (Govoni et al., 2011; Zhang et al., 2014).

Of current interest is cyclic macro-modelling. The majority of the studies on cyclic macro-

modelling concerns structures under seismic excitations.In the last decade, many contributions

have been given to this research topic. A comprehensive and very informative document on

this theme is di Prisco (2012). Cremer et al. (2001) describea macro-element formulation for

a shallow foundation in plain strain. They suggest a multi-surface plasticity model and take

into account the non-linearity of the material and the non-linearity due to the partial uplift of

the footing. Chatzigogos et al. (2011) developed further the work of Cremer et al. (2001) and

conceived a bounding surface hypoplastic model. Nguyen-Sy(2006) derived a hyperplastic

model (Houlsby and Puzrin, 2007) and applied it to bucket foundations. di Prisco et al. (2003a,
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2003b) integrated the Nova and Montrasio (1991) model with aboundary surface model to

represent cyclic loading. An application of the latter is presented in di Prisco et al. (2006).

Buscarnera et al. (2010) used the same model to calculate theaccumulated displacement of

onshore wind turbine on gravity based foundation under windloading. Kafle and Wuttke (2013)

slightly modified the model of Nova and Montrasio (1991) and di Prisco et al. (2003a) to predict

the response of a footing on unsaturated soil. Salciarini and Tamagnini (2009) proposed a

hypoplastic macrolement for surface footings. The same model was then expanded to 6-DOF

in Tamagnini et al. (2013).

1.2 Outline of the study

The aim of this study is to show that experimental results of bucket foundations under mono-

tonic and cyclic loading can be interpreted by means of a macro-element model. Prior to model

the cyclic loading response, it is fundamental to have a reliable and consistent description of

the monotonic behaviour. The model chosen for interpretingthe monotonic experiments is the

Nova and Montrasio (1991) model (NMM). This choice is drivenby the possibility of mod-

elling long-term cyclic loading as elucidated in di Prisco et al. (2003a, 2003b) and Buscarnera

et al. (2010). In order to have satisfying match with the experimental data, the NMM is nec-

essarily modified. A simplified version of the boundary surface model proposed by (di Prisco

et al., 2003a) is incorporated into the modified NMM to model the cyclic loading response.

The macro-model simulates satisfactorily the physical response. Particularly, the comparison

with four experimental cyclic tests is encouraging and reveals that certain features of the cyclic

behaviour can be replicated by the macro-model.

It should be said upfront that a rigorous extrapolation of the model parameters is beyond the

scope of this work. Regardless, the results achieved are meaningful and clearly highlight the

potential of the model.
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2 Physical modelling

A large number of single gravity tests of bucket foundationswere carried out at Aalborg Uni-

versity to explore the cyclic lateral response of the foundation in dense saturated sand (Foglia

et al., 2014). Based on the experimental results, the empirical model predicting the long-term

accumulated rotation proposed by LeBlanc et al. (2010) was calibrated for dense saturated sand

and extended to three different embedment ratios,d/D = 0.5, d/D = 0.75 andd/D = 1

whered is the embedment length andD the diameter of the foundation. In this study a more

sophisticated interpretation based on the macro-element philosophy is proposed. In this section

a selected series of tests which are necessary to the model formulation is presented. Nine mono-

tonic tests and four cyclic loading tests are chosen to extrapolate some of the model parameters

and to validate the model. All the experiments are listed in Table 1 whereMR is the moment

capacity andMmax andMmin are the maximum and the minimum moment applied in a cyclic

loading test. Eight monotonic tests (S13, S19, S25, S26, S27, S28, S29 and S30) are constantV

tests with five differentM/(HD) ratios. One monotonic test (S64) is a pure vertical loading test

until failure. The cyclic loading tests are constantV tests withM/(HD) = 1.987. The three

different loading paths are represented on the three two-dimensional load planes,(M/D − V ),

(M/D − H) and(H − V ), in Figure 2. The tests were conducted with two different rigs but

with the same bucket foundation and on the same sand, AalborgUniversity Sand No. 1 (cf.

Table 2 for the index properties of the sand). The bucket foundation tested is made of steel and

has the following features: outer diameter,D = 300 mm, length of the skirt,d = 300 mm,

wall thickness,t = 1.5 mm, lid thickness,tl = 11.5 mm and self-weight,W = 125 N. The

cyclic tests and all the monotonic tests except for S64, wereconducted with the experimental

rig described in detail in Foglia et al. (2014). The size of the sand sample is 1600 x 1600 x 1150

mm; a picture of the setup is shown in Figure 3.
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Figure 2: The three loading paths a, b and c on the three two-dimensional load planes: a) mono-
tonicV test until failure; b) monotonic constantV test until failure, with constantM/(HD); c)
cyclic constantV test until failure, with constantM/(HD)

Table 1: Selected experimental tests for the model calibration and validation

.

Test M/(HD) V Mmax/MR Mmin/Mmax

name [-] [N] [-] [-]
S13 3.010 241 - -
C16 1.987 241 0.403 -0.047
C18 1.987 241 0.299 -0.042
S19 1.987 241 - -
C20 1.987 241 0.353 -0.595
S25 1.100 241 - -
S26 5.820 241 - -
S27 8.748 241 - -
S28 5.819 241 - -
S29 3.010 241 - -
S30 1.987 241 - -
S33 1.987 241 0.377 -0.316
S64 Pure vertical loading test
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Table 2: Index properties of Aalborg University sand No. 1

.

Property Value Unit
Grain diameter corresponding to 50% passing 0.14 [mm]
Uniformity coefficient 1.78 [-]
Specific grain density 2.64 [-]
Maximum void ratio 0.86 [-]
Minimum void ratio 0.55 [-]

Figure 3: Picture of the experimental rig adopted to performall the tests except for S64

The vertical load acting on the foundation during the tests includes the buoyant self-weight of

the bucket and the weight of the measuring system mounted on the foundation.V is for each

test equal to 241 N. The monotonic tests were displacement controlled tests until failure. One

example of load-displacement curves for eachM/(HD) ratio is illustrated in Figure 4. The

cyclic tests were load controlled with loading frequencyfl = 0.1 Hz and number of cycles

N = 5· 104. Figures 5 and 6 depict the first 100 cycles of test C16.

A second testing rig, with a much more powerful actuator and alarger sand sample, was em-

ployed to run the pure vertical loading test until failure, test S64. This testing rig was designed

to test bucket foundations withD = 1000 mm. A detailed description of the laboratory setup

7
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Figure 6: ExperimentalH−u curve, test C16,
first 100 cycles

is available in Vaitkunaite et al. (2014). In test S64, a local shear failure of the soil can be

observed,cf. section 3.1.2.

The bearing capacity of the foundation is obtained asVM = 91.66 kN. Throughout the report a

ratioV/VM = 0.0026 is used for the simulations and the interaction diagram comparisons. For

both the laboratory setups, the sample was prepared by mechanical vibration of the soil. This

technique allowed to have dense or very dense samples. The relative densityDr, is calculated

by interpreting small scale cone penetration test data withan empirical correlation. The average
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Figure 7: Sign conventions, after Butterfield et al. (1997)

Dr of the selected tests is 88.25%.

The sign convention for loads (V , H, M) and displacements (w, u, θ) is chosen according to

the unified and consistent system proposed by Butterfield et al. (1997). Figure 7 depicts the sign

conventions.

3 Analytical modelling

In this chapter the models used to interpret the experimental data are described. The calibration

of some of the parameters is carried through on the base of theavailable experimental data. All

assumptions and uncertainties are pointed out. Some pointsof discussion on the calibration of

the parameters and on the model architecture are put forward.

3.1 Monotonic loading

3.1.1 Model architecture

The macro-element model of Nova and Montrasio (1991) is based on the classic framework

of elasto-plasticity and was conceived to predict the mechanical response of a strip footing

on a homogeneous soil layer under combined planar loading. The validity of the model was

9



then extended to different shallow foundations by Montrasio and Nova (1997), and to strip

foundation under cyclic loading by di Prisco et al. (2003a).The model consists of five elements:

elastic matrix, yielding surface, plastic potential, hardening law and flow rule. Following the

rules of strain-hardening models the elements are combinedto form the flexibility matrixC,

which relates the vector of normalised incremental displacementsdq, to the vector of normalised

incremental forcesdQ:

dq = CdQ (1)

whereq is the generalised vector of normalised displacements whereasQ is the generalised

vector of normalised loads.q andQ are defined as:

q =





η
ε
ζ



 = VM





w
µu
ψDθ



 (2)

Q =





ξ
h
m



 =
1

VM





V
H/µ

M/(ψD)



 (3)

whereµ andψ are constitutive dimensionless parameters of the model.

Elasticity matrix The elasticity matrix,Ke, is defined as:

Ke = diag(kV , kH , kM) (4)

Its elements are evaluated according to Doherty and Deeks (2003). To calculate the components

of Ke, an elastic modulus,E = 25 MPa, and a Poisson ratio,ν = 0.2, are assumed.

Yielding surface The original yielding surface of the NMM is:

f =

(

H

VMµ

)2

+

(

M

DVMψ

)2

−

(

V

VM

)2(

1−
V

VMρc

)2β

(5)

whereρc is the hardening parameter,VM the bearing capacity of the foundation andβ a consti-

tutive parameter of the model. By substituting the load components according to eq. 3, eq. 5
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becomes:

f = h2 +m2
− ξ2

[

1−

(

ξ

ρc

)]2β

(6)

In the three-dimensional load space(V −H −M/D) the yielding surface is an ellipsoid while

in the three-dimensional normalised load space(ξ − h − m) the yielding surface becomes a

spheroid.

When using the strain-hardening plasticity frameworks it is typical to normalise the loads by

V0 which is the maximum vertical load ever applied to the foundation (Villalobos et al., 2009;

Houlsby and Cassidy, 2002; Gottardi et al., 1999). This is apparently not the case in eq. 5. It

should be clear though thatρc = V0/VM and, therefore, by simply substitutingVM with V0/ρc,

eq. 5 becomes normalised byV0.

To include the contribution of the skirt to the resistance, eq. 5 is modified similarly to Villalobos

et al. (2009):

f =

(

H

VMµ

)2

+

(

M

DVMψ

)2

−

(

V

VM
+ t0ρc

)2(

1−
V

VMρc

)2β

(7)

It is worth noting that by includingt0 in the formulation, the model has no longer a closed form

solution.

Equation 7 differs from that of Villalobos et al. (2009) in three aspects. First, it is expressed by

means ofVM and notV0. Second, there is no term relative to the eccentricity of thesurface in

the(H−M/D) load plane. The third and most substantial difference is that t0 is not a function

of V0 and is defined asVtM/VM whereVtM is the drained pull out resistance of the foundation.

VM was found experimentally with test S64. To calculateVtM a failure model in tension must be

chosen. A pertinent failure model in tension is that in whichthe bucket foundation and the soil

plug are involved in the pull out. As a result of that, the contributions of the pull out drained

resistance are three: the buoyant weight of the foundationW ′

f , the buoyant weight of the soil
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plugW ′

p and the tangential forces acting on the outer skirt.VtM can then be expressed as follows:

VtM = 2πro

∫ d

0

τodx+W ′

f +W ′

p (8)

wherero is the outer radius of the foundation andτo is the shear stress along the wall. Obviously,

VtM (and thust0) is influenced by the choice of the soil-steel interface angle and the coefficient

of lateral earth pressure. After scrupulous considerationand comparison with Villalobos (2006)

a value oft0 = 0.007 was taken. A more detailed discussion ont0 is given in section 3.1.4.

The choice of using equation 7 is justified by the following observation. Standard dimensions of

bucket foundations for real-scale OWTs are listed in Table 3together with the load conditions

suggested by Byrne (2013) and Lesny (2011). In Table 3,h is the load eccentricity, the sub-

scripts “w” stands for waves and currents and the subscript “wi” stands for wind. To calculate

the range ofM/(HD), the maximumM is divided by the minimum values of(HD) whereas

the minimumM is divided by the maximum values of(HD). It should be mentioned though

that most likely the real load paths will lie in the middle of the range and not in the region

around the boundaries. In Figure 9 the loading path range forbucket foundations supporting

OWTs is plotted together with the failure envelopes of Villalobos et al. (2009) and Nova and

Montrasio (1991). To plot the envelope of Villalobos et al. (2009) the parameters of Ibsen et

al. (2014), calibrated with small scale tests until failure, are adopted (except fort0 which is set

equal to 0.007). The parameters used to plot the envelope of the NMM are derived in section

3.1.2. In Figure 9 it is seen that in the sector of interest forOWTs the two envelopes give a

fairly similar representation of the ultimate resistance.For the sake of completeness, it is worth

to mention that the discrepancy between the two failure envelopes is exacerbated in the second

quadrant. However, the load path is unlikely to lie on the second quadrant, unlessV acts on the

foundation with a large horizontal eccentricity.
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Figure 8: Sketch of an OWT
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Figure 9: Benchmark of failure envelopes

Table 3: Range of features of a bucket founda-
tion supporting a standard offshore wind tur-
bine, (Byrne, 2011; Lesny, 2011)

.

Value Unit Maximum Minimum
Hw [MN] 10 3
Hwi [MN] 2 1
hw [m] 40 20
hwi [m] 120 90
D [m] 18 14
M [MNm] 640 150
H [MN] 12 4
V [MN] 35 6

M/(HD) [-] 11.43 0.69

Plastic potential In analogy with the yielding surface, the plastic potentialdiffers from the

original model only by the inclusion of the parametert0:

g = (λh)2 + (χm)2 − (ξ + t0ρg)
2

[

1−

(

ξ

ρg

)]2β

(9)

In eq. 9ρg is a fictitious variable whereasλ andχ are constitutive dimensionless parameters.
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Hardening law The hardening law is the rule by which the evolution of the hardening param-

eter,dρc, is defined as a function of the increment of plastic displacements,dqp:

dρc = (1− ρc)
R0

VM

(

dη +
α |dε|

µ
+
γ |dζ |

ψ

)

(10)

In eq. 10,α andγ are constitutive dimensionless parameters whileR0 is the initial stiffness of

theV − w curve extrapolated in section 3.1.2. A discussion on the hardening law is proposed

in section 3.1.5.

Flow rule The flow rule is consistent with the original model, and more generally, with the

standard theory of plasticity. When the conditionsf = 0 anddf = 0 are fulfilled, the incremen-

tal plastic displacementsdqp can be expressed by:

dqp = Λ
∂g

∂Q
(11)

whereΛ is the plastic multiplier.

3.1.2 Calibration of the modified NMM

Failure envelope (µ,ψ andβ) The monotonic tests were run until failure of the geotechnical

system. Thus, the yielding surface extrapolated is a failure surface (ρc = 1). Tests exploring

the yielding surfaces were not possible with any of the experimental rig available. Hence, it

is a fundamental assumption of the model that each and every yielding surface differs from

the failure surface only in size,i.e. by the value ofρc. Moreover, to calibrate the failure

envelope the variety of experiments was limited to only constant V tests with five different

M/(HD) ratios. This gives however sufficient information on the region of the load space

(V − H − M/D) of interest for OWTs,i.e. V/VM very close to the origin of the axes and

loading paths with no change inV . The original (eqs. 5 and 6) and the modified (eq. 7) failure

envelopes are calibrated with the same set of experimental data. Figure 10 shows two failure
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Figure 10: Calibration of the failure envelope of original and modified NMM on the base of
experimental data

envelopes with the experimental points and the load range for OWTs in the normalised load

plane (H/VM −M/(DVM)) atV/VM = 0.0026. The two envelopes are that of Villalobos et al.

(2009) with the parameters of Ibsen et al. (2014) and that of the modified NMM. The original

NMM is calibrated in order to be equal to the modified NMM atV/VM = 0.0026. The purpose

of that is to underline how essential the inclusion oft0 is in the formulation of the model when

trying to fit the experimental load-displacement curves with the two models,cf. section 3.1.3.

Since the number of failure points is scarce, no best fit of thedata is attempted. Rather, a

conservative fit which encompasses all the experimental points is adopted. The parameterβ is

set equal to 0.95 as suggested in literature by Montrasio andNova (1997). Appropriate values

of µ andψ for the modified yielding surface are 0.73 and 0.86 respectively.

R0 and VM The bearing capacity of the foundation,VM, and the initial vertical stiffness,R0,

can be extrapolated from theV − w curve of test S64. Such curve is shown in Figure 11.

The value ofV at the end of the skirt penetration (point A in Figure 11) is the result of the
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Figure 11: ExperimentalV − w curve, and fit of the initial stiffness

reaction vertical forces due to tip end bearing and wall friction. By fitting with a straight line

the initial points of the curve,R0 is evaluated as 3202 kN/m. Strictly speaking, this value ofR0

is not accurate. To gain the exact value ofR0 the foundation should be unloaded as soon as full

penetration is achieved and then re-loaded. During test S64no unloading phase was performed

after full penetration of the foundation. Nevertheless, the precision ofR0 is considered sufficient

for the scope of the paper.

In Figure 11 a local shear failure of the soil can be observed in correspondence to an abrupt

change in stiffness (w = 326.2 mm).VM is taken equal to 91.66 kN.

α, γ, λ and χ As elucidated in Nova and Montrasio (1991), to calibrate theparameters of

the potential and of the hardening rule, pureH and pureM tests are necessary. Although, when

the load eccentricity ratioM/(HD) exceeds a certain value, the behaviour of the foundation

is no longer significantly affected by the increase of vertical eccentricity (see test S27 and

S28 in Figure 4). This applies to both load-displacement curves and displacement trajectory

curves. Evidence of such response is given in Figure 12, where the standard NMM with standard
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with the original NMM
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Figure 13: Displacement trajectory of test
S27 against model prediction to extrapolateχ
andγ

parameters is used to predict a pureM (M/(HD) = ∞) test and a test withM/(HD) = 8.7.

The two trajectories match very well, meaning that the test with M/(HD) = 8.7 (test S27), can

be used instead of a pureM test to calibrateχ andγ. Two parameters that give a reasonable fit

of theθ − w trajectory areχ = 10.5 andγ = 3 (cf. Figure 13).

The other two parameters, namelyα andλ, are evaluated by conducting a parametric study

trying to match the load-displacement curves and the displacement trajectories of the available

tests. Appropriate values forα andλ are 11 and 10.5 respectively.

3.1.3 Model validation

The parameters of the original NMM are evaluated with the same procedure explained in section

3.1.2 for the modified NMM. As shown in Figure 14, by using the original NMM, the load-

displacement curves achieved cannot simulate the experimental data. By adopting the modified

version of the NMM, both load-displacement curves and displacement trajectories curves are

reasonably well predicted (cf. Figure 15 - Figure 30). As expected, not all tests are equallywell

represented by the model. Nonetheless, it is partly reassuring to note that the largest deviation
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Figure 14: Original NMM prediction of test S30

between analytical and experimental results is found in those curves which are most affected

by the parameters gained by trial and error procedure (u-w trajectories of Figure 24 and Figure

26). Also theM-θ curves of the same tests (Figure 23 and Figure 25) are overpredicted by

the model. The displacement trajectoryθ-w, which was more rationally calibrated, appears to

be consistent throughout the entire tests series. This observation however, does not exclude a

possible weak point of the model when dealing with the prediction of theu-w trajectories.
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Figure 15: Modified NMM prediction of test
S13, load-displacement curves
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Figure 16: Modified NMM prediction of test
S13, displacement trajectories
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Figure 17: Modified NMM prediction of test
S19, load-displacement curves
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Figure 18: Modified NMM prediction of test
S19, displacement trajectories
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Figure 19: Modified NMM prediction of test
S25, load-displacement curves
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Figure 20: Modified NMM prediction of test
S25, displacement trajectories
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Figure 21: Modified NMM prediction of test
S26, load-displacement curves
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Figure 22: Modified NMM prediction of test
S26, displacement trajectories
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Figure 23: Modified NMM prediction of test
S27, load-displacement curves
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Figure 24: Modified NMM prediction of test
S27, displacement trajectories
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Figure 25: Modified NMM prediction of test
S28, load-displacement curves
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Figure 26: Modified NMM prediction of test
S28, displacement trajectories
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Figure 27: Modified NMM prediction of test
S29, load-displacement curves
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Figure 28: Modified NMM prediction of test
S29, displacement trajectories
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Figure 29: Modified NMM prediction of test
S30, load-displacement curves
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Figure 30: Modified NMM prediction of test
S30, displacement trajectories

The incapability of the original NMM to reproduce the experimental results is attributed to

the radically different way in which the yielding surface expands in the two models during

monotonic loading. As shown in Figure 31, when using the original NMM, there is no gradual

transition from one yielding surface to the other. All the yielding surfaces tend to collapse onto

one envelope. When includingt0 in the model formulation (see Figure 32), the path towards

failure shows a much more gradual evolution of the yielding surface than the original NMM.

This observation is true whenV/VM ≈ 0. In caseV/VM > 0, for example for oil and gas

platforms, the effect oft0 would be negligible and the original NMM could perhaps be able to

predict the response.

The parameters of the modified NMM used to match the experimental curves are summarised

in Table 4.

3.1.4 Discussion ont0

The tension parameter,t0, was introduced for the first time by Villalobos (2006) as a function of

V0 (t0 = VtM/V0). t0 was essential to his study to define a yielding surface capable to describe

loads in tension. This surface was then employed in a hyperplastic macro-model by Nguyen-

22



0 0.5 1 1.5 2 2.5

x 10
−3

0

1

2

3

4

5

6

7

x 10
−3

V/V
M

 [−]

H
/V

M
 [−

]

 

 

ρ
c
=1

ρ
c
=0.75

ρ
c
=0.5

ρ
c
=0.25

ρ
c
=0.1

ρ
c
=0.01

ρ
c
=0.0026

Load path

Figure 31: Yielding surface evolution for the
original NMM
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Figure 32: Yielding surface evolution for the
modified NMM

Table 4: Parameters of the modified NMM

.
µ ψ β α γ χ λ t0 VM R0

[-] [-] [-] [-] [-] [-] [-] [-] [kN] [kN/m]
0.73 0.86 0.95 11 10.5 3 3.5 0.007 91.66 3202

Sy (2006). To not overcomplicate the model Nguyen-Sy (2006)sett0 constant. In the model

presented here,t0 is also kept constant but is calculated with the ultimate bearing capacityVM

instead ofV0. As a result, the value oft0 evaluated in this work is one order of magnitude

smaller than that of Villalobos (2006) and Nguyen-Sy (2006). Letting t0 vary according to the

development of the yielding has not been attempted here but would perhaps be of interest.

3.1.5 Discussion on the hardening law

All the tests carried out at such a small value ofV/VM showed uplift (w < 0) instead of set-

tlement (w > 0). It should be clarified that this kind of behaviour cannot bean artefact of

the experimental rig since the same finding is reported in Villalobos et al. (2009). The theory
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behind the macro-element approach defines each yielding surface as uniquely associated with a

value of the hardening parameter. This is properly elucidated, and put into concrete, in Gottardi

et al. (1999) who plotted back-calculatedV −wp curves from radial displacement and constant

V tests against the hardening law (wherewp is the irreversible vertical displacement). Obvi-

ously, the same procedure would not be possible here since the hardening law involves all three

components of the plastic displacement. A hardening law merely based on a compressiveV −w

curve would be not theoretically compatible with loading paths close to the axes origin as there,

for bucket foundations, uplift instead of settlement occurs. In the opinion of the authors this

aspects should be further investigated.

3.2 Cyclic loading

In this section a simplified version of the boundary surface model developed by di Prisco et

al. (2003a) is presented (see also di Prisco et al., 2003b; diPrisco et al., 2006; Buscarnera et

al., 2010). Originally, the model in question was designed to simulate the response of shallow

foundations subjected to a planar earthquake excitation. The version of the model presented

here is conceived to reproduce the behaviour of foundationsunder sinusoidalM andH with

constantV . As a result of that, the model is simplified and some of its elements are neglected.

The constitutive parameters are estimated by trial and error against the experimental results.

3.2.1 Model architecture

Let us assume that a point of the load spaceQ (ξQ, hQ, mQ) represents the current load state.

Boundary surface models define the amount of cyclic displacement for each load step as a

function of the distance betweenQ and an image point,I (ξI, hI, mI), that lies on a defined

boundary surface (see Figure 33). In the model presented here, the boundary surface coincides

with the yielding surface while the image point is identifiedwith an appropriate mapping rule
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Figure 33: Sketch of the mapping rule for the definition ofδ, a)dm > 0,mI > 0 andmQ > 0;
b) dm < 0,mI < 0 andmQ > 0. Elastic domain and boundary surface in bold solid line

explained in the following. The model is integrated into theNMM framework by means of the

matrixΦ which is incorporated into the flow rule as follows:

dqp = ΛΦ
∂g

∂Q
(12)

The matrixΦ is diagonal and its elements are defined as:

Φii = exp

(

−αi

√

δρc
ξ

)

exp (−βiρk) (13)

whereαi andβi are constitutive parameters,ρk is a variable updated asρc (eq. 10) andδ is a

function of the distance between the current load stateQ and the image point on the boundary

surface,I. To describe how the mapping rule works, a sketch of the normalised load plane

(m− ξ) is illustrated in Figure 33. For simplicity, a two dimensional load path with0 < mQ <

mmax is chosen. An elastic domain in which no irreversible displacements can occur, is defined

by means of the segmentAQ which is a portion of the total load path. In this study it was

deliberately chosen to set the elastic domain equal to the 75% of the total load path. According

to the sign ofdm, the pointC (ξC, hC, mC), which is necessary to discover the position ofI,

has coordinates:

ξC = ξQ −QA/2 (14)
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mC =

{

mQ −QA/2 for dm > 0

mQ +QA/2 for dm < 0
(15)

The straight line connectingC toQ identifies the image pointI on the boundary surface. The

point of intersection between the lineCI and theξ axis is namedB. The variableδ is defined

as follows:

δ =



















CB + φBI for mI < 0 andmQ > 0

CB + φBI for mI > 0 andmQ < 0

CI for mI < 0 andmQ < 0

CI for mI > 0 andmQ > 0

(16)

whereφ is a constitutive dimensionless parameter of the model. Thesecond condition of equa-

tion 16 never occurs within the loading paths modelled in this study. Nevertheless, it is included

for the sake of completeness.

The original boundary surface model of di Prisco et al. (2003a) includes a further element,

namely the memory surface. Since the loading conditions aresuch thatM andH are periodic

with constant amplitude, the memory surface is not necessary to the model definition.

The boundary surface model presented introduces 7 new non-dimensional parameters. As yet,

it is unclear how to calibrate these parameters in a systematic way. However, in the following

section, the results of a parametric study aimed at fitting the experimental long-term rotation

and horizontal displacement of the foundation is shown.

3.2.2 Model validation

In Figures 34 and 35 the load-displacement curves of test C16evaluated with the model are

shown. By comparison with Figures 5 and 6, it can be observed that some features of the cyclic

behaviour are properly simulated by the model: after each load cycle, the displacement compo-

nents accumulate, the accumulation rate decreases and the area of the hysteresis loops becomes

smaller. On the other hand, the model is unable to reproduce the increase in tangent stiffness as

a function ofN and the overlapping of hysteretic loops. The change in stiffness can be incorpo-
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Figure 34:M − θ curve of the model simulat-
ing test C16, first 100 cycles
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Figure 35:H −u curve of the model simulat-
ing test C16, first 100 cycles

rated into the model by deriving an experimentally based updating rule forKe. However, this

was not attempted in the present study as the long-term accumulated displacements, rather than

the change in unloading-reloading stiffness, was the main aim of the modelling. Figures 36-45

compare the experimental results with the model simulations. In order to neutralise the inaccu-

racy of the monotonic response and thereby analyse the cyclic modelling independently of the

monotonic behaviour, the long-term accumulated displacements of experimental and analytical

results are compared in terms of normalised displacements.The normalised rotation is defined

as (θN − θ0)/θ0, whereθN is the rotational displacement at cycleN and θ0 is the rotational

displacement at the first load cycle. The same definition applies to the normalised horizontal

displacement, but withu instead ofθ. Note that for the analytical model,θ0 = θs andu0 = us,

where the subscript “s”indicates the displacements on the monotonic curve corresponding to

Mmax. The experimental tests, even though were performed in substantially drained condition,

do not strictly satisfy this condition.

The parameters governing the cyclic behaviour are determined by trial and error from the four

experimental cyclic tests. The macro-model appears to havegood prediction abilities of the

normalised accumulated displacementsu andθ.
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Figure 36: Accumulated rotational displace-
ment of the first 1000 cycles, experimental
and analytical results for test C16
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Figure 37: Accumulated horizontal displace-
ment of the first 1000 cycles, experimental
and analytical results for test C16

0 200 400 600 800 1000
0

0.5

1

1.5

2

2.5

3

N

(θ
N

−
θ 0)/

θ 0

 

 

Test C18
Model prediction

Figure 38: Accumulated rotational displace-
ment of the first 1000 cycles, experimental
and analytical results for test C18
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Figure 39: Accumulated horizontal displace-
ment of the first 1000 cycles, experimental
and analytical results for test C18
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Figure 40: Accumulated rotational displace-
ment of the first 1000 cycles, experimental
and analytical results for test C20
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Figure 41: Accumulated horizontal displace-
ment of the first 1000 cycles, experimental
and analytical results for test C20
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Figure 42: Accumulated rotational displace-
ment of the first 1000 cycles, experimental
and analytical results for test C33
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Figure 43: Accumulated horizontal displace-
ment of the first 1000 cycles, experimental
and analytical results for test C33

To achieve a proper quantitative match of the experimental results, the cyclic parameters related

tou andθ have necessarily to be changed for each simulation. The parameters used in the simu-

lations are listed in Table 5. Figure 44 shows how the parameters vary as a function of the cyclic

loading magnitude ratio,Mmax/MR. A clear decreasing trend of the parameters for increasing

Mmax/MR can be observed. By including more tests in the analysis, also the dependency of the

parameters on the cyclic loading ratio,Mmin/Mmax, might be obtained. By slightly adjusting the
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parameters, the displacements at number of cycles larger than 1000 can also be predicted (cf.

Figures 45 and 46).

The reason of the variability of the parameters of the boundary surface model is to be found in

how the mapping rule is defined. It is likely that a more sophisticated mapping rule would be

able to capture the normalised displacements avoiding the dependency of the parameters on the

loading path.

Table 5: Parameters of the boundary surface model

Test αV αH αM βV βH βM φ
C16 350 5 5 70 6 6 0.01
C18 350 14 14 70 43 39 0.01
C20 350 13 13 70 27 29 0.01
C33 350 7 7 70 16 17 0.01
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Figure 44: Parameters of the boundary surface model as a function of the cyclic loading mag-
nitude ratio
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Figure 45: Rotational accumulated displace-
ment of the first 3000 cycles, experimental
and analytical results for test C18
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Figure 46: Horizontal accumulated displace-
ment of the first 3000 cycles, experimental
and analytical results for test C18

4 Conclusions and future work

In this work the possibility of interpreting experimental tests of bucket foundations under mono-

tonic and cyclic loading with a macro-element model is explored. The problem investigated

concerns monopod bucket foundations supporting offshore wind turbines. The well-known

model of Nova and Montrasio (1991) is slightly modified and used to interpret a series of mono-

tonic experimental tests. To account for cyclic loading, the model is integrated with a simplified

version of the boundary surface model of di Prisco et al. (2003a). Both monotonic and cyclic

experimental data are fairly well predicted by the analytical simulations.

Some aspects of the modelling should be further investigated. As emphasised in one of the

put forward discussions, the expression of an appropriate hardening law is not an easy task

due to the uplift event occurring under general loading atV/VM ≈ 0. This issue should be

properly addressed. Furthermore, as pointed out in Byrne (2000) and Larsen (2008), close to

the origin of the load space the failure locus can be approximated as linear. This could probably

be included in the model and reduce the complexity of the approach. Regarding the cyclic
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loading modelling, the parameters of the boundary surface model were found to be affected

by the loading path. As a result of that, the analysis of additional cyclic loading tests would

be necessary to provide the functions related to the parameters. Another way to generalise the

model would be to attempt a modification of the mapping rule. Furthermore, the combination

of different load packages would be a crucial feature to be included in the model to obtain more

realistic responses. Finally, since the model is validatedagainst small-scale experiments, its

applicability to real design situations is to be excluded until centrifuge tests or large-scale tests

will corroborate the findings of this study.

Abbreviations

OWTs offshore wind turbines
NMM Nova and Montrasio (1991) model

Nomenclature

d length of the skirt
f yielding function
g plastic potential
fl loading frequency
h load eccentricity
kV ,kH ,kM components ofKe

q vector of normalised displacements
ro outer radius of the foundation
t wall thickness
tl lid thickness
u horizontal displacement
u0 horizontal displacement of the first cycle
us horizontal displacement on the monotonic curve corresponding

toMmax

w vertical displacement
wp plastic vertical displacement
A,Q,I,C,B points of the normalised load space used for the mapping rule

description
C flexibility matrix
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D foundation diameter
Dr relative density
E elastic modulus
H horizontal load
Ke elasticity matrix
Q vector of normalised loads
V vertical load
VM bearing capacity of the foundation
VtM tensile capacity
V0 preconsolidation vertical load
MR monotonic moment capacity
Mmax,Mmin maximum and minimum cyclic moment
N number of cycles
W self-weight of the foundation
W ′

f buoyant weight of the foundation
W ′

p buoyant weight of the soil
αV ,αH ,αM ,βV ,βH ,βM ,φ parameters of the boundary surface model
µ,ψ,β,λ,χ,α,γ,R0,t0 parameters of the modified NMM
ε normalised horizontal displacement
ζ normalised rotational displacement
η normalised vertical displacement
θ rotational displacement
θ0 rotational displacement of the first cycle
θs rotational displacement on the monotonic curve corresponding

toMmax

ξ normalised vertical load
δ variable governing the mapping rule
ν poisson ratio
ρc hardening parameter
ρg fictitious variable of the plastic potential
ρk updating variable of the boundary surface model
τo shear stresses acting over the skirt
Λ plastic multiplier
Φ matrix governing the cyclic displacements accumulation
Φii components ofΦ
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41, No. 2, 243-256

Roscoe, K. H. and Schofield, A. N. (1956). The stability of a short pier foundations in sand.

British Welding Journal. August, 343-354

36



Salciarini, D. and Tamagnini, C. (2009). A hypoplastic macroelement model for shallow foun-

dations under monotonic and cyclic loads.Acta Geotechnica4, No. 3, 163-176

Tamagnini, C., Salciarini, D. and Ragni, R. (2013). Implementation of a 6-dof hypoplastic

macroelement in a finite element code. InProceeding of the International Conference on

Computational Geomechanics (Comgeo III), Krakow

Vaitkunaite, E., Ibsen, L. B., and Nielsen, B. N. (2014). Newmedium-scale laboratory testing of

bucket foundation capacity in sand. InProceedings of the Twenty-fourth International Ocean

and Polar Engineering Conference (ISOPE), Busan

Villalobos, F. A. (2006).Model testing of foundations for offshore wind turbines. Ph.D. thesis,

Oxford University

Villalobos, F. A., Byrne, B. W. and Houlsby, G. T. (2009). An experimental study of the drained

capacity of suction caisson foundations under monotonic loading for offshore applications.

Soils and Foundations49, No. 3, 477-488

Wood, D. M. (2012). Macroelement modelling. InMechanical Behaviour of Soils under Envi-

ronmentally Induced Cyclic Loads, di Prisco C. and Wood D. M. (Eds), CISM, Udine

Zhang, Y., Cassidy, M. J., Bienen, B. (2014). A plasticity model for spudcan foundations in soft

clay.Canadian Geotechnical Journal51, 629-646

37





Paper V

Title:

Laboratory experiments of bucket foundations under cyclic loading

Authors:

Foglia, A. and Ibsen L. B.

Year of publication:

2014

Published in:

Technical Report No. 177, Department of Civil Engineering, Aalborg University

Number of pages:

156





Laboratory experiments of bucket foundations
under cyclic loading

Aligi Foglia and Lars Bo Ibsen

Department of Civil Engineering, Aalborg University

This report collects information on the experimental campaign concerning

bucket foundations under lateral cyclic loading conducted by the authors be-

tween 2011 and 2014. The report includes a step by step manual on the test

procedures and a number of information and graphs for each experiment. In

addition, all the tests performed with the relevant features are listed.

1 General description of the setup

The experimental rig used for all the experiments was designed at Aalborg University on the

base of the test setup of LeBlanc (2010). The setup consists of a sand box and a loading frame.

The sand box is made of steel, has size 1600x1600x1150 mm and is surrounded by the loading

frame. A screw jack is mounted on the horizontal beam of the loading frame and is used for

the installation of the foundations. Another screw jack is mounted on the vertical beam of the

loading frame and is used to apply monotonic lateral loading. The sand box is provided with

a drainage system on the bottom. The drainage system consists of perforated pipes, 100 mm

of draining material (gravel), and a sheet of geotextile. The pipes are laid in such a way to let

the water evenly within the sand box. The water is provided bya tank and the water gradient is
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Figure 1: Picture of the rig Figure 2: Cross section of the rig

Figure 3: Picture of the foundations used

regulated with valves.

The cyclic loading system consist of a hinged beam with a motor drive and three weight hangers.

The cyclic loading is induced to the system by applying a rotational motion to weight-hanger 1

which, in turn, transmits an oscillating motion to the hinged beam. As a result of that, the whole

system is caused to undergo cyclic loading. A picture and a sketch of the system are illustrated

in Figures 1 and 2. Three foundations with diameterD = 300 mm, skirt thicknesst = 1.5 mm,

lid thicknesstl = 11.5 mm and embedement ratios 1, 0.75 and 0.5 were adopted to fulfilthe

experimental program. The three small-scale buckets are depicted in Figure 3.
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Table 1: Index properties of Aalborg University sand No. 1

.

Property Value Unit
Grain diameter corresponding to 50% passing 0.14 [mm]
Uniformity coefficient 1.78 [-]
Specific grain density 2.64 [-]
Maximum void ratio 0.86 [-]
Minimum void ratio 0.55 [-]

Figure 4: Power supply Figure 5: Data acquisition system (Spider 8)

Figure 6: Data sampling software (CAT-
MAN)

Figure 7: Electric panel

The sand used is Aalborg University sand No. 1. The main properties of the sand are given in

Table 1. Addtional information on the sand can be found in Larsen (2008).

To activate the screw jacks and the hydraulic motor (see Chapters 3 and 4) a power supply is

used, see Figure 4. If the wires are homopolarly connected tothe power supply, a backward
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movement of the actuator will be generated. The experimental data is collected by means of

a data acquisition system (Spider8) , shown in Figure 5, and adata sampling software (CAT-

MAN), shown in Figure 6. All the transducers are connected tothe data acquisition system

through an electric panel (Figure 7) placed on one side of theexperimental rig.

2 Preparation of the sand sample

In order to ensure the test repeatability, the soil sample isprepared in a systematic manner. The

sample preparation procedure is listed in the following steps:

– apply a water gradient close to the critical gradient to loosen up the sand. Open the valve

of the water tank until the water reaches the red sign on the piezometer (plastic tube)

connected to the sand box. The water level should be approximately 105 cm. Close the

water tank valve when the water begins to come out from the sand box

– mount the wooden frame on the sand box. Fix it with clamps to prevent leaks of water

during soil vibration, see Figure 8

– add two buckets of clean sand over the soil surface in order to obtain an additional sand

layer that will be removed after the vibration of the sand. The sand should be spread as

Figure 8: Wooden frame on top of the test sand box on the left-hand side. Particular of one of
the clamps fixing the frame on the right-hand side
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Figure 9: Holed wooden plates with vibration rod on top

even as possible

– fill up the sand box with water from the top until it reaches the cork placed on one side of

the wooden frame. Add the water gradually to prevent sand erosion

– place the holed wooden plates on top of the frame, see Figure9. Each hole on the plate

is numbered with 1 or 2. In order to guarantee uniform soil conditions, vibrate first the

holes of the same number. Vibrate the remaining holes successively. Start vibrating from

one corner, one row of holes after the other

– attach a mark to the vibrator rod so to keep always the same penetration depth. The

penetration depth is 80 cm

– after vibrating, remove the clamps and let the water overflowing from the sandbox

– open the valve at the bottom of the sand box for 5 to 10 minutesto reduce the water level

and to allow the soil alignment operations. Close the valve when the soil profile is visible

– remove any dirt from the soil surface. Afterwards, align the soil surface with the lath

shown in Figure 10. From this step on to avoid any unnecessarycontact with the soil
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Figure 10: Lath used to smooth the soil surface

– fill up the sandbox with water from the top. The water should flow slowly and hit first

a steel plate placed on the corner of the sand box to prevent erosion. Close the water

when the water reaches the black line on the sand box edges. The water level should be

approximately 5 mm lower than the sand box top

3 Cone penetration test

Small-scale cone penetration tests (CPTs) are necessary toascertain the uniformity of the sand

sample, to check the repeatability of the soil condition andto estimate the soil parameters. The

soil parameters are estimated by following the procedure described in Ibsen et al. (2009). It

should be emphasised that the relative density calculated with the small-scale CPT is only an

estimation based on empirical correlations. Besides, the CPT was re-calibrated several times

during the experimental campaign. This causes a significantfluctuation of the relative density

estimation throughout the testing programme. In reality, always the same amount of sand in the
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Figure 11: Plan of the sand box with CPT positions. Measures in mm

same volume was used. This means that in spite of the scatter shown by the calculated values,

the relative density must have been fairly consistent for the whole experimental programme.

In order to test the soil uniformity the CPTs should be carried out in three different positions of

the soil surface . The positions of the CPTs are sketched in Figure 11. The penetration depth is

measured with a displacement transducer ASM WS10. Below theCPT procedure is described:

– connect the hydraulic motor (Figure 12) to the screw jack onthe loading frame through

the two hydraulic cables. Mind the cables far ends, some oil drops might come out and

fall over the prepared soil sample

– install the CPT device on the screw jack, see Figure 13. Connect the cable corresponding

to the tip resistance to the electric panel

– fix the displacement transducer wire, see Figure 14. Connect the cable corresponding to

the penetration depth to the electric panel

– make sure that the signals of penetration resistance and penetration depth are broadcast
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Figure 12: Hydraulic motor and cables Figure 13: Small-scale CPT device

Figure 14: CPT displacement transducer

to the electric panel

– plug the wires of the hydraulic motor in the power supply

– during penetration, the power supply should be set on the maximum power (20 V). This

will ensure a penetration rate of 5 mm/s

The following steps describe the procedure to set up the datarecording system before each CPT:

– turn on Spider8 and CATMAN
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– open Input/Output (I/O) definitions

– load the (I/O) file from the following folder:

C : /MyDocuments/TestSandbox/CPT/InputOutputDefinition/CPTsandbox.IOD

– click the buttonConfigure device (all channels)(Figure 6)

– load the amplifier setup from the following file:

C : /MyDocuments/TestSandbox/CPT/SetupAssistant/cptdevicesetup.S8

– check whether the signals of the needed devices are transmitted (marked in green if so)

– click the buttonConfigure Measurement Wizard(Figure 6)

– in the General settings, click the buttonExport optionsfrom the Online Data Export menu

– select the following file name:

C : /MyDocuments/TestSandbox/ResultsBucket2012

– create a new folder for a new test and name it “CPTxx”, where “xx”is the test name. Open

the CPT folder and save the file with the number of the CPT (1 2 or3)

– from the Configure Measurement Wizard window, click the buttonOnline Documentand

select the following file:

C : /MyDocuments/TestSandbox/CPT/Script/cpt.OPG

– from the Configure Measurement Wizard window, click the button Start Measurement

Wizard

The recording system is now ready and the CPT can start. To runthe test follow the following

steps:
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– place the CPT device in position1 (Figure 11)

– turn on the power supply and the hydraulic motor

– lower the CPT device to the point where it touches the water surface by using the control

of the hydraulic motor

– tare the recording system in CATMAN by pressing the buttonZero all active channels

– start recording by pressing the buttonRun acquisitionin CATMAN

– penetrate the soil down to a depth of 40 cm

– stop recording by pressing the buttonStop measurementin CATMAN

– remove the CPT device from the soil by using the control of the hydraulic motor

– turn off the hydraulic motor and quit CATMAN

The entire procedure has to be repeated for the CPT positions2 and 3. Each CPT record has to

be saved in a different file. After carrying out the three CPTs, switch off the power supply and

dismantle carefully hydraulic cables and CPT instruments.

4 Installation phase

During the installation process the bucket foundation is instrumented with a load cell (HBM

U2B 50 kN) to measure the vertical load, and a displacement transducer (ASM WS10) to mea-

sure the penetration depth. The bucket foundation is driveninto the soil with the screw jack

placed on the loading frame. The installation procedure is described in the following steps:

– place two steel beams on the sand box. These beams support the bucket as illustrated in

Figure 15
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Figure 15: Bucket on steel beams Figure 16: Steel pin

– displace the bucket on the steel beams until reaching the centre of the sand box

– place the vertical (or installation) screw jack in the centre of the loading frame. Fix firmly

the screw jack to the frame in order to avoid any undesired movement during penetration

– connect the bucket to the screw jack with the steel pin shownin Figure 16

– lift the bucket with the screw jack by using a screwdriver

– remove the supporting beams

– lower the bucket using the screwdriver until it touches thewater

– check whether the bucket is placed horizontally with a spirit level, see Figure 17

– use now an electric motor to activate the screw jack and lower thereby the foundation

with constant displacement rate of 0.02 mm/s

– the three air valves shown on the right-hand side of Figure 17 have to be opened during

penetration
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Figure 17: Bucket, air valves and spirit level

– install the steel frame that holds the installation rig barduring penetration to avoid un-

wanted rotations of the bucket. Mount the displacement transducer for the depth penetra-

tion on the magnet support, see Figures 18 and 19

– connect the wires of the vertical load cell and displacements transducer to the electric

panel

– make sure that the signals of vertical load cell and displacement transducer are transmitted

to the electric panel by checking the Setup Assistant on CATMAN

– install the automatic switch off system on the installation rig bar in order to provide a

safety automatic stop of the bucket penetration. Place somewooden blocks on the steel

frame to ensure the automatic switch off, see Figure 19
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Figure 18: Installation system Figure 19: System for automatic switch off

Now the installation phase is ready to commence. The following steps summarize the procedure

to set up the data recording system before the installation stage:

– turn on Spider8 and CATMAN

– open I/O definitions

– load the I/O file from the following folder:

C : /MyDocuments/TestSandbox/Installation/IOdefinition.IOD

– click the buttonConfigure device (all channels)(Figure 6)

– load amplifier setup from the following file:

C : /MyDocuments/TestSandbox/Installation/setupassistant.S8

– check whether the correct signals are broadcast
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– click the buttonConfigure Measurement Wizard(Figure 6)

– in the General settings, click the buttonExport optionsfrom the Online Data Export menu

– select the following file name:

C : /MyDocuments/TestSandbox/ResultsBucket2012

– create a new folder for the new test. Inside the folder create a sub-folder and name it

“Installation”. Inside this, save the file as “Installation-xx”

– from the Configure Measurement Wizard window, click the buttonOnline Documentand

select the following file:

C : /MyDocuments/TestSandbox/Installation/Instscript.OPG

– from the Configure Measurement Wizard window, click the button Start Measurement

Wizard

After this, the penetration phase can start. Follow the steps below:

– tare the recording system in CATMAN by pressing the buttonZero all active channels

– start recording by pressing the buttonRun acquisitionin CATMAN

– plug the wires in the power supply in a non-homopolar manner

– turn on the power supply and set it to 20 V

– when the penetration force or the penetration depth is the one desired turn off the power

supply

– close the three air valves on the bucket lid

– dismantle cautiously all the installation instruments and disconnect the foundation from

the screw jack
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5 Cyclic test

Before each test, a vertical tower has to be installed on the foundation. The vertical tower

transmits the overturning moment and the horizontal load tothe foundation. Two load cells

(HBM U2B 50 kN) are fit to the tower at a height (eccentricity ofthe load) selected by the user.

Three LVDTs (HBM W10 TK) measure the displacement of the foundation (see Chapter 7).

The following steps describe the cyclic test procedure:

– mount carefully the tower on the bucket foundation installed

– place the steel frame that will hold the three displacementtransducers (LVDTs) on the

sand box, see Figure 20. Install the three displacement transducers on the steel frame.

Make sure that the LVDTs far ends are placed correctly on the tower plates

– connect the LVDTs cables to the electric panel

– make sure that the LVDTs signals are broadcast

Figure 20: LVDTs mounted on the steel frame, vertical tower above the bucket, load cells and
loading cables
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Before starting the cyclic test, the data recording system has to be set up by following the

procedure below:

– turn on Spider8 and CATMAN

– open I/O definitions

– load the I/O file from the following folder:

C : /MyDocuments/TestSandbox/BucketSetup/InputOutput/Bucket2012Trans.IOD

– click the buttonConfigure device (all channels)(Figure 6)

– load the amplifier setup from the following file:

C : /MyDocuments/TestSandbox/BucketSetup/SetupAssistant/Bucketsand2011.S8

– check whether the correct signals are broadcast

– click the buttonConfigure Measurement Wizard(Figure 6)

– in the General settings, click the buttonExport optionsfrom the Online Data Export menu

– select the following File base name:

C : /MyDocuments/TestSandbox/ResultsBucket2012

– create a new folder inside the folder of the corresponding test and name it “Cyclic”.

Create another new folder inside “Cyclic”and name it “MakingO”. Inside this, save the

file as “Load”

– from the Configure Measurement Wizard window, click the buttonOnline Documentand

select the following file:

C : /MyDocuments/TestSandbox/BucketSetup/Script/cyclicH5.OPG
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Figure 21: Cyclic loading frame

– from the Configure Measurement Wizard window, click the button Start Measurement

Wizard

After setting up the recording system, the loading system has to be prepared:

– fix the cyclic-loading frame (Figure 21) to the main loadingframe and connect the cables

of the weight hangers to the load cells on the vertical tower

– make sure the cables are horizontal

– hold the vertical tower in position with clamped wooden blocks

– disconnect the safety cable from the cyclic loading beam (Figure 22)

The cyclic motor can now be started. The cyclic motor is controlled by the software named

STARTER. To start such software the following procedure should be followed:

– turn on the cyclic motor and STARTER

– press theOpen projectbutton and open the file:

C : /ProgramFiles/SIEMENSstep7/s7proj/project
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Figure 22: Connection between the hinged beam and the safetycable

– open the Project window and selectConnect to target system

– double click onS110− CU305 D from the STARTER main window

– double click onSERV O − 02 from the STARTER main window

– selectCommissioning

– selectControl panel

– selectAssume control priority!

– from the Assume Control Priority window, set1000 ms and pressAccept

– pressEnables. Set150 rounds per minute (rpm). This will in reality correspond to 6rpm

Before starting the cyclic test, the rig has to be loaded and the cyclic motor activated. The

following procedure should be followed:
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– tare the recording system in CATMAN by pressing the buttonZero all active channels

– start recording by pressing the buttonRun acquisitionin CATMAN

– put the selected weights on the weight hangers

– tighten the steel cable attached to the hinged beam until CATMAN displays a force of

10N

– click the green button in the window of STARTER to activate the cyclic motor

STARTER is very sensitive and the motor may stop running whenusing the computer. When

the test is to be stopped, click the red button in the window ofSTARTER, disconnect the target

system and quit STARTER. Afterwards, remove the weights. Remember to stop and not to quit

the recording session when a post-cyclic test is to be carried out.

6 Post-cyclic test

The post cyclic test is carried out with the screw jack placedon the vertical beam of the loading

frame, see Figure 23. Practically speaking, a post-cyclic test is a monotonic test of a bucket that

has already accumulated rotation due to cyclic loading. Thesystem is instrumented in the same

manner (three LVDTs measuring the displacements and the load cell measuring the applied

force). Before starting the cyclic test, the data recordingsystem has to be set up by following

the procedure below:

– click the buttonConfigure Measurement Wizard

– in the General settings, click the buttonExport optionsfrom the Online Data Export menu

– select the following file name:

C : /MyDocuments/TestSandbox/ResultsBucket2012
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Figure 23: Static loading screw jack

– create a new folder inside the folder with the corresponding test and name it “Post-cyclic”.

Inside this folder, save the file as “Post-cyclicxx”

– from the configure Measurement Wizard window, click the button Start Measurement

Wizard

To ensure fully drained conditions, the post-cyclic tests should be performed with the power

supply set to10V. The post-cyclic test should be stopped when a peak in the load-displacement

curve appears. The steps of a post-cyclic test are the following:

– connect vertical tower and screw jack (actuator) with a steel wire

– activate the screw jack by means of a proper electric motor.Before doing that, make sure

the static load jack has enough space for spinning back

– start recording by pressing the buttonRun acquisitionin CATMAN

– start the power supply and set it to10 V

– when soil failure has occurred stop recording by pressing the buttonStop measurementin

CATMAN
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– invert the wires of the power supply to release the load applied

7 Displacement measurement

The displacements of the bucket foundations are measured bymeans of two perpendicular plates

on which the three LVDTs are placed. Two transducers are placed vertically and one horizon-

tally. The direct measurements do not provide the actual displacement of the foundation. To

figure out the displacements, the direct measurements are post-processed. The calculation pro-

cess is based on that proposed by Larsen (2008). The system isdepicted in Figure 24. The

sign convention used is that put forward by Butterfield et al.(1997). The convention is illus-

trated in Figure 25 where,u is the horizontal displacement,w is the vertical displacement,θ is

the rotational displacement,V is the vertical load,M is the overturning moment andH is the

horizontal load.

The calculation of the displacements,u, w andθ, begins with the definition of the coordinates

of the LVDTs at both initial and displaced configuration. Below, the coordinates are specified

with respect to the origin of the system which is located on the bottom of the bucket lid, see

Figure 24. The subscriptsi andd stand for initial and displaced position.

Figure 24: a) initial configuration of the foundation; b) displaced configuration of the founda-
tion. After Larsen (2008)
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Figure 25: Sign convention for loads and dis-
placements. After Butterfield et al. (1997)

Figure 26:l1 andl2 during horizontal load-
ing. After (Larsen, 2008)

The coordinates of the system at the beginning of the experiment can be expressed in mm as:

u1,i = (−185, 120);

w1,i = (−100, 95);

w2,i = (100, 95);

whereu1 refers to the horizontal displacement transducer,w1 refers to the first vertical displace-

ment transducer andw2 refers to the second vertical displacement transducer. Obviously, in case

the dimension of the perpendicular plates are changed, the numerical value of the coordinates

would change accordingly. The procedure though, would remain the same.

When a displacement occurs the coordinates become:

u1,d = (−185 + ∆x, 120);

w1,d = (−100, 95 + ∆y1);

w2,d = (100, 95 + ∆y2);
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where∆x is the horizontal transducer measurement,∆y1 is the measurement of the first vertical

transducer and∆y2 is the measurement of the second vertical transducer.

Note that depending on the displacement induced, the transducer measurements can be either

positive or negative with respect to the coordinate system.For instance, according to the system

illustrated in Figure 24, the second vertical measurement∆y2 is negative while the horizontal

measurement∆x is positive as well as the first vertical measurement∆y1.

The horizontal and the vertical displacement of the bucket can be calculated by representing

the perpendicular plates with two lines, see Figure 26. These two lines,l1 andl2, are expressed

with two linear equations:

l1 : y = a1 · x+ b1 (1)

l2 : y = a2 · x+ b2 (2)

where the angular coefficientsa1 anda2 and the constantsb1 andb2 can be deduced for ev-

ery recording by manipulating transducer coordinates and transducer measurements following

equations (3)-(6) shown below. Figure 26 represents the twoperpendicular plates in the dis-

placed configuration. In the same figure, the junction of the two plates,s, the midpoint of line

l1, m, and the points of the transducer measurementsud, w1,d andw2,d, are indicated as well.

As it is intuitive, the rotation of the linel1 is equal to the angular coefficienta1, which can be

calculated with equation 3. Thereof the rotation is simplyθ = arctan(a1). Oncea1 is known

alsoa2 can be calculated in virtue of the perpendicular lines property (equation 4):

a1 =
∆y2 −∆y1

200
(3)

a2 =
−1

a1
(4)

Now, since the coordinates of the displaced configuration are known, the constantsb1 andb2

can be calculated as:

b1 = 95 + ∆y1 + a1 · 100 (5)
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b2 = 120− (∆x− 185) · a2 (6)

Hence, by knowing the constantsb1 andb2 the coordinates of the junction points can be calcu-

lated:

xs =
b2 − b1
a1 − a2

(7)

ys = a1 · xs + b1 (8)

The coordinates ofm are necessary to assess the displacement of the bucket foundation refer-

ence point. The coordinates ofm are calculated as:

xm = xs + 185 · cos(θ) (9)

ym = ys − 185 · cos(θ) (10)

Finally the horizontal displacementu and the vertical displacementw are obtained with the

following relationships:

u = xm − 95 · sin(θ) (11)

w = −(ym − 95 · cos(θ)) (12)

In Figure 27 one displacement transducer on the right-hand side and one force transducer (or

load cell) on the left-hand side are depicted.

Figure 27: Force and displacement transducer Figure 28: LVDTs calibration rig
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Before overtaking the experimental programme all the transducers must be calibrated. The three

LVDTs are calibrated by means of the calibration rig depicted in Figure 28.
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Data sheets

The following pages of the report include the list of the tests performed and the essential data

sheets of each experimental test.
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D Diameter of the foundation

d/D Embedment ratio

M/HD Ratio between load eccentricity and diameter 

Gradient Water gradient applied before preparing the sample

Dr Relative density

V max Maximum vertical load during installation

ζb Ratio between the maximum cyclic moment and the monotonic failure moment

ζc Ratio between minimum and maximum cyclic moments

Period Period of the cyclic loading

No. Cycles Number of cycles

V Vertical load during test

θ final Final accumulated rotation

M max Post‐cyclic maximum moment

θ max Rotation correspondng to the maximum moment for standard and post‐cyclic monotonic tests

V ult Ultimate vertical load

M1 Mass on the weight hanger 1

M2 Mass on the weight hanger 2

M3 Mass on the weight hanger 3

Mmax Maximum cyclic moment

Mmin Minimum cyclic moment

Legend for tests list and data sheets



Cyclic  tests with constant V and constant M/HD
Installation

phase

[mm] [‐] [‐] [‐] [%] [N] [‐] [‐] [sec] [‐] [N] [deg] [Nm] [deg]

D d/D M/HD Gradient Dr V max ζb ζc Period No. Cycles V θ final M max θ max
C15 300 1 1.987 ‐ 88.18 ‐ 0.278 ‐0.846 10 50647 241 0.079 185.4 1.110

C16 300 1 1.987 ‐ 81.57 ‐ 0.403 ‐0.047 10 50063 241 0.427 177.5 1.995

C17 300 1 1.987 ‐ 79.62 ‐ 0.536 0.027 10 49978 241 1.228 184.4 2.183

C18 300 1 1.987 ‐ 80.71 ‐ 0.304 ‐0.042 10 50004 241 0.158 180.4 2.222

C20 300 1 1.987 ‐ 82.67 ‐ 0.358 ‐0.595 10 50049 241 0.435 190.6 1.883

C22 300 1 1.987 ‐ 82.33 ‐ 0.383 0.193 10 50255 241 0.381 192.4 1.542

C23 300 1 1.987 ‐ 86.71 ‐ 0.381 ‐0.426 10 50209 241 0.503 200.8 2.091

C24 300 1 1.987 ‐ 83.09 ‐ 0.367 ‐0.963 10 50642 241 0.100 203.4 1.064

C31 300 1 1.987 0.90 91.20 ‐ 0.339 0.036 10 100933 241 0.297 185.9 1.082

C32 300 1 1.987 0.90 92.65 ‐ 0.421 ‐0.146 10 49959 241 0.522 193.6 1.171

C33 300 1 1.987 0.95 92.09 26967 0.382 ‐0.316 10 50471 241 0.400 200.2 1.423

C34 300 1 1.987 0.974 92.63 25398 0.252 ‐0.604 10 10022 241 0.058 191.8 1.447

C35 300 1 1.987 0.974 88.87 25281 0.484 ‐0.543 10 9976 241 0.678 203.2 1.600

C36 300 1 1.987 0.8 98.79 25149 0.583 ‐0.563 10 10153 241 1.216 217.5 1.710

C37 300 1 1.987 0.89 99.41 34551 0.687 ‐0.578 10 10083 241 2.000 220.6 2.376

C38 300 1 1.987 0.817 99.03 25152 0.758 ‐0.583 10 10016 241 2.574 228.2 2.839

C39 300 1 1.987 1.13 94.68 25668 0.856 ‐0.588 10 9366 241 3.128 ‐ ‐

C40 300 1 1.987 1.06 96.17 25125 1.155 ‐0.469 10 108 241 2.451 232.4 3.659

C41 300 1 1.987 ‐ 96.39 25731 0.400 ‐0.522 10 10032 241 0.290 208.8 1.230

C42 300 1 1.987 0.96 96.83 25212 0.420 ‐0.500 20 10124 241 0.354 206.5 1.488

C44 300 1 1.987 0.956 95.91 27798 0.389 ‐0.598 30 10148 241 0.277 201.4 1.191

C45 300 1 1.987 ‐ 94.05 25185 0.387 ‐479 5 10070 241 0.314 214.8 1.66

C46 300 1 1.987 1.06 94.67 25206 0.419 ‐0.5 40 10031 241 0.321 204.5 1.19

C47 300 1 1.987 1.06 96.9 7659 0.378 ‐0.796 10 50001 241 0.283 205.5 0.98

C49 300 0.5 1.987 1.08 98.30 14540 0.224 0.037 10 74917 198 0.017 57.37 2.502

C50 300 0.5 1.987 1.08 97.41 14800 0.355 ‐0.054 10 9953 198 0.0634 56.26 2.52

C51 300 0.5 1.987 1.08 97.76 15200 0.436 ‐0.040 10 10089 198 0.0888 56.4 2.319

C53 300 0.5 1.987 1.08 92.05 15234 0.514 ‐0.049 10 16068 198 0.362 57.97 2.486

C54 300 0.5 1.987 0.96 87.55 14301 0.339 0.019 10 16327 198 0.099 46.4 1.778

C55 300 0.5 1.987 0,96 82.55 14325 0.398 0.04 10 15233 198 0.1407 47.3 2.646

C58 300 0.75 1.987 0.96 82.47 19530 0.177 ‐0.09 10 34459 208 0.03 101.7 2.16

C59 300 0.75 1.987 0.96 82.47 19425 0.244 ‐0.055 10 9984 208 0.0783 101.2 2.4

C60 300 0.75 1.987 0.96 83.19 19008 0.312 0.0547 10 10058 208 0.0978 103.2 2.27

C61 300 0.75 1.987 0.96 83.41 18116 0.376 0.053 10 18116 208 0.3874 104.5 4.88

Loading and foundation  Preparation of the 
geometry

Cyclic loading phase

Test

Monotonic 

soil sample post‐cyclic phase



Monotonic tests with constant V and constant M/HD 
Installation

phase

Test [mm] [‐] [‐] [‐] [%] [N] [N] [Nm] [‐]

D d/D M/HD Gradient Dr V max V M max θ max
S13 300 1 3.010 ‐ 85.3 ‐ 241 189.13 1.92

S19 300 1 1.987 ‐ 81.9 ‐ 241 179,67 2.41

S25 300 1 1.100 ‐ 90.8 ‐ 241 152.59 1.407

S26 300 1 5.820 ‐ 94.09 ‐ 241 213.71 1.32

S27 300 1 8.748 ‐ 94.2 ‐ 241 219.27 0.919

S28 300 1 5.819 ‐ 94.8 ‐ 241 218.09 1.28

S29 300 1 3.010 ‐ 90.52 ‐ 241 195.35 1.02

S30 300 1 1.987 ‐ 92.8 ‐ 241 183.46 1.15

S48 300 0.5 1.987 1.08 94.61 14500 198 53.46 2.3

S52 300 0.5 1.987 1.08 93.55 3639 198 55.18 1.8

S56 300 0.75 1.987 1.08 83.15 4218 208 95.35 2.29

S57 300 0.75 1.987 1.08 83.1 19464 208 97.53 2.12

Pure V monotonic tests

[mm] [‐] [%] [kN]

D d/D Dr V ult
S63 300 0.75 77.97 76.97

S64 300 1 77.39 91.66

Test

Loading and foundation  Preparation of the 

Sample preparation 

Monotonic loading phase

geometry

Foundation 

and test phase

soil samplegeometry



Test equipment Bucket
User Diameter [mm] 300

Test name Embedment ratio 1

Date Test
Static or cyclic test static

Moment arm [mm] 0.903

General Comments
CPT 1 was not carried out properly

Soil Preparation & Installation Phase

Gradient applied 

‐

Relative density [%]

cpt 1 cpt 2 cpt 3 Average Maximum installation force [N] ‐

‐ 86.33 84.27 85.30 Penetration depth [mm] ‐

Installation Phase

‐

Blue sandbox

Aligi

S13
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Maximum moment [Nm] 189.13

Rotation at maximum moment [deg]  1.92
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Test equipment Bucket
User Diameter [mm] 300

Test name Embedment ratio  1

Date Test
Static or cyclic test cyclic

Moment arm [mm] 596

General Comments
None

Soil Preparation and Installation Phase

Gradient applied 

‐

Relative density [%]

cpt 1  cpt 2 cpt 3 Average Maximum installation force [N] ‐

91.63 87.86 85.05 88.18 Penetration depth [mm] ‐

Cyclic Test Phase

Masses on the weight hangers [Kg]

M1 M2 M3 Number of cycles 50647

9.775 14.61 33 Loading period [s] 10

Installation Phase

07/05/2012

Blue sandbox

Aligi & Matthias

C15
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Maximum accumulated rotation [deg] 0.079

Maximum and minimum moment [Nm]

Mmax Mmin ζb ζc
50.98 ‐43.14 0.278 ‐0.846

Horizontal Load‐Time, Moment‐Rotation
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Post‐Cyclic Phase

Maximum moment [Nm] 185.41

Rotation at maximum moment [deg]  1.11

Moment‐Rotation
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Test equipment Bucket
User Diameter [mm] 300

Test name Embedment ratio 1

Date Test
Static or cyclic test cyclic

Moment arm [mm] 596

General Comments
None

Soil Preparation and Installation Phase

Gradient applied 

‐

Relative density [%]

cpt 1 cpt 2 cpt 3 Average Maximum installation force [N] ‐

82.49 82.78 79.43 81.57 Penetration depth [mm] ‐

Cyclic Test Phase

Masses on the weight hangers [Kg]

M1 M2 M3 Number of cycles 50063

7.775 5.61 33 Loading period [s] 10

Installation Phase

23/05/2012

Blue sandbox

Aligi & Matthias

C16
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Maximum accumulated rotation [deg] 0.4271

Maximum and minimum moment [Nm]

Mmax Mmin ζb ζc
73.82 ‐3.47 0.403 ‐0.047

Horizontal Load‐Time, Moment‐Rotation

LVDTs‐Time, Rotation‐Time
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Post‐Cyclic Phase

Maximum moment [Nm] 177.46

Rotation at maximum moment [deg]  1.995

Moment‐Rotation
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Test equipment Bucket
User Diameter [mm] 300

Test name Embedment ratio 1

Date Test
Static or cyclic test cyclic

Moment arm [mm] 596

General Comments
None

Soil Preparation and Installation Phase

Gradient applied 

‐

Relative density [%]

cpt 1 cpt 2 cpt 3 Average Maximum installation force [N] ‐

81.02 78.82 79.04 79.62 Penetration depth [mm] ‐

Cyclic Test Phase

Masses on the weight hangers [Kg]

M1 M2 M3 Number of cycles 49978

9.775 6.11 33 Loading period [s] 10

Installation Phase

30/05/2012

Blue sandbox

Aligi & Matthias

C17
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Maximum accumulated rotation [deg] 1.228

Maximum and minimum moment [Nm]

Mmax Mmin ζb ζc
98.26 2.66 0.536 0.027

Horizontal Load‐Time, Moment‐Rotation

LVDTs‐Time, Rotation‐Time
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Post‐Cyclic Phase

Maximum moment [Nm] 184.43

Rotation at maximum moment [deg]  2.183

Moment‐Rotation
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Test equipment Bucket
User Diameter [mm] 300

Test name Embedment ratio 1

Date Test
Static or cyclic test cyclic

Moment arm [mm] 596

General Comments
None

Soil Preparation and Installation Phase

Gradient applied 

‐

Relative density [%]

cpt 1 cpt 2 cpt 3 Average Maximum installation force [N] ‐

82.68 79.81 79.63 80.71 Penetration depth [mm] ‐

Cyclic Test Phase

Masses on the weight hangers [Kg]

M1 M2 M3 Number of cycles 50004

5.775 7.11 33 Loading period [s] 10

Installation Phase

07/06/2012

Blue sandbox

Aligi & Matthias

C18
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Maximum accumulated rotation [deg] 0.158

Maximum and minimum moment [Nm]

Mmax Mmin ζb ζc
55.71 ‐2.33 0.304 ‐0.042

Horizontal Load‐Time, Moment‐Rotation

LVDTs‐Time, Rotation‐Time
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Post‐Cyclic Phase

Maximum moment [Nm] 180.4

Rotation at maximum moment [deg]  2.222

Moment‐Rotation
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Test equipment Bucket
User Diameter [mm] 300

Test name Embedment ratio 1

Date Test
Static or cyclic test static

Moment arm [mm] 0.596

General Comments
None

Soil Preparation & Installation Phase

Gradient applied 

‐

Relative density [%]

cpt 1 cpt 2 cpt 3 Average Maximum installation force [N] ‐

81.77 81.88 82.08 81.91 Penetration depth [mm] ‐

Installation Phase

‐

Blue sandbox

Aligi

S19
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Maximum moment [Nm] 179.67

Rotation at maximum moment [deg]  2.41

Horizontal and Vertical displacement‐Rotation

Moment‐Rotation
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Test equipment Bucket
User Diameter [mm] 300

Test name Embedment ratio 1

Date Test
Static or cyclic test cyclic

Moment arm [mm] 596

General Comments
There was a mistake when recording the post‐cyclic test. Only the moment‐rotation curve of the test
can be relied on. u  and w  cannot be trusted.

Soil Preparation and Installation Phase

Gradient applied 

‐

Relative density [%]

cpt 1 cpt 2 cpt 3 Average Maximum installation force [N] ‐

86.65 81.82 80.53 82.67 Penetration depth [mm] ‐

Cyclic Test Phase

Masses on the weight hangers [Kg]

M1 M2 M3 Number of cycles 50049

10.575 14.61 33 Loading period [s] 10

Installation Phase

14/06/2012

Blue sandbox

Aligi & Matthias

C20
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Maximum accumulated rotation [deg] 0.435

Maximum and minimum moment [Nm]

Mmax Mmin ζb ζc
65.7 ‐39.07 0.358 ‐0.595

Horizontal Load‐Time, Moment‐Rotation

LVDTs‐Time, Rotation‐Time
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Post‐Cyclic Phase

Maximum moment [Nm] 190.64

Rotation at maximum moment [deg]  1.883

Moment‐Rotation

0 0.5 1 1.5 2
0

50

100

150

200

250
M

o
m

e
n
t, 

M
 [N

m
]

Rotation,  [deg]



Test equipment Bucket
User Diameter [mm] 300

Test name Embedment ratio 1

Date Test
Static or cyclic test cyclic

Moment arm [mm] 596

General Comments
None

Soil Preparation and Installation Phase

Gradient applied 

‐

Relative density [%]

cpt 1 cpt 2 cpt 3 Average Maximum installation force [N] ‐

84.77 82.11 80.11 82.33 Penetration depth [mm] ‐

Cyclic Test Phase

Masses on the weight hangers [Kg]

M1 M2 M3 Number of cycles 50255

5.275 4.61 33 Loading period [s] 10

Installation Phase

28/06/2012

Blue sandbox

Aligi & Matthias
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Maximum accumulated rotation [deg] 0.381

Maximum and minimum moment [Nm]

Mmax Mmin ζb ζc
70.26 13.58 0.383 0.193

Horizontal Load‐Time, Moment‐Rotation

LVDTs‐Time, Rotation‐Time

0 1 2 3 4 5

x 10
5

20

40

60

80

100

120

Time, T [s]

H
or

iz
on

ta
l L

o
ad

, 
H

 [
N

]

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4
0

20

40

60

80

M
om

en
t,

 M
 [

N
m

]

Rotation,  [deg]

0 1 2 3 4 5

x 10
5

0

0.1

0.2

0.3

Time, T [s]

R
ot

a
ti
on

, 
 [

de
g
]

0 1 2 3 4 5

x 10
5

-2

-1

0

1

Time, T [s]

T
ra

n
sd

u
ce

rs
, 

w 1, 
w

2, 
u 1 [

m
m

]

 

 

w1
w2
u1



Post‐Cyclic Phase

Maximum moment [Nm] 192.4

Rotation at maximum moment [deg]  1.542

Moment‐Rotation
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Test equipment Bucket
User Diameter [mm] 300

Test name Embedment ratio 1

Date Test
Static or cyclic test cyclic

Moment arm [mm] 596

General Comments
None

Soil Preparation and Installation Phase

Gradient applied 

‐

Relative density [%]

 cpt 1 cpt 2 cpt 3 Average Maximum installation force [N] ‐

88.09 87.78 84.25 86.71 Penetration depth [mm] ‐

Cyclic Test Phase

Masses on the weight hangers [Kg]

M1 M2 M3 Number of cycles 50209

9.775 11.61 33 Loading period [s] 10

Installation Phase

05/07/2012

Blue sandbox

Aligi & Matthias

C23
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Maximum accumulated rotation [deg] 0.503

Maximum and minimum moment [Nm]

Mmax Mmin ζb ζc
69.84 ‐29.73 0.381 ‐0.426

Horizontal Load‐Time, Moment‐Rotation

LVDTs‐Time, Rotation‐Time
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Post‐Cyclic Phase

Maximum moment [Nm] 200.8

Rotation at maximum moment [deg]  2.091

Moment‐Rotation
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Test equipment Bucket
User Diameter [mm] 300

Test name Embedment ratio 1

Date Test
Static or cyclic test cyclic

Moment arm [mm] 596

General Comments
None

Soil Preparation and Installation Phase

Gradient applied 
‐

Relative density [%]

cpt 1 cpt 2  cpt 3 Average Maximum installation force [N] ‐

83.8 85.23 80.24 83.09 Penetration depth [mm] ‐

Cyclic Test Phase

Masses on the weight hangers [Kg]

M1 M2 M3 Number of cycles 50642

13.575 23.11 33 Loading period [s] 10

Installation Phase

12/07/2012

Blue sandbox

Aligi & Matthias

C24
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Maximum accumulated rotation [deg] 0.1

Maximum and minimum moment [Nm]

Mmax Mmin ζb ζc
67.28 ‐64.77 0.367 ‐0.963

Horizontal Load‐Time, Moment‐Rotation

LVDTs‐Time, Rotation‐Time
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Post‐Cyclic Phase

Maximum moment [Nm] 203.4

Rotation at maximum moment[deg]  1.064

Moment‐Rotation
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Test equipment Bucket
User Diameter [mm] 300

Test name Embedment ratio 1

Date Test
Static or cyclic test static

Moment arm [mm] 0.33

General Comments
None

Soil Preparation & Installation Phase

Gradient applied 

‐

Relative density [%]

cpt 1 cpt 2 cpt 3 Average Maximum installation force [N] ‐

92.8 90.88 88.72 90.80 Penetration depth [mm] ‐

Installation Phase

‐

Blue sandbox

Aligi

S25
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Maximum moment [Nm] 152.59

Rotation at maximum moment [deg]  1.407

Horizontal and Vertical displacement‐Rotation

Moment‐Rotation
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Test equipment Bucket
User Diameter [mm] 300

Test name Embedment ratio 1

Date Test
Static or cyclic test static

Moment arm [mm] 1.746

General Comments
None

Soil Preparation & Installation Phase

Gradient applied 

‐

Relative density [%]

cpt 1 cpt 2 cpt 3 Average Maximum installation force [N] ‐

95.79 93.75 92.72 94.09 Penetration depth [mm] ‐

Installation Phase

‐

Blue sandbox

Aligi

S26
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Maximum moment [Nm] 213.71

Rotation at maximum moment [deg]  1.32

Horizontal and Vertical displacement‐Rotation

Moment‐Rotation
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Test equipment Bucket
User Diameter [mm] 300

Test name Embedment ratio 1

Date Test
Static or cyclic test static

Moment arm [mm] 2.62

General Comments
None

Soil Preparation & Installation Phase

Gradient applied 

‐

Relative density [%]

cpt 1 cpt 2 cpt 3 Average Maximum installation force [N] ‐

96.2 94.61 91.8 94.20 Penetration depth [mm] ‐

Installation Phase

‐

Blue sandbox

Aligi

S27
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Maximum moment [Nm] 219.27

Rotation at maximum moment [deg]  0.919

Horizontal and Vertical displacement‐Rotation

Moment‐Rotation
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Test equipment Bucket
User Diameter [mm] 300

Test name Embedment ratio 1

Date Test
Static or cyclic test static

Moment arm [mm] 1.74

General Comments
None

Soil Preparation & Installation Phase

Gradient applied 

‐

Relative density [%]

cpt 1 cpt 2 cpt 3 Average Maximum installation force [N] ‐

96.38 95.69 92.34 94.80 Penetration depth [mm] ‐

Installation Phase

‐

Blue sandbox

Aligi
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Maximum moment [Nm] 218.09

Rotation at maximum moment [deg]  1.28

Horizontal and Vertical displacement‐Rotation

Moment‐Rotation
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Test equipment Bucket
User Diameter [mm] 300

Test name Embedment ratio 1

Date Test
Static or cyclic test static

Moment arm [mm] 0.903

General Comments
None

Soil Preparation & Installation Phase

Gradient applied 

‐

Relative density [%]

cpt 1 cpt 2 cpt 3 Average Maximum installation force [N] ‐

92.81 91.74 87.2 90.58 Penetration depth [mm] ‐

Installation Phase

‐

Blue sandbox

Aligi
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Maximum moment [Nm] 195.35

Rotation at maximum moment [deg]  1.02

Horizontal and Vertical displacement‐Rotation

Moment‐Rotation
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Test equipment Bucket
User Diameter [mm] 300

Test name Embedment ratio 1

Date Test
Static or cyclic test static

Moment arm [mm] 0.596

General Comments
None

Soil Preparation & Installation Phase

Gradient applied 

‐

Relative density [%]

cpt 1 cpt 2 cpt 3 Average Maximum installation force [N] ‐

94.31 93.58 90.79 92.89 Penetration depth [mm] ‐

Installation Phase

‐

Blue sandbox

Aligi

S30

Cone Penetration Resistance

0 500 1000 1500

0

100

200

300

400

Cone Resistance [N]

D
e
pt

h
 [
m

m
]

 

 

CPT 1
CPT 2
CPT 3



Maximum moment [Nm] 183.46

Rotation at maximum moment [deg]  1.15

Horizontal and Vertical displacement‐Rotation

Moment‐Rotation
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Test equipment Bucket
User Diameter [mm] 300

Test name Embedment ratio 1

Date Test
Static or cyclic test cyclic

Moment arm [mm] 596

General Comments
Test 31 was performed to check the repeability of test 18.

The test was stopped and adjusted after few cycles for a mistake in setting the weights. 

Soil Preparation and Installation Phase

Gradient applied 

0.90

Relative density [%]

cpt 1 cpt 2 cpt 3 Average Maximum installation force [N] ‐

90.82 90.57 92.22 91.2 Penetration depth [mm] ‐

Test Phase

Masses on the weight hangers [Kg]

M1 M2 M3 Number of cycles 100933

5.775 7.11 33 Loading period [s] 10

Installation Phase

29/08/2012

Blue sandbox

Aligi & Giulio

C31
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Maximum accumulated rotation [deg] 0.297

Maximum and minimum moment [Nm]

Mmax Mmin ζb ζc
62.16 2.26 0.34 0.036

Horizontal Load‐Time, Moment‐Rotation
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Post‐Cyclic Phase

Maximum moment [Nm] 185.9

Rotation at maximum moment [deg]  1.082

Moment‐Rotation
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Test equipment Bucket
User Diameter [mm] 300

Test name Embedment ratio 1

Date Test
Static or cyclic test cyclic

Moment arm [mm] 596

General Comments
The installation force was measured in this test for the first time. The result was not satisfying.

The record stopped by itself for only 20 collecting folders were set.

The LVDTs were changed to W10TK 46, 45, 47

Soil Preparation and Installation Phase

Gradient applied 

0.90

Relative density [%]

cpt 1 cpt 2 cpt 3 Average Maximum installation force [N] ‐

93.33 92.72 91.88 92.65 Penetration depth [mm] ‐

Cyclic Test Phase

Masses on the weight hangers [Kg]

M1 M2 M3 Number of cycles 49959

8.775 8.41 33 Loading period [s] 10

Installation Phase

12/09/2012

Blue sandbox

Giulio & Aligi

C32
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Maximum accumulated rotation [deg] 0.522

Maximum and minimum moment [Nm]

Mmax Mmin ζb ζc
77.21 ‐11.48 0.421 ‐0.149

Horizontal Load‐Time, Moment‐Rotation

LVDTs‐Time, Rotation‐Time
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Post‐Cyclic Phase

Maximum moment [Nm] 193.6

Rotation at maximum moment [deg]  1.171

Moment‐Rotation
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Test equipment Bucket
User Diameter [mm] 300

Test name Embedment ratio 1

Date Test
Static or cyclic test cyclic

Moment arm [mm] 596

General Comments
In this test the installation force was correctly measured for the first time.

Soil Preparation and Installation Phase

Gradient applied 
0.95

Relative density
cpt 1 cpt 2 cpt 3 Average Maximum installation force [N] 26967

93.68 94.25 88.36 92.09 Penetration depth [mm] ‐

Cyclic Test Phase

Masses on the weight hangers [Kg]

M1 M2 M3 Number of cycles 50471

9.075 10.51 33 Loading period [s] 10

Installation Phase

19/09/2012

Blue sandbox

Giulio & Aligi

C33

Cone Penetration Resistance

0 500 1000 1500

0

100

200

300

400

Cone Resistance [N]

D
ep

th
 [m

m
]

 

 

CPT 1
CPT 2
CPT 3

0 5000 10000
0

0.5

1

1.5

2

2.5

x 10
4

In
st

al
la

tio
n
 F

or
ce

 [
N

]

Time [s]



Maximum accumulated rotation [deg] 0.4

Maximum and minimum moment [Nm]
Mmax Mmin ζb ζc
70.13 ‐22.16 0.383 ‐0.316

Horizontal Load‐Time, Moment‐Rotation

LVDTs‐Time, Rotation‐Time
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Post‐Cyclic Phase

Failure moment [Nm] 200.2

Rotation at failure [deg]  1.423

Moment‐Rotation
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Test equipment Bucket
User Diameter [mm] 300

Test name Embedment ratio 1

Date Test
Static or cyclic test cyclic

Moment arm [mm] 596

General Comments
None

Soil Preparation and Installation Phase

Gradient applied 

0.974

Relative density [%]

cpt 1 cpt 2 cpt 3 Average Maximum installation force [N] 25398

92.46 93.42 92 92.63 Penetration depth [mm] ‐

Cyclic Test Phase

Masses on the weight hangers [Kg]

M1 M2 M3 Number of cycles 10022

7.275 10.61 33 Loading period [s] 10

Installation Phase

27/09/2012

Blue sandbox

Giulio & Aligi
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Maximum accumulated rotation [deg] 0.058

Maximum and minimum moment [Nm]

Mmax Mmin ζb ζc
46.18 ‐27.9 0.252 ‐0.6

Horizontal Load‐Time, Moment‐Rotation

LVDTs‐Time, Rotation‐Time
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Post‐Cyclic Phase

Maximum moment [Nm] 191.8

Rotation at maximum moment [deg]  1.447

Moment‐Rotation

0 0.5 1 1.5 2
0

50

100

150

200

250
M

o
m

e
n
t, 

M
 [N

m
]

Rotation,  [deg]



Test equipment Bucket
User Diameter [mm] 300

Test name Embedment ratio 1

Date Test
Static or cyclic test cyclic

Moment arm [mm] 596

General Comments
None

Soil Preparation and Installation Phase

Gradient applied 
0.974

Relative density [%]

cpt 1 cpt 2 cpt 3 Average Maximum installation force [N] 25281

88.79 88.6 89.21 88.87 Penetration depth [mm] ‐

Cyclic Test Phase

Masses on the weight hangers [Kg]

M1 M2 M3 Number of cycles 9976

13.375 19.21 33 Loading period [s] 10

Installation Phase

02/10/2012

Blue sandbox

Giulio & Aligi
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Maximum accumulated rotation [deg] 0.678

Maximum and minimum moment [Nm]

Mmax Mmin ζb ζc
88.8 ‐48.04 0.48 ‐0.54

Horizontal Load‐Time, Moment‐Rotation

LVDTs‐Time, Rotation‐Time
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Post‐Cyclic Phase

Maximum moment [Nm] 203.2

Rotation at maximum moment [deg]  1.6

Moment‐Rotation

0 0.5 1 1.5 2
0

50

100

150

200

250
M

o
m

e
n
t, 

M
 [N

m
]

Rotation,  [deg]



Test equipment Bucket
User Diameter [mm] 300

Test name Embedment ratio 1

Date Test
Static or cyclic test cyclic

Moment arm [mm] 596

General Comments
None

Soil Preparation and Installation Phase

Gradient applied 

0.8

Relative density [%]

cpt 1 cpt 2 cpt 3 Average Maximum installation force [N] 25149

98.68 99.99 97.71 98.79 Penetration depth [mm] ‐

Cyclic Test Phase

Masses on the weight hangers [Kg]

M1 M2 M3 Number of cycles 10153

16.475 23.61 33 Loading period [s] 10

Installation Phase

04/10/2012

Blue sandbox

Giulio & Aligi
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Maximum accumulated rotation [deg] 1.216

Maximum and minimum moment [Nm]

Mmax Mmin ζb ζc
106.84 ‐60.18 0.583 ‐0.563

Horizontal Load‐Time, Moment‐Rotation

LVDTs‐Time, Rotation‐Time
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Post‐Cyclic Phase

Maximum moment [Nm] 217.5

Rotation at maximum moment [deg]  1.71

Moment‐Rotation
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Test equipment Bucket
User Diameter [mm] 300

Test name Embedment ratio 1

Date Test
Static or cyclic test cyclic

Moment arm [mm] 596

General Comments
The installation force exceeded significantly 25 kN.

Soil Preparation and Installation Phase

Gradient applied 

0.89

Relative density [%]

cpt 1 cpt 2 Icpt 3 Average Maximum installation force [N] 34551

99.5 100.09 98.64 99.41 Penetration depth [mm] ‐

Cyclic Test Phase

Masses on the weight hangers [Kg]

M1 M2 M3 Number of cycles 10083

19.575 27.93 33 Loading period [s] 10

Installation Phase

08/10/2012

Blue sandbox

Giulio & Aligi
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Maximum accumulated rotation [deg] 2

Maximum and minimum moment [Nm]

Mmax Mmin ζb ζc
126.03 ‐72.54 0.688 ‐0.576

Horizontal Load‐Time, Moment‐Rotation

LVDTs‐Time, Rotation‐Time

0 2 4 6 8 10

x 10
4

-100

0

100

200

Time, T [s]

H
or

iz
on

ta
l L

o
ad

, 
H

 [
N

]

0 0.5 1 1.5 2

-50

0

50

100

150

M
om

en
t,

 M
 [

N
m

]

Rotation,  [deg]

0 2 4 6 8 10

x 10
4

0

0.5

1

1.5

2

Time, T [s]

R
ot

a
ti
on

, 
 [

de
g
]

0 2 4 6 8 10

x 10
4

-10

-5

0

5

Time, T [s]

T
ra

n
sd

u
ce

rs
, 

w 1, 
w

2, 
u 1 [

m
m

]

 

 

w1
w2
u1



Post‐Cyclic Phase

Maximum moment [Nm] 220.6

Rotation at maximum moment [deg]  2.376

Moment‐Rotation
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Test equipment Bucket
User Diameter [mm] 300

Test name Embedment ratio 1

Date Test
Static or cyclic test cyclic

Moment arm [mm] 596

General Comments
None

Soil Preparation and Installation Phase

Gradient applied 

0.817

Relative density [%]

cpt 1 cpt 2  cpt 3 Average Maximum installation force [N] 25152

99.92 100.5 96.69 99.03 Penetration depth [mm] ‐

Cyclic Test Phase

Masses on the weight hangers [Kg]

M1 M2 M3 Number of cycles 10016

21.875 31.81 33 Loading period [s] 10

Installation Phase

11/10/2012

Blue sandbox

Giulio & Aligi

C38
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Maximum accumulated rotation [deg] 2.574

Maximum and minimum moment [Nm]

Mmax Mmin ζb ζc
139.03 ‐81 0.759 ‐0.583

Horizontal Load‐Time, Moment‐Rotation
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Post‐Cyclic Phase

Maximum moment [Nm] 228.2

Rotation at maximum moment [deg]  2.839

Moment‐Rotation
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Test equipment Bucket
User Diameter [mm] 300

Test name Embedment ratio 1

Date Test
Static or cyclic test cyclic

Moment arm [mm] 596

General Comments
The post‐cyclic test was not performed. The accumulated rotation of the bucket after

cyclic loading was too large.

Soil Preparation and Installation Phase

Gradient applied 

1.13

Relative density [%]

cpt 1 cpt 2 cpt 3 Average Maximum installation force [N] 25668

94.1 96.12 93.83 94.68 Penetration depth [mm] ‐

Cyclic Test Phase

Masses on the weight hangers [Kg]

M1 M2 M3 Number of cycles 9366

24.775 36.01 33 Loading period [s] 10

Installation Phase

15/10/2012

Blue sandbox

Giulio & Aligi

C39

Cone Penetration Resistance
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Maximum accumulated rotation [deg] 3.128

Maximum and minimum moment [Nm]

Mmax Mmin ζb ζc
157.11 ‐92.18 0.857 ‐0.587

Horizontal Load‐Time, Moment‐Rotation

LVDTs‐Time, Rotation‐Time
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Post‐Cyclic Phase

Maximum moment [Nm] ‐

Rotation at maximum moment [deg]  ‐

Moment‐Rotation



Test equipment Bucket
User Diameter [mm] 300

Test name Embedment ratio 1

Date Test
Static or cyclic test cyclic

Moment arm [mm] 596

General Comments
The penetration depth was measured by a magnet support.

The test was stopped after 144 cycles. The motor was not working correctly because overloaded

Soil Preparation and Installation Phase

Gradient applied 

1.06

Relative density [%]

cpt 1 cpt 2 cpt 3 Average Maximum installation force [N] 25125

95.56 97.25 95.68 96.17 Penetration depth [mm] 291.7

Cyclic Test Phase

Masses on the weight hangers [Kg]

M1 M2 M3 Number of cycles 108

32.075 46.61 33 Loading period [s] 10

Installation Phase

23/10/2012

Blue sandbox

Giulio & Aligi

C40

Cone Penetration Resistance
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Maximum accumulated rotation [deg] 2.451

Maximum and minimum moment [Nm]

Mmax Mmin ζb ζc
211.84 ‐99.31 1.156 ‐0.469

Horizontal Load‐Time, Moment‐Rotation

LVDTs‐Time, Rotation‐Time
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Post‐Cyclic Phase

Maximum moment [Nm] 232.4

Rotation at maximum moment [deg]  3.659

Moment‐Rotation
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Test equipment Bucket
User Diameter [mm] 300

Test name Embendment ratio 1

Date Test
Static or cyclic test cyclic

Moment arm [mm] 596

General Comments
None

Soil Preparation and Installation Phase

Gradient applied 
‐

Relative density [%]

cpt 1 cpt 2  cpt 3 Average Maximum installation force [N] 25731

94.79 98.85 95.53 96.39 Penetration depth [mm] 288.2

Cyclic Test Phase

Masses on the weight hangers [Kg]

M1 M2 M3 Number of cycles 10032

10.575 14.61 33 Loading period [sec] 10

Installation Phase

15/11/2012

Blue sandbox

Aligi & Giulio

C41

Cone Penetration Resistance
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Maximum accumulated rotation [deg] 0.29

Maximum and minimum moment [Nm]

Mmax Mmin ζb ζc
73.62 ‐38.26 0.4 ‐0.52

Horizontal Load‐Time, Moment‐Rotation

Displacements‐Time, Rotation‐Time
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Post‐Cyclic Phase

Maximum moment [Nm] 208.8

Rotation at maximum moment [deg]  1.23

Moment‐Rotation
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Test equipment Bucket
User Diameter [mm] 300

Test name Embedment ratio 1

Date Test
Static or cyclic test cyclic

Moment arm [mm] 596

General Comments
The installation depth was not measured

Soil Preparation and Installation Phase

Gradient applied 

0.96

Relative density [%]

 cpt 1 cpt 2 cpt 3 Average Maximum installation force [N] 25212

96.31 98.6 95.58 96.83 Penetration depth [mm] ‐

Cyclic Test Phase

Masses on the weight hangers [Kg]

M1 M2 M3 Number of cycles 10124

10.575 14.61 33 Loading period [s] 20

Installation Phase

22/11/2012

Blue sandbox

Aligi & Giulio

C42

Cone Penetration Resistance
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Maximum accumulated rotation [deg] 0.354

Maximum and minimum moment [Nm]

Mmax Mmin ζb ζc
77.53 ‐38.78 0.423 ‐0.5

Horizontal Load‐Time, Moment‐Rotation

LVDTs‐Time, Rotation‐Time
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Post‐Cyclic Phase

Maximum moment [Nm] 206.5

Rotation at maximum moment [deg]  1.488

Moment‐Rotation
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Test equipment Bucket
User Diameter [mm] 300

Test name Embedment ratio 1

Date Test
Static or cyclic test cyclic

Moment arm [mm] 596

General Comments
None

Soil Preparation and Installation Phase

Gradient applied 

0.956

Relative density

cpt 1 cpt 2 cpt 3 Average Maximum installation force [N] 27798

94.93 97.93 94.87 95.91 Penetration depth [mm] 288.25

Cyclic Test Phase

Masses on the weight hangers [Kg]

M1 M2 M3 Number of cycles 10148

10.575 14.61 33 Loading period [s] 30

Installation Phase

15.01.2013

Blue sandbox

Giulio

C44
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Maximum accumulated rotation [deg] 0.277

Maximum and minimum moment [Nm]

Mmax Mmin ζb ζc
71.3 ‐42.66 0.269 ‐0.426

Horizontal Load‐Time, Moment‐Rotation

LVDTs‐Time, Rotation‐Time
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Post‐Cyclic Phase

Maximum moment [Nm] 201.4

Rotation at maximum moment [deg]  1.191

Moment‐Rotation

0 0.5 1 1.5 2
0

50

100

150

200

250
M

o
m

e
n
t, 

M
 [N

m
]

Rotation,  [deg]



Test equipment Bucket
User Diameter [mm] 300

Test name Embedment ratio 1

Date Test
Static or cyclic test cyclic

Moment arm [mm] 596

General Comments

Soil Preparation and Installation Phase

Gradient applied 

‐

Relative density

cpt 1 cpt 2 cpt 3 Average Maximum installation force [N] 25185

91.46 97.38 93.3 94.05 Penetration depth [mm] 287.66

Cyclic Test Phase

Masses on the weight hangers [Kg]

M1 M2 M3 Number of cycles 10070

10.575 14.61 33 Loading period [s] 5

Installation Phase

04/02/2013

Blue sandbox

Giulio

C45
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Maximum accumulated rotation [deg] 0.3141

Maximum and minimum moment [Nm]

Mmax Mmin ζb ζc
70.94 ‐34.02 0.387 ‐0.48

Horizontal Load‐Time, Moment‐Rotation

LVDTs‐Time, Rotation‐Time
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Post‐Cyclic Phase

Maximum moment [Nm] 214.8

Rotation at maximum moment [deg]  1.66

Moment‐Rotation
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Test equipment Bucket
User Diameter [mm] 300

Test name Embedment ratio 1

Date Test
Static or cyclic test cyclic

Moment arm [mm] 596

General Comments
None

Soil Preparation and Installation Phase

Gradient applied 

1.06

Relative density [%]

cpt 1 cpt 2 cpt 3 Average Maximum installation force [N] 25206

94.51 96.18 93.32 94.67 Penetration depth [mm] 280.9

Cyclic Test Phase

Masses on the weight hangers [Kg]

M1 M2 M3 Number of cycles 10031

10.575 14.61 33 Loading period [Sec] 40

Installation Phase

13/02/2013

Blue sandbox

Giulio

C46
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Maximum accumulated rotation [deg] 0.321

Maximum and minimum moment [Nm]

Mmax Mmin ζb ζc
76.91 ‐39.07 0.419 ‐0.508

Horizonatl Load‐Time, Moment‐Rotation

LVDTs‐Time, Rotation‐Time
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Post‐Cyclic Phase

Maximum moment [Nm] 204.5

Rotation at maximum moment [deg]  1.1995

Moment‐Rotation
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Test equipment Bucket
User Diameter [mm] 300

Test name Embedment ratio 1

Date Test
Static or cyclic test cyclic

Moment arm [mm] 596

General Comments
None

Soil Preparation and Installation Phase

Gradient applied 

1.06

Relative density [%]

cpt 1 cpt 2  cpt 3 Average Maximum installation force [N] 7659

96.98 101.02 92.67 96.89 Penetration depth [mm] 282.4

Cyclic Test Phase

Masses on the weight hangers [Kg]

M1 M2 M3 Number of cycles 50001

‐ ‐ 33 Loading period [s] 10

Installation Phase

13/03/2013

Blue sandbox

Aligi
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Maximum accumulated rotation [deg] 0.283

Maximum and minimum moment [Nm]

Mmax Mmin ζb ζc
69.35 ‐55.23 0.378 ‐0.796

Horizontal Load‐Time, Moment‐Rotation

LVDTs‐Time, Rotation‐Time
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Post‐Cyclic Phase

Maximum moment [Nm] 205.5

Rotation at maximum moment [deg]  0.98

Moment‐Rotation
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Test equipment Bucket
User Diameter [mm] 300
Test name Embedment ratio 0.5

Date Test
Static or cyclic test static

Moment arm [mm] 0.596

General Comments
None

Soil Preparation & Installation Phase

Gradient applied 

1.08

Relative density [%]

cpt 1 cpt 2 cpt 3 Average Maximum installation force [N] 14500

94.4 96.9 92.52 94.61 Penetration depth [mm] 143.3

Installation Phase

20/03/2013

Blue sandbox

Aligi
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Maximum moment [Nm] 53.46

Rotation at maximum moment [deg]  2.308

Horizontal and Vertical displacement‐Rotation

Moment‐Rotation
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Test equipment Bucket
User Diameter [mm] 300

Test name Embedment ratio 0.5

Date Test
Static or cyclic test cyclic

Moment arm [mm] 596

General Comments
Problem in the very first cycle, it did not measure the first displacement since the wrong set up  

assistant was loaded. The test was restarted after 5 cycles with load‐after.

The weight hangers were changed as well since they were way too heavy.

The measurements were not tared, I tared them on General.m

Soil Preparation and Installation Phase

Gradient applied 

1.08

Relative density [%]

cpt 1 cpt 2 cpt 3 Average Maximum installation force [N] 14540

98.99 99.8 96.12 98.30 Penetration depth [mm] 142.93

Cyclic Test Phase

Masses on the weight hangers [Kg]

M1 M2 M3 Number of cycles 74917

0.6 1.75 31.5 Loading period [sec] 10

Installation Phase

22/03/2013
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Maximum accumulated rotation [deg] 0.017

Maximum and minimum moment [Nm]

Mmax Mmin ζb ζc
11.95 0.44 0.22 0.037

Horizontal Load‐Time, Moment‐Rotation
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Post‐Cyclic Phase

Maximum moment [Nm] 57.37

Rotation at maximum moment [Deg]  2.502

Post‐Cyclic Test
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Test equipment Bucket
User Diameter [mm] 300

Test name Embedment ratio 0.5

Date Test
Static or cyclic test cyclic

Moment arm [mm] 596

General Comments
The load was adjusted four times within the first twenty cycles.

Soil Preparation and Installation Phase

Gradient applied 

1.08

Relative density [%]

cpt 1 cpt 2  cpt 3 Average Maximum installation force [N] 14800

98.01 99.51 94.72 97.41 Penetration depth [mm] 129

Cyclic Test Phase

Masses on the weight hangers [Kg]

M1 M2 M3 Number of cycles 9953

1.43 2.4 31.5 Loading period [s] 10

Installation Phase

06/04/2013

Blue sandbox

Aligi
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Maximum accumulated rotation [deg] 0.0634

Maximum and minimum moment [Nm]

Mmax Mmin ζb ζc
18.99 0.35 0.35 ‐0.054

Horizontal Load‐Time, Moment‐Rotation

Displacements‐Time, Rotation‐Time
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Post‐Cyclic Phase

Maximum moment [Nm] 56.26

Rotation at maximum moment [Deg]  2.52

Moment‐Rotation
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Test equipment Bucket
User Diameter [mm] 300

Test name Embedment ratio 0.5

Date Test
Static or cyclic test cyclic

Moment arm [mm] 596

General Comments
The second CPT was not corectly performed

Soil Preparation and Installation Phase

Gradient applied 

1.08

Relative density [%]

cpt 1 cpt 2 cpt 3 Average Maximum installation force [N] 15200

98.59 ‐ 97.33 97.96 Penetration depth [mm] 143

Cyclic Test Phase

Masses on the weight hangers [Kg]

M1 M2 M3 Number of cycles 10089

2.15 3.37 31.5 Loading period [s] 10

Installation Phase

10/04/2013

Blue sandbox

Aligi

C51
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Maximum accumulated rotation [deg] 0.0888

Maximum and minimum moment [Nm]

Mmax Mmin ζb ζc
23.29 0 0.435 ‐0.041

HorizontalLoad‐Time, Moment‐Rotation

LVDTs‐Time, Rotation‐Time
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Post‐Cyclic Phase

Maximum moment [Nm] 56.4

Rotation at maximum moment [deg]  2.319

Moment‐Rotation
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Test equipment Bucket
User Diameter [mm] 300

Test name Embedment ratio 0.5

Date Test
Static or cyclic test static

Moment arm [mm] 0.596

General Comments
None

Soil Preparation & Installation Phase

Gradient applied 

1.08

Relative density [%]

cpt 1 cpt 2 cpt 3 Average Maximum installation force [N] 3639

93.09 95.45 92.1 93.55 Penetration depth [mm] 140

Installation Phase

19/04/2013
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Aligi
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Maximum moment [Nm] 55.18

Rotation at maximum moment [deg]  1.8

Horizontal and Vertical displacement‐Rotation

Moment‐Rotation
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Test equipment Bucket
User Diameter [mm] 300

Test name Embedment ratio 0.5

Date Test
Static or cyclic test cyclic

Moment arm [mm] 596

General Comments
The installation was split into two separate files.

Soil Preparation and Installation Phase

Gradient applied 

1.08

Relative density [%]

cpt 1 cpt 2 cpt 3 Average Maximum installation force [N] 15234

92.23 92.79 91.12 92.05 Penetration depth [mm] 142.74

Cyclic Test Phase

Masses on the weight hangers [Kg]

M1 M2 M3 Number of cycles 16068

‐ ‐ 31.5 Loading period [s] 10

Installation Phase

24/04/2013

Blue sandbox

Aligi
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Maximum accumulated rotation [deg] 0.362

Maximum and minimum moment [Nm]

Mmax Mmin ζb ζc
27.47 ‐1.34 0.51 ‐0.049

Horizontal Load‐Time, Moment‐Rotation
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Post‐Cyclic Phase

Maximum moment [Nm] ‐

Rotation at maximum moment [deg]  ‐

Moment‐Rotation
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Test equipment Bucket
User Diameter [mm] 300

Test name Embedment ratio 0.5

Date Test
Static or cyclic test cyclic

Moment arm [mm] 596

General Comments
The data present a clear discontinuity in terms of w1 and w2 at N = 15000. 

The CPT calibration factor changed. From 2600 to 1363 to 1 mV/V

Soil Preparation and Installation Phase

Gradient applied 

0.96

Relative density [%]

cpt 1  cpt 2 cpt 3 Average Maximum installation force [N] 14301

89.13 87.52 85.99 87.54667 Penetration depth [mm] 145.7

Cyclic Test Phase

Masses on the weight hangers [Kg]

M1 M2 M3 Number of cycles 16327

1.225 2.3 31.5 Loading period [s] 10

Installation Phase

28/09/2013
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Maximum accumulated rotation [deg] 0.099

Maximum and minimum moment [Nm]

Mmax Mmin ζb ζc
18.13 ‐0.341 0.3329 ‐0.0188

Horizontal Load‐Time, Moment‐Rotation

LVDTs‐Time, Rotation‐Time
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Post‐Cyclic Phase

Maximum moment [Nm] 46.4

Rotation at maximum moment [deg]  1.778

Moment‐Rotation
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Test equipment Bucket
User Diameter [mm] 300

Test name Embedment ratio 0.5

Date Test
Static or cyclic test cyclic

Moment arm [mm] 596

General Comments
I did not tare the system before starting running the test. I zeroed all the measurements just 

in the 'general.mat' script.
The LVDTs u1 and w2 were switched by accident. I switched them back in terms of column

in general.mat

Soil Preparation and Installation Phase

Gradient applied 

0.96

Relative density [%]

cpt 1 cpt 2  cpt 3 Average Maximum installation force [N] 14325

84.26 83.47 79.91 82.55 Penetration depth [mm] 145.2

Cyclic Test Phase

Masses on the weight hangers [Kg]

M1 M2 M3 Number of cycles 15233

1.435 2.95 31.5 Loading period [s] 10

Installation Phase

01/10/2013
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Maximum accumulated rotation [deg] 0.1407

Maximum and minimum moment [Nm]

Mmax Mmin ζB ζC
21.28 0.857 0.39 0.04

Horizontal Load‐Time, Moment‐Rotation

LVDTs‐Time, Rotation‐Time
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Post‐Cyclic Phase

Maximum moment [Nm] 47.3

Rotation at maximum moment [deg]  2.646

Post‐Cyclic Test
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Test equipment Bucket
User Diameter [mm] 300

Test name Embedment ratio 0.75

Date Test
Static or cyclic test static

Moment arm [mm] 0.596

General Comments
This test was the first quasi‐statit reference for buckets d/D = 0.75.

We had quite an issue in mounting the loading tower. The support plate did not fit with the screw

on the bucket lid. Finally we decided to run the test anyway by bolting the loading tower through 

the support in tension (that on the left). 

The LVDT 'u1' was not fitted properly and it could not measure the first hundreds data. 

The LVDT was then moved closer to the plates and therefore could restart taking measurements.

Soil Preparation & Installation Phase

Gradient applied 

1.08

Relative density [%]

cpt 1 cpt 2 cpt 3 Average Maximum installation force [N] 4218

85.03 83.35 81.08 83.15 Penetration depth [mm] 215.86

Installation Phase

04/10/2013
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Maximum moment [Nm] 95.35

Rotation at maximum moment [deg]  2.29

Horizontal and Vertical displacement‐Rotation

Moment‐Rotation
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Test equipment Bucket
User Diameter [mm] 300

Test name Embedment ratio 0.75

Date Test
Static or cyclic test static

Moment arm [mm] 0.596

General Comments
None

Soil Preparation & Installation Phase

Gradient applied 

1.08

Relative density [%]

cpt 1 cpt 2 cpt 3 Average Maximum installation force [N] 19464

85.93 82.49 80.87 83.10 Penetration depth [mm] 218.32

Installation Phase

08/10/2013
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Maximum moment [Nm] 97.53

Rotation at maximum moment [deg]  2.12

Horizontal and Vertical displacement‐Rotation

Moment‐Rotation
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Test equipment Bucket
User Diameter [mm] 300

Test name Embedment ratio 0.75

Date Test
Static or cyclic test cyclic

Moment arm [mm] 596

General Comments
None

Soil Preparation and Installation Phase

Gradient applied 

0.96

Relative density [%]

Id cpt 1 Id cpt 2 Id cpt 3 Average Maximum installation force [N] 19530

84.97 82.93 79.51 82.47 Penetration depth [mm] 217.6

Cyclic Test Phase

Masses on the weight hangers [Kg]

M1 M2 M3 Number of cycles 34459

1.23 2.54 31.5 Loading period [s] 10

Installation Phase

12/10/2013

Blue sandbox
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Maximum accumulated rotation [deg] 0.03

Maximum and minimum moment [Nm]

Mmax Mmin ζb ζc
17.25 ‐1.53 0.177 ‐0.09

Horizontal Load‐Time, Moment‐Rotation

LVDTs‐Time, Rotation‐Time
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Post‐Cyclic Phase

Maximum moment [Nm] 101.7

Rotation at maximum moment [deg]  2.16

Moment‐Rotation
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Test equipment Bucket
User Diameter [mm] 300

Test name Embedment ratio 0.75

Date Test
Static or cyclic test cyclic

Moment arm [mm] 596

General Comments
None

Soil Preparation and Installation Phase

Gradient applied 

0.96

Relative density [%]

cpt 1 cpt 2 cpt 3 Average Maximum installation force [N] 19425

83.18 83.49 80.75 82.47 Penetration depth [mm] 216.345

Cyclic Test Phase

Masses on the weight hangers [Kg]

M1 M2 M3 Number of cycles 9984

1.92 3.54 31.5 Loading period [s] 10

Installation Phase

17/10/2013

Blue sandbox

Aligi

C59
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Maximum accumulated rotation [deg] 0.0783

Maximum and minimum moment [Nm]

Mmax Mmin ζb ζc
23.76 ‐1.315 0.244 ‐0.055

Horizontal Load‐Time, Moment‐Rotation
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Post‐Cyclic Phase

Failure moment [Nm] 101.2

Rotation at failure [deg]  2.4

Moment‐Rotation
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Test equipment Bucket
User Diameter [mm] 300

Test name Embedment ratio 0.75

Date Test
Static or cyclic test cyclic

Moment arm [mm] 596

General Comments
During the CPT1 the hydraulic system leaked oil. It was not possible to terminate the test correctly.

The flat part in the installation phase is due to the self‐stopping device.

Soil Preparation and Installation Phase

Gradient applied 

0.96

Relative density [%]

cpt 1 cpt 2 cpt 3 Average Maximum installation force [N] 19008

‐ 84.11 82.27 83.19 Penetration depth [mm] 216.641

Cyclic Test Phase

Masses on the weight hangers [Kg]

M1 M2 M3 Number of cycles 10058

2.04 4.48 31.5 Loading period [s] 10

Installation Phase

25/10/2013

Blue sandbox

Aligi

C60
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Maximum accumulated rotation [deg] 0.0978

Maximum and minimum moment [Nm]

Mmax Mmin ζb ζc
30.39 1.66 0.312 0.0547

Horizontal Load‐Time, Moment‐Rotation

LVDTs‐Time, Rotation‐Time
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Post‐Cyclic Phase

Maximum moment [Nm] 103.2

Rotation at maximum moment [deg]  2.27

Moment‐Rotation
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Test equipment Bucket
User Diameter [mm] 300

Test name Embedment ratio 0.75

Date Test
Static or cyclic test cyclic

Moment arm [mm] 596

General Comments
The load cel during installation did not work.

Soil Preparation and Installation Phase

Gradient applied 

0.96

Relative density [%]

cpt 1 cpt 2 cpt 3 Average Maximum installation force [N] ‐

84.51 84.5 81.21 83.41 Penetration depth [mm] ‐

Cyclic Test Phase

Masses on the weight hangers [Kg]

M1 M2 M3 Number of cycles 18116

2.92 4.06 31.5 Loading period [s] 10

Installation Phase

25/10/2013

Blue sandbox

Aligi
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Maximum accumulated rotation [deg] 0.3874

Maximum and minimum moment [Nm]

Mmax Mmin ζb ζc
36,71 1.95 0.376 0.053

Horizontal Load‐Time, Moment‐Rotation

LVDTs‐Time, Rotation‐Time
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Post‐Cyclic Phase

Maximum moment [Nm] 104.5

Rotation at maximum moment [deg]  4.88

Moment‐Rotation
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Test equipment Bucket
User Diameter [mm] 300

Test name Embendment ratio 0.75

Date Test
Static or cyclic test static

General Comments

Soil Preparation & Test Phase

Relative density [%]

Id cpt 1 Id cpt 2 Id cpt 3 Average
78.32 77.85 77.73 77.97

02/12/2013

Yellow sandbox

Aligi

S63

Cone Penetration Resistance Test Phase
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Test equipment Bucket
User Diameter [mm] 300
Test name Embendment ratio 1

Date Test
Static or cyclic test static

General Comments

Soil Preparation & Test Phase

Relative density [%]

Id cpt 1 Id cpt 2 Id cpt 3 Average
77.1 81.92 73.15 77.39

03/12/2013

Yellow sandbox

Aligi
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Cone Penetration Resistance Test Phase
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